3GPP TSG SA4#39 meeting

 Tdoc S4-060203
May 15-19, 2006

Dallas, USA

Source:
Streamezzo
Title:
DIMS candidates comparisons
Document for:
Discussion and approval
Agenda Item:
13.3
1. introduction
3GPP SA4 is currently evaluating two proposals to fullfil the DIMS use cases and requirements and to be the basis of the DIMS specifications.
This contribution highlights some points, compares some differences between the two proposals (on documents available at the PSM adhoc meeting): the MORE solution and the MPEG-4 part 20 based solution.
2. Scene functionality

The MORE proposal intends to be based on the SVGT1.2 scene functionality but could consider one extension from SVG Full: pixel-aligned rectangular clipping. However, this pixel-aligned rectangular clipping either cannot be done by SVG Full, or if it can be done, then it is not possible to import that SVG Full clipping feature as it stands today into SVGT1.2 in an efficient manner. Today, it is very unclear how MORE intends to fulfill the rectangular clipping requirement.
For pixel-aligned rectangular clipping, LASeR provides a very simple and efficient solution with the lsr:rectClip element.

For many other simple features such as easy scrolling, rendering one among a set of elements, media clipping, pointer emulation and so on, LASeR also provides simple and efficient extensions.

See contributions number. S4-060200, S4-060201 for the description of these features.
By staying with SVGT1.2 without extensions, MORE is both more limited (no fullscreen, no clipping) and places a bigger burden on the devices than the LASeR proposal. For example, MORE services will have much cruder menus and much fewer transition styles without clipping, and MORE implementations will not be capable of making use of native fullscreen video . MORE services will need to use more elements or heavy scripting in situations where LASeR services need none and work efficiently on much smaller devices, for frequent widgets such as slideshows and menus.
3. DYnamic update mechanism
3.1 Overview
The REX specification is still a first public draft and as a consequence is not mature enough to be compared to the LASeR commands specification, which benefits from multiple implementations and from the previous experience of MPEG-4 BIFS and Adobe/Macromedia Flash.

It clearly appears that there are similarities between the two mechanisms.

· First they are both generic and can apply to any XML content.

· Second they can be inside or ouside of the initial document.

3.2 REX limitations
REX is mainly composed of 3 kind of messages 'DOMAttrModified', 'DOMNodeInserted', and 'DOMNodeRemoved' that can be combined together to offer a bigger set of updates.

These 3 messages are very similar to the LASeR command Insert, Replace and Delete. They cover the same functionality.
None of the REX message or combination of REX message covers the functionality of the LASeR command:

· Add

· RefreshScene

· Save
· Restore
· Clean
None of the REX messages or combination of REX messages covers the functionalities provided for broadcast scenarios by the LASeR commands NewScene and RefreshScene.

It is not clear whether there is a mechanism to interactively trigger a set of REX messages, e.g. through the user pressing a key. It is therefore not clear how REX can be used for managing user interaction.
3.3 Append mode

In addition to the LASeR command, the MPEG-4 part 20 specification provides a binding mechanism through the append mode. The append mode allows to append a stream of updates to an initial/new scene. This is a feature not supported by MORE.
This is particularly useful for server side and service efficiency, to reduce the number of necessary concurrent HTTP connections and to optimize the client-to-server connection time.
From a server-side point of view, the interactive transmissions can be considered as a series of separate connections, as opposed to the continuous connection of the streaming style. It is typically implemented using separate HTTP connections, since each data burst results from a user request. However, from a LASeR viewer point of view, it is the same scene/service that is modified. Hence the requirement for the server to be capable of signaling an append mode: “this stream does not contain a totally new scene, but an improvement to the scene the viewer is currently processing”.
This information allows the DIMS Client to not dispose of all the media decoders’ resources. In the opposite, if a “NewScene” happens, the DIMS Client knows that all media decoder need to be trashed and all resources are deleted (unless they are marked for caching).
The append mode also allows the creation in advance of multiple responses to possible user requests. If the service is modeled as a state machine, each transition of the state machine represents a change to the current scene and may be implemented as an append component. Careful authoring and scope management is required, in particular to avoid clashes of id between elements added by different append components. Still, this functionality opens the way to servers caching most of the responses to users, therefore dramatically improving the service’s performance.
3.4 Genericity and XPath usage

It has been claimed that REX, using XPath for pointing at target elements, is more generic than LASeR Commands which use only IDs. First, this genericity is of very little value. Second, it comes at a tremendous cost.. Last but not least, XPath does not mix well with updates. These points are explained below
Note: LASeR Commands specify an ID mechanism for target element reference, but LASeR Commands could easily, if deemed absolutely necessary, use XPath by cloning the commands and replacing the ref attribute of type IDREF with an xpathRef attribute of type string.
3.4.1 XPath is not useful

IDs are a very simple way of designating potential update targets. It is very easy to understand by the designer, and covers all useful cases for DIMS.
XPath is very useful to get information from a document which possibly the author does not have access to. But as soon as you have ‘writing access’ to a document, it is cheaper by far to put an ID on the target element.

There is therefore not realistic use cases covered by XPath and not covered by IDs.

3.4.2 XPath is very expensive

Compared to using IDs only, XPath has many cost issues:

· cost of implementation: it is at least ten times larger than an implementation of updates based on IDs alone.

· cost of specification: there is no agreed “mobile profile” of XPath.
· cost of execution: getting an element by ID has the cost of one access to a hashtable, but evaluating an XPath expression is a lot more expensive, and the difference is not bounded by any reasonable number.
· cost of authoring: its syntax is just too complex for humans.
· cost of encoding and validation: the syntax is complex, this makes it difficult to encode or validate.
3.4.3 XPath does not work well with updates

Using XPath means that you count on the structure of the tree you are accessing to be stable. If you want the third child of the first <g> below the root, what happens if the second child has been deleted or some other <g> has been added at the beginning of the root ? Basically, your XPath expression is then stale. So if there are updates on the tree you are accessing, the XPath expression targeting an element changes over time.
Using IDs is not sensitive to such instability.
Note: in a similar fashion, during authoring or maintenance of a service, a restructuring of the scene will likely make all XPath expressions in REX updates stale, and the process to update these XPath expressions is quite complex.

3.4.4 Conclusion
We believe that using XPath has many more drawbacks than advantages:
· XPath is not useful: if you can write the tree (to update it), then you can put an ID on the target element for cheaper access. If you cannot put an ID on the target element, then how can you update it ?

· XPath is so much more expensive

· XPath is unstable with tree updates (which has impact both during authoring and during service execution)
3.5 Cost of the REX updates
A REX Message trigger an event: a DOM3Event needs to be instanciated. The event reaches a node resolved by an explicit ID or by a relative path (XPath). Once the event is processed, the bubble mechanism implies that all node parents potentially could listen for this event and could trigger an action. We think this is going to be costly in CPU memory usage.
Moreover how can you differentiate between the incoming event which carries a “command” semantics from the “informational” event which tells the rest of the tree that a change has been made? There is a fundamental flaw in taking something that already has an “informational” semantics, and overloading it with a “command” semantics, and having both versions coexist in the same tree.
3.6 Timing model of the update
The timing model associated to the REX updates is not part of the REX specification but part of the MORE proposal. It has not been implemented and validated in a real-life service scenario. It has not been proven to work and allow the creation of compelling mobile services at a reasonable cost.
The timing model associated is too limited compared to the LASeR timing model associated to the LASeR command as it misses the relationship between transport time and scene time, as well as means to reconnect multiple sessions into a single time line.
3.7 Conclusion

REX is not specified enough to cover the range of DIMS use cases, it has not been implemented and used in real-life services and is too costly compared to the LASeR Command.
4. streamability
The streamability of MORE is provided either by the REX mechanism with the limitations explained above or by segmentation provided at the network level.

In order to allow rendering before the end of the download or to use the fragmentation of SVG scenes hinted at (but not precisely specified) by the MORE proposal, SVG constraints on well-formedness have to be dropped. Once the end tag has been received, nothing else can ever be sent any more, so the end tag is only received when the scene is at end. In the case of an interactive scene, in order to leave to the user the opportunity to interact, the scene needs to be left open, so the end tag is never received. As a result, a streamed SVG scene is never well-formed. The SVGT1.2 specification works around this problem by defining the well-formedness of SVG fragments.

LASeR scenes can be modeled as a series of SVGTiny scenes. The first frame consist of the initial SVGTiny scene, the next frames contain the differences, i.e. the set of scene updates required to transform the previous scene into the next scene.

[image: image1.emf]LASeR

update

LASeR

update

LASeR

update

LASeR

update

LASeR

NewScene

What the author wants the user to see:

The LASeR stream:

time

SVG

scene 1

SVG

scene 2

SVG

scene 3

SVG

scene 4

SVG

scene …

time

SVG

scene 1

scene 2

–

scene 1

scene 3

-

scene 2

scene 4

-

scene 3

…

The fact that the scenes are equidistant is a simplification

What the browser contains after updates execution:

time

SVG

scene 1

SVG

scene 2

SVG

scene 3

SVG

scene 4

SVG

scene …

Figure 1: updates construction

The first LASeR packet contains a complete, well-formed SVGTiny scene (with end tag) which represents the first state of the content. The next LASeR packets are sets of commands to build the next states of the content. Each packet is complete and well-formed. After each packet is received and each update command is executed, the scene in the browser is a valid, well-formed SVGT scene.

4.1 Streaming

4.1.1 In SVGT1.2

Let us model the reception of an SVGT1.2 scene as a series of packets. Let us further assume for simplicity that each packet contains a single top element (with children): this is not necessary but simplifies explanations. Each packet/top element is received at a certain time, which depends on the network, and is executed ASAP. This is impossible to synchronize, because there is no way to associate a time stamp with a scene time. If the packet is conveyed in RTP, there is no way to translate the RTP time stamp information into scene time, in order to possibly wait before the insertion of the element in the packet. From the other end, the author has no means to specify: this element shall be inserted in the scene at time T.

This is what happens with MORE when fragmenting SVG scenes. The fragmentation scheme being not described, it may be even worse as the fragmentation may happen at any boundary, not necessarily related to top-level elements.
4.1.2 In LASeR

LASeR content is always a stream. LASeR introduces the scene updates mechanism, in order to transpose to scenes the well-known structure of video streams: intra-coded frames followed by predictive-coded frames.

In a LASeR stream, the first packet contains the initial (SVGTiny) scene. As a result, at the end of the first packet, an end tag is received, allowing well-formedness checking and other optimizations.

The next packets contain update instructions. The instructions themselves can be expressed in XML or binary, but in both cases are well-formed and complete. The result of the execution of the update instructions is a complete and well-formed SVGTiny scene.
Each LASeR packet has a specific time stamp. This time stamp may need to be adapted to the underlying transport, but the LASeR specification defines precisely how to recover the scene time information from the transport time stamp. The author needs to specify the scene time at which each update will be executed. As a result, precise synchronization of scene updates with media is feasible.

Within the browser, between packets, the content is complete, well-formed SVG content.

[image: image2.emf]LASeR

update

LASeR

update

LASeR

update

LASeR

update

LASeR

NewScene

The LASeR stream as transmitted:

time

SVG

scene 1

scene 2

–

scene 1

scene 3

-

scene 2

scene 4

-

scene 3

…

What the browser contains after updates execution:

time

SVG

scene 1

SVG

scene 2

SVG

scene 3

SVG

scene 4

SVG

scene …

Complete

well-

formed

SVG

scene

Each is a complete well-formed SVG scene

Well-formed differences between two SVG

scenes expressed as a list of insert, delete and

replace commands

Figure 2: Overview of a LASeR stream

Tuning in into the middle of a scene stream is possible through the use of RefreshScene commands. RefreshScene commands contain a copy of the current state of the scene which can be skipped by all LASeR players but the ones currently trying to tune in. Not all LASeR streams have to contain RefreshScene commands, as many delivery scenarios do not require error recovery (for example, TCP/IP uses packet retransmission to ensure error-free delivery). It is the content author’s or provider’s choice to include RefreshScene commands into the scene stream.
RefreshScene prove useful both in streaming and in broadcast scenarios.

5. Reliability

The use of non reliable delivery mechanisms (such as RTP) implies potential packet loss.
In order to provide error-resilient player to be implemented for streamed application, LASeR specifies how to:

· Handle packet loss gracefully: after a packet loss, LASeR commands which have become meaningless are ignored.

· errors located in packets containing transient information can be recovered naturally

· errors which cause more significant damage to the scene will cause a refresh request by the user.

· Recover from packet loss:

· through the use of RefreshScene commands, a player after a packet loss is in a state similar to the “tune in” state.

· RefreshScene commands are ignored by the players as redundant.

As SVGT1.2 does not provide error resiliency mechanisms, MORE relies solely on transport level error correction such as FEC, and does not allow recovery in case of failure of the transport level error correction overload.
MORE describes a sample dissimilarity mechanism supposedly used to optimize the size of the data required to recover from an error. The sample dissimilarity mechanism specification suffers from a number of fatal flaws:

· the current level of specification does not allow the implementation of such a mechanism, let alone interoperable implementations by independent parties.
· it is not clear from the current specification if this mechanism is generically applicable to any content, or just applicable to a very small subset of applications such as mapping.
· it is not clear from the current specification if this mechanism really brings any of the claimed benefits, or even what those benefits are exactly.
· it is not clear from the current specification what is the complexity of the server side computations required for a range of simple applications.
· the sample dissimilarity mechanism looks like a heuristic, and what is the use of such a heuristic when there are exact, efficient algorithms to compute the direct difference between two DOM trees and to create a minimal set of update commands, thus allowing a precise measure of the difference ?

6. Compression
One key difference between the MORE and LASeR based proposal is the compression format.

MORE specifies the usage of GZIP or no compression at all depending on the content size. However, it is not clear in the MORE specification how the size limit will be taken in account, how the choice of the size limit will be made (according to which criteria) and what cost the evaluation of the content size will generate on a server for non realtime and for realtime content.

One definite impact of the choice in the MORE proposal compared to the LASeR proposal is the following:

· in LASeR, a packet is decoded directly from binary to LASeR Commands and DOM tree elements

· in MORE, a packet needs first to be decompressed to XML and then parsed as XML. XML parsing of a known vocabulary such as SVG has been proven to be a lot less efficient in time and memory footprint than binary decoding, and the decompression step adds even more delay and memory footprint.
To conclude, even when bandwidth is not an issue, the LASeR proposal delivers significantly better response times and resource usage. These 2 points are further described below.
6.1 Validation/Parsing
In a typical DIMS use case, the terminal has to validate a received document to recover default values, exact namespace information. LASeR encoder performs the validation at server side and sends the document in pre-parsed format. Therefore, when encoded, a document has already reached a very good level of validity. Very few extra processing is needed on the receiver side to validate the received document.

The validation process is used to associate type information and may give default values to every component of a LASeR document (attribute, element, leaf nodes). This mapping is performed at the encoder side to improve compression ratio and to facilitate document processing. It is used to select the proper encoding scheme for each leaf of the XML document tree. The document values are therefore transmitted in a typed format and can directly be processed by the terminal without performing any string conversion (like the time consuming "atoi" function needed when working at textual level). This allows to efficiently processing binarized XML descriptions. Data transmitted to the application can directly be consumed. There is no string conversion process required compared with other generic compression schemes as GZIP. As a result, LASeR binary document can be processed up to 100 times faster than its equivalent XML file.
6.2 Compression Rate
The LASeR compression permits to compress on average 6 times a XML document, based on 350 test sequences. For the same test samples, the Gzip compression rate is only 2.5.

Moreover, for the small size sequences (XML document under 1 ko), the compression rate are:

For LASeR: around 7.2
For Gzip: around 1.8
7. 3GPP File format

7.1 In MORE

The MORE Specifications define a new media header box which is compliant to the ISO Base File Format. MPEG defines new media header boxes such as SceneDescriptionStream Media Header Box (see ISO 14496-14). If a new Media Header Box has to be created in DIMS, the new media header box must be terminated by a ‘d’ like other Media Header Box and not by a ‘b’ like ‘smhb’.
SVG version and profile may be transferred to the SVG Sample Entry. Which Handler Type MORE is using?

7.2 In LASER

LASeR recommends the use of a combination of a video media header and a handler type “Scene Description Stream” (‘sdsm’)

Since both proposals are quite similar in this area, we propose to use the more correct LASeR proposal.
8. DECODER MODEL

In the MORE proposal, it is written that the DIMS decoder is similar or have a similar behavior to a Video decoder. However we have found no specification or information regarding the MORE decoder model.

The LASeR decoder model is very similar to any MPEG decoder model and is defined in the AMD1. It includes all information regarding buffering which are very missing in the MORE proposal.

9. Data Management
Caching, storage interface are not provided by the MORE proposal as the intent is to rely on the browser in which the DIMS client might be implemented.
Still, the DIMS client shall also be usable a standalone component. This feature is key for many of DIMS services. MORE service authors will be unable to create compelling services where the user can have direct influence on the saving (or not) of preferences and the caching of media.
10. Conclusion
We recommand SA4 to discuss and review these comparisons and take them in account when starting the DIMS specification and selection of components/ candidates.
_1194515864.ppt

LASeR

update

LASeR

update

LASeR

update

LASeR

update

LASeR

NewScene

What the author wants the user to see:

The LASeR stream:

time

SVG

scene 1

SVG

scene 2

SVG

scene 3

SVG

scene 4

SVG

scene …

time

SVG

scene 1

scene 2

–

scene 1

scene 3

-

scene 2

scene 4

-

scene 3

…

The fact that the scenes are equidistant is a simplification

What the browser contains after updates execution:

time

SVG

scene 1

SVG

scene 2

SVG

scene 3

SVG

scene 4

SVG

scene …

_1194517087.ppt

LASeR

update

LASeR

update

LASeR

update

LASeR

update

LASeR

NewScene

The LASeR stream as transmitted:

time

SVG

scene 1

scene 2

–

scene 1

scene 3

-

scene 2

scene 4

-

scene 3

…

What the browser contains after updates execution:

time

SVG

scene 1

SVG

scene 2

SVG

scene 3

SVG

scene 4

SVG

scene …

Complete well-formed SVG scene

Each is a complete well-formed SVG scene

Well-formed differences between two SVG scenes expressed as a list of insert, delete and

replace commands

