TSG-SA4#39 meeting
Tdoc S4 (06)0255
15-19 May, 2006, Dallas, TX, USA

Source:
Nokia

Title:
A proposal for jitter buffer management algorithm
Document for:
Discussion & decision
Agenda Item:
13.6.1
1 Introduction

This document proposes two algorithms to be used in the testing involved in the characterisation of the adaptive jitter management performance WI:

1. A simple fixed buffering scheme to be used as the reference against which the adaptive algorithm can be compared.

2. A simple adaptive buffering scheme enabling the buffer adaptation during comfort noise periods to be used as the baseline adaptation algorithm.
The fixed buffering scheme will provide the upper bound for voice quality when the buffer length is selected to reach desired delayed frame rate. The simple adaptive buffering scheme on the other hand improves the delay performance over the fixed buffering scheme without affecting the active speech quality.

2 Buffering algorithms
2.1 Fixed buffering algorithm

The pseudo-code below describes the functionality of the proposed fixed buffering scheme. Note that the primary role of this algorithm is to provide a reference to the adaptive algorithm(s) for the testing purposes: if the fixed buffering is set to provide delay that is comparable to evaluated adaptive buffering scheme, we can find out the voice quality gain provided by the adaptive approach. On the other hand, if the buffering is tuned to provide voice quality equal to that of the adaptive system, we can find out the delay gain provided by the adaptive system.
/* INITIALISATION */

Read the first input frame, initialise variables
 /* Time measured in speech samples at 8 kHz */

 rx_time = current_time = NOW

 dec_time = current_time + BUFFER_DELAY

 next_ts = rtp_ts

 end_of_input = FALSE

 buffer_occupancy = EMPTY
/* MAIN LOOP */

WHILE end_of_input == FALSE OR buffer_occupancy == NOT(EMPTY)
{

 /* FRAME/PACKET RECEPTION */

 WHILE end_of_input == FALSE AND rx_time <= current_time

 {

 /* Check FRAME/PACKET arrival time */

 IF rtp_ts < next_ts

 {

 Discard the frame because it arrived late

 }

 ELSE

 {

 /* Check jitter buffer occupancy */
 IF buffer_occupancy == FULL

 {

 Discard the frame because the buffer is full

 }

 ELSE

 {

 Store the frame into the buffer

 Update variable

 buffer_occupancy

 }

 }

 Read the next input frame
 IF new frame available

 {

 Update variables

 rx_time
 rtp_ts

 }

 ELSE

 {

 end_of_input = TRUE

 }

 }

 /* DECODING */

 WHILE dec_time <= current_time

 {

 Request frame having the RTP timestamp value next_ts from the buffer

 IF requested frame found

 {

 Decode speech or generate comfort noise (SID or SID_FIRST frame) normally

 Update variable

 buffer_occupancy

 }

 ELSE

 {

 IF in speech state

 {

 /* Lost frame */

 Invoke error concealment

 }

 ELSE

 {

 /* DTX */

 Continue comfort noise generation
 }

 }

 Update variables for decoding the next frame
 dec_time = dec_time + 160
 next_ts = next_ts + 160

 }

 /* CLOCK/TIMER UPDATE */

 current_time = current_time + 1

}
2.2 Adaptive buffering algorithm

The pseudo-code below describes the functionality of the proposed adaptive buffering scheme. The basic idea is to collect the reception statistics during active speech and use this data to adapt the buffering delay during the comfort noise periods.
/* INITIALISATION */

Read the first input frame, initialise variables

 /* Time measured in speech samples at 8 kHz */

 rx_time = current_time = NOW

 dec_time = current_time + INITIAL_BUFFER_DELAY

 next_ts = rtp_ts

 end_of_input = FALSE

 buffer_occupancy = EMPTY

 buffer_delay = INITIAL_BUFFER_DELAY

/* MAIN LOOP */

WHILE end_of_input == FALSE OR buffer_occupancy == NOT(EMPTY)

{

 /* FRAME/PACKET RECEPTION */

 WHILE end_of_input == FALSE AND rx_time <= current_time

 {

 Update reception statistics for jitter estimation
 jitter_statistics

 delayed_frame_rate

 IF rtp_ts < next_ts

 {

 Discard the frame because it arrived late

 }

 ELSE

 {

 IF buffer_occupancy == FULL

 {

 Discard the frame because the buffer is full

 }

 ELSE

 {

 Store the frame into the buffer

 Update variable

 buffer_occupancy

 }

 }

 Read the next input frame

 IF new frame available

 {

 Update variables

 rx_time

 rtp_ts

 }

 ELSE

 {

 end_of_input = TRUE

 }

 }

 /* DECODING */

 WHILE dec_time <= current_time

 {

 Request frame having the RTP timestamp value next_ts from the buffer

 IF requested frame found

 {

 /* Buffer adaptation in DTX period */

 IF this is SID_FIRST frame

 {

IF delayed_frame_rate > TARGET_DELAYED_FRAME_RATE

{

 Set value based on jitter_statistics

 buffer_delay_new

}

ELSE IF delayed_frame_rate == 0

{

 Set value based on jitter_statistics and average_buffer_delay

 buffer_delay_new

}

ELSE

{

 buffer_delay_new = buffer_delay

}

 scal_len = buffer_delay_new – buffer_delay

 IF scal_len != 0

 {

 Generate CN & give a scaling request to the time scaling unit

 }

 ELSE

 {

 Generate CN normally

 }

 dec_len = 160 + scal_len

 buffer_delay = buffer_delay_new

 }

 ELSE

 {

 Decode speech or generate comfort noise (SID frame) normally

 Update reception statistics

 average_buffer_delay

 dec_len = 160

 }

 Update variable

 buffer_occupancy

 }

 ELSE

 {

 IF in speech state

 {

 /* Lost frame */

 Invoke error concealment

 }

 ELSE

 {

 /* DTX */

 Continue comfort noise generation

 }

 dec_len = 160

 }

 Update variables

 dec_time = dec_time + dec_len
 next_ts = next_ts + 160

 }

 /* CLOCK/TIMER UPDATE */

 current_time = current_time + 1

}
3 Conclusions

We propose to adopt the buffering schemes described above to be used as the reference algorithms for the characterisation of the adaptive jitter management performance for VoIMS over HSDPA/EUL. Nokia volunteers to provide the AMR decoder implementations equipped with the buffering schemes as described above to be used as the test tools.

