3GPP TSG SA WG4 #38

Tdoc S4 (06)0224

115-19 May, 2006, Dallas, USA

Source:
Apple Computer

Title:
Discussion DIMS baseline specification text
Document for:
Discussion

Agenda Item:
13.3

This document is a prototype ‘specification’ for the DIMS multimedia service in 3GPP (and hence also for RME in OMA). It attempts to be as simple as possible. It is presented to see how much can be achieved with the most simple definition and concepts. (Concepts that form the basis, to a large extent, of both proposals, in fact).

This is not (at least not yet) an attempt at any kind of unified proposal; instead, I wrote in an attempt to find out for myself what little was absolutely needed to be specified to make a specification that ‘hung together’. Therefore the purpose of this is to ask: how much must we specify to solve our problem? It should be viewed as a thought-experiment along those lines. Though I believe that a simple specification is desirable, there will, of course, be judgment calls to make over ‘minor’ improvements that are not ‘strictly needed’ but nonetheless give ‘substantial’ improvement. It is not intended for ‘adoption’, even though it is written in the style of a specification for clarity.

There is little or no discussion in the ‘body text’; instead, for clarity, discussion is reserved to a separate short section at the end.

Lightweight Extremely Simple Specification
for Extensible Rich-Media
(‘LESSER’)

1 Stream Definition

1.1 Introduction

A scene stream consists of an initial conformant SVG scene, which is updated over time. After each update, the ‘logical document’ that has been updated is still a conformant SVG scene.

Scripting may be attached to the scene using ECMAScript.

Periodically, in order to allow random access or tune-in, or to assist error-recovery in error-prone environments, ‘refresh points’ may be provided which are independently decodable documents, equivalent to the accumulated state change to that time.

1.2 Overall Scene System

The scene is an SVG ‘document’ which is updated over time. This specification defines no extensions to SVG. [ed: despite temptation]. The overall profile of the scene determines the profile of the SVG scene that is used.

Note that the transport may apply some transport encoding (or compression) to the XML document.

1.3 Sync (Independently Decodable) Frames

An independently encodable frame is an SVG document.

A time-contained scene delivered over a reliable transport mechanism (e.g. a file) MUST start with a Sync Point.

1.4 Difference Frames

A difference frame applies a set of updates to the current base scene. These updates are ‘chained’; each update applies to the state left by the previous update.

Updates might also convey custom events (user events) to the client, to trigger pre-defined behavior in the scene (including triggering execution of a script). [ed: not currently a feature of REX or LASeR as far as I know].

1.5 Refresh Frame

A Refresh Frame is defined identically to a Sync Frame. The transport layer has the responsibility of labeling the Sync Frames and Refresh Frames so that the client can distinguish them. Sync Frames are always decoded. Refresh Frames MAY be ignored by the client if the client has successfully decoded a previous Sync or Refresh Frame, and all Difference Frames after that.

1.6 Scripting

Scripts written in ECMAScript may be attached to the scenes. Full access to the DOM of the scene is provided, and if the scene is embedded in another context, DOM access to that context is also provided (e.g. the scene may be a stream embedded in a SMIL presentation, a 3GPP file, an SVG document, or another scene).

The degree of availability of scripting and the DOM is indicated by the profile.

XMLHTTPRequest is provided in the scripting environment, for scripting-controlled update and feedback (‘AJAX’).

1.7 Feedback

When client-server feedback is required, the client opens a URL (e.g. HTTP, Mailto, MMS etc.), uses GET/POST over HTTP, or uses XMLHTTPRequest. No custom feedback mechanism is provided in the scene system itself.

1.8 Timing

There is a base timeline for the overall scene itself. Frames are time-stamped by the transport mechanism on this timeline. (In audio or video, this would normally be the composition time). SVG behavior within the scene is timed to this timeline also. Therefore if this timeline is stopped (e.g. the user presses the ‘pause’ button during file playback), time ceases to advance within the scene and no new events are dispatched.

SVG has provision for independently-timed audio, video, and animations (embedded SVG), using the syncBehavior value ‘independent’. Embedded media that is independent may be playing or paused (presumably under scene control) independently of the overall timeline of the scene itself.

Note that a suitable file for inclusion in a “video” element might itself include a scene stream.

1.9 Visual and Audio Composition

When scenes are included in container environments that permit parallel audio or video streams (e.g. SMIL, SVG, other scenes, ISO family files, RTP), it is the responsibility of the container to define the visual and audio composition of the scene with respect to the other parallel content. [ed: RTP does not have any kind of composition system, which may be an issue.]

1.10 Profiles and Levels

The scene stream is both profiled (indicating what features are used) and leveled (indicating the degree of complexity etc. of the stream). The profile/level indication is carried in the transport.

1.10.1 Profiles

The following profiles are defined. Profiles are fully nested (e.g. all features of profiles <N are included in profile N). [ed: we might want to space the numbers out; we might also need non-nesting profiles].

1. Simple:
Scenes conform to SVG Tiny 1.1; no content_encoding is used in the transport environment, and scripting is not used.

2. Base:
Scenes conform to SVG Mobile 1.2; GZIP content_encoding may be used, and ECMAScript may be used.

3. Compact: Scenes conform to SVG Mobile 1.2; GZIP and Binary content_encoding may be used, and ECMAScript may be used.

4. Full:
SVG Full may be used.

1.10.2 Levels

Levels are independently signaled from profiles. Levels indicate the degree of support required. Levels are defined over the following axes, and include any embedded SVG scenes or scene streams, e.g. in “animation” or “video” elements:

1. Stream bit-rate.

2. Stream event-rate (the maximum number of REX events per second).

3. The maximum size of the DOM tree of the scene in nodes (including embedded SVG or scene streams).

4. The maximum number of simultaneous animations running.

5. The maximum number of simultaneously playing audio streams in the scene.

6. The maximum number of simultaneously playing video streams in the scene.

The following levels are defined. Levels are fully nested; a decoder capable of handling level N is capable of handling documents declared to require any level up to and including N.

[ed: levels TBD]

1.11 Transport Access Units

For carriage in transport environments, the following access unit is defined.

Each AU declares how it is encoded (or not), and then the content follows.

class sceneAU {

unsigned int(24) reserved = 0;

unsigned int(8) content_encoding;

int(8)[]
content;
// to end of sample
}

The field content_encoding takes the following values:

0) the content is not encoded; it is in plain text Unicode.

1) the content has been compressed using GZIP.

2) the content has been encoded using a DIMS-specific binary encoding [e.g.: drawn from the LAsER spec.]

3) the content has been BiM compressed (see ISO/IEC 23001-1).

[ed: this isn’t strictly minimal; however, it covers the existing possibilities.]

All other values are reserved.

Note: this code-point is declared on an access-unit by access-unit basis, as compression of small updates may not make sense.

The content immediately follows these four bytes.

0) In the case of un-encoded content, it is valid Unicode XML text, with full headers, to the end of the sample (there is neither a string length in front of the text, nor a trailing terminator).

1) In the case of GZIP, it is precisely that text GZIPped.

2) In the case of binary encoding, it is a binary access unit as defined in …[ISO/IEC 14496-20 for LASeR, though this is probably not precise enough]

3) In the case of BiM, it is …[tbd]

2 Carriage in ISO Family Files

2.1 Stream Type

Scenes are carried in scene tracks in ISO family files. They therefore use:

(a) a video media handler ‘vmhd’;

(b) a media handler type of ‘sdsm’ (scene description media handler);

(c) a derivative of the base SampleEntry in the sample description box.

2.2 Sample Entry Name and Format

The [TB] registered sample entry four-character code for scenes is ‘less’ or something. The following box MUST be present in the sample entry.

class SceneConfiguration extends FullBox (‘lesC’){

unsigned int(8) profile;

unsigned int(8) level;

unsigned int(16) encodings_used;
}

The encodings_used is a bit-mask of which content_encodings may be encountered in the stream. Bit 0 is the least significant bit, and is set if any access unit is un-encoded. An AU MUST NOT occur in the stream using a content_encoding for which the corresponding bit was zero in the encodings_used field. This field therefore MUST NOT be zero.

2.3 Sample Format

A sample is a transport access unit, as defined above.

2.4 Other Resources

Other resources may be carried in the meta-data directories of ISO files, in the track containing the scene, the movie containing that track, or the file containing that movie. If there is no actual meta-data (the meta-data block is there merely to carry resources), the meta-data handler type ‘null’ may be used.

URL forms to address these resources are defined in the ISO specification, and are relative to the file containing the resource.

2.5 Sync and Refresh Frames

The sync sample table marks sync frames in the stream.

Refresh frames may be stored in the file format using a separate track. These are structured the same as switch picture tracks in the AVC File Format (ISO/IEC 14496-15), using the support for SI pictures only. Briefly, a refresh frame is stored in a separate track where is has the appropriate timestamp. The switching track must be linked to the track into which it switches (the destination track) by a track reference of type ‘swto’ in the switching picture track.

[ed: Shadow sync seems to be deprecate these days, and it has interleave issues.]
2.6 Composition

There are cases when a scene stream is in an ISO family file in parallel with other streams such as audio or video streams. Those streams are visible in the DOM, but they are not ‘part of’ the scene (i.e. they do not appear in <audio> or <video> elements, there are no URL forms for them etc.). This is similar to when they are in a <par> in SMIL, for example.

Note that more complex composition may be done using an overall scene, SMIL, or SVG scene that includes independent files each containing audio, video, or a scene, as needed.

The following text is drawn from the Motion JPEG 2000 specification (ISO/IEC 15444-3) and in a specification should probably be included by reference rather than by copy.

It uses existing ‘template’ fields in the ISO file format.

Composition of multiple image sequences in a 2D environment can be achieved by using multiple video tracks that overlap in time. Their composition is defined by the following structures:

· The matrix in the track header specifies their positioning and scaling.

· The layer field in the track header specifies the front-to-back ordering of the tracks.

· The graphics mode and opcolor fields in the video media header are used to specify the ways in which each track is composited onto the existing image (this compositing is performed from back to front).

Matrix values which occur in the headers specify a transformation of video images for presentation. The point (p,q) is transformed into (p', q') using the matrix as follows:

(p q 1) *
| a
b
u
|
= (m n z)

| c
d
v
|

| x
y
w
|

m = ap + cq + x; n = bp + dq + y; z = up + vq + w;

p' = m/z; q' = n/z

The coordinates {p,q} are on the decompressed frame, and {p’, q’} are at the rendering output. Therefore, for example, the matrix {2,0,0, 0,2,0, 0,0,1} exactly doubles the pixel dimension of an image. The co-ordinates transformed by the matrix are not normalized in any way, and represent actual sample locations. Therefore {x,y} can, for example, be considered a translation vector for the image.

The co-ordinate origin is located at the upper left corner, and X values increase to the right, and Y values increase downwards. {p,q} and {p’,q’} are to be taken as absolute pixel locations relative to the upper left hand corner of the original image (after scaling to the size determined by the track header's width and height) and the transformed (rendering) surface, respectively.

Each track is composed using its matrix as specified into an overall image; this is then transformed and composed according to the matrix at the movie level in the MovieHeaderBox. It is application-dependent whether the resulting image is ‘clipped’ to eliminate pixels, which have no display, to a vertical rectangular region within a window, for example. So for example, if only one video track is displayed and it has a translation to {20,30}, and a unity matrix is in the MovieHeaderBox, an application may choose not to display the empty “L” shaped region between the image and the origin.

All the values in a matrix are stored as 16.16 fixed-point values, except for u, v and w, which are stored as 2.30 fixed-point values. Matrices used here restrict (u,v,w) to be (0,0,1), for which the hex values are (0,0,0x40000000).

The values in the matrix are stored in the order {a,b,u, c,d,v, x,y,w}.

Tracks are composed to the presentation surface from back (highest layer number) to front (lowest layer number), against an indeterminate initial colour. There are various composition modes available; the backmost (first-rendered) track would normally use 'copy' as the initial image is indeterminate. Subsequent layers can then be composed on top in a variety of ways. The following table details the composition modes available. Note that (currently) only the 'transparent' mode uses the opcolor field.

Table 1 - Graphics Composition Modes
	Mode
	Code
	Description

	Copy
	0x0
	Copy the source image over the destination

	Transparent
	0x24
	Replace the destination pixel with the source pixel if the source pixel isn't equal to the opcolor. (Also known as 'blue-screen').

	Alpha
	0x100
	Replace the destination pixel with a blend of the source and destination pixels, with the proportion controlled by the alpha channel.

	Pre-multiplied black alpha
	0x102
	Pre-multiplied with black means that the colour components of each pixel have already been blended with a black pixel, based on their alpha channel value. Effectively, this means that the image has already been combined with a black background, which must be removed before composition.

Images are only alpha-composed if both the graphics composition mode requests alpha composition, and the frontmost content contains alpha channels (e.g. in SVG as derived from various opacity values). Therefore the graphics mode can be used to prevent alpha composition of an image with alpha channels, if that is desired. [ed: SVG uses premul black alpha in these terms?]

Note: use of the “transparent” mode can be useful when the front-most video is the scene and it has the same viewport-fill color.

3 Carriage in RTP

AU repetition may be used in Single-AU and Aggregation packets, but not packets containing fragments. That is, if, possibly after de-aggregation, two or more complete AUs have the same timestamp, they are functionally equivalent and all of them except one MUST be discarded.

3.1 AU Header

The AU header as defined above is re-defined as follows:

class sceneAU {

unsigned int(16) reserved = 0;

unsigned int(4) fragment_type;

unsigned int(4) sample_type;

unsigned int(8) content_encoding;

int(8)[]
content;
// to end of sample
}

The field sample_type takes the following values:

· 0 - the sample is a difference frame;

· 1 - the sample is a refresh frame (‘optionally’ decoded)

· 3 - the sample is a sync frame

The field fragment_type takes one of following values:

· 6 - this is an entire AU (includes both 2 - ‘first’ - and 4 - ‘last’)

· 1 - this is a fragment of an AU, but not the first or last fragment

· 3 - this is the first fragment of a fragmented AU

· 5 - this is the last fragment of a fragmented AU

3.2 Single-AU or AU fragment packets

A single-AU packet carries a single AU, or AU fragment as defined above.

If AU fragments are transmitted, they are first re-combined into a single AU by appending the content fragments, and setting the fragment_type field to 0, and then any content_encoding is undone (i.e. if GZIP is used, it is the entire AU that is GZIPped and then fragmented). The content_encoding of fragments of one AU MUST be the same.

3.3 Aggregation

The aggregation format consists of a series of AUs each preceded by (a) a 16-bit length field and (b) a 16-bit timestamp-offset field.

The length counts all the bytes in this AU, including the 4 bytes of the length field and the timestamp_offset. Therefore the smallest value that may occur here is 12 (4 bytes each for the length, timestamp_offset, and AU header bytes).

The timestamp_offset is an unsigned 16-bit value that is added to the RTP timestamp of the packet to yield the RTP timestamp that this AU would have had, had it occurred in a single AU packet. The timestamp_offset of the first AU in the packet MUST be zero (0), and the timestamp_offset values in succeeding AUs MUST be monotonically increasing (i.e. the AUs are ordered in time order and do not repeat within the packet).

Fragment_type fields in aggregation packets MUST be 0.

3.4 SDP Parameters

The only required format parameters are the same as in the sample entry: the profile, level, and content_encodings fields. They are supplied as simple format parameters (fmtp lines).

If the content_encoding system needs any initialization, it is supplied in base64 format as a parameter specific to the payload-type (as usual) and the content_encoding value.

4 Carriage in SMIL, SVG, DIMS

Files containing these streams (e.g. 3GP file) may be included in SMIL etc. using a <video> element. The containing format (SVG, SMIL etc.) defines the temporal and special composition.

5 DIMS Service Definitions

The DIMS service is defined in two forms: unicast and multicast/broadcast. All that is required in the Unicast service is also required in the multicast service.

5.1 DIMS-U Service

To support the DIMS Unicast service, the terminal must support:

· DIMS scenes to profile ‘Simple’ and Level X, including support in 3GP files and RTP streams;

· The following media types from the PSS specification: SVG, JPEG, PNG, AVC video, HE-AAC+ audio, AMR audio, in both file and stream (if appropriate);

· HTTP access and HTTP URLs.

· Mailto URLs [ed: is there an equivalent MMS URL to cause an MMS to be started to be sent?]

· RTSP access and RTSP URLs

Files containing DIMS scenes may be delivered by any supported mechanism (e.g. loaded over HTTP, sent in MMS, locally loaded to the terminal, and so on).

5.2 DIMS-M Service

To support the DIMS Multicast/Broadcast Service, the terminal must support:

· The DIMS-U service

· The FLUTE protocol and download, including required FEC support;

· FEC over RTP

· MBMS

6 Discussion

This text is deliberately ‘bare bones’. Features of both MORE and LASeR were omitted, in an attempt to find the ‘bare essentials’ of what needed to be specified. For the most part, those bare essentials were also common to both specifications.

The RTP payload format could be significantly simpler than either proposal; there is no need for in-line setup information, in this text. We are therefore reduced to the usual single AU, AU fragment, multiple AU design. The content_encoding was moved into each AU (which makes sense as compaction of small updates is probably more trouble than it is worth).

Left out from MORE, for example, were the sample dissimilarity information (SDI) and custom feedback channels.

Left out from LASeR/SAF were, for example, SAF, scene chaining, and (I think) the somewhat more complex ‘MPEG timing model’ and the way parallel streams and composition is handled.

LESSER
1/1
DIMS

