3GPP TSG-SA4#36

S4-060152
Rennes, France

Feb 13-18, 2006

Agenda item:
13.6.1 [Adaptive Jitter Buffer Management]

Source:
Lucent Technologies

Title:
Updated Subjective Test Results of the Adaptive Jitter Buffer Management.

Document for:

Information

Contact:
Jim McGowan [mcgowan@lucent.com],

David Huo [dhuo@lucent.com], Minkyu Lee [minkyul@lucent.com]

Introduction

Contribution [
] presents pseudo-code for a jitter management algorithm that actively warps speech based on the location of speech with talk spurts. Subjective test results on that pseudo-code are shown below. Calculations for the conversational delay through the buffer are shown. This is an updated version of [6].

Algorithm

The pseudo-code outputs a “stretch change” for every packet. For a stretch change of zero an unmodified 20 ms AMR frame is generated from the decoder. For any other stretch change the decoder outputs 20 + the stretch change. For instance, a stretch change of 10 results in the decoder being told to output 20+10=30 ms of speech for the given frame; a -10 results in the decoder being told to output 20+(-10)=10 ms of speech. A specially modified AMR decoder would output speech with this target duration, plus some residual duration to complete an even number of pitch periods. For instance, if a target of 30 ms is requested, but the pitch period is 6 ms, then 20 + 6 * 2 = 32 ms of speech is output. The decoder tracks this rounding error, and will reduce the next stretch request by the residual 2 ms.

The AMR encoder was modified to use the rate determination algorithm in IS-127 (Enhanced Variable Rate Codec, Speech Service option 3 for wideband spread spectrum digital systems) [
] as a voice activity detector (VAD). IS-127 full-rate and half-rate frames were labeled “speech” and eighth-rate frames were labeled “silence”, overriding the AMR VAD. This was done primarily to determine the end of talk-spurts with a well understood and highly available algorithm. To further reduce VAF, we decreased the hangover size the follows the VAD decision in AMR from 7 frames down to 2 frames. This required a modification to the background noise synthesis algorithm. In the original AMR decoder, when the first SID frame is received, the decoder averages the energy and LSF coefficients of the previous 7 frames to synthesize background noise. We modified the decoder in such a way that the averaging is performed over the two hangover frames. In this case, only two previous frames are used to calculate the average energy and LSF parameters. This change is the reason why the non-stretched samples were rated below the values typically seen in such MOS tests.

There are several tunable parameters in the pseudo-code. For the results presented here, the term VJM_MAX_INCREASE was set to 10, meaning that the maximum target playback duration is 20 + 10 = 30ms. The VJM_TARGET_STRETCH was set to various values as shown in the graphs as “Stretch”. The value of VJM_MIN_STRETCH was set such that the frames were played back at either 5, 7 or 10 msec, as shown in the graphs. Speech samples not subject to stretching (VJM_TARGET_STRETCH = 0) were also presented as a reference.

Two standard listening-only ACR MOS tests were performed by a third-party (Dynastat) according to the standard MOS procedure given in ITU-T P.800 [
] and prevailing practices. Thirty-two (32) listeners participated in each experiment. Files were generated by encoding modified IRS send filtered Harvard Phonetically Balanced Sentences mixed with either ambient noise (“clean”) (experiment one), babble or background noise (experiment two) with the modified AMR encoder running in the 12.2 kbps mode. The sentences were in American English. Encoded speech was passed through the algorithm shown in the pseudo-code, and then to the modified AMR decoder. A modified IRS receive filter was then applied. MNRU samples [
] were also presented with the IRS filters applied, but no encoding or other modifications.

No actual jitter was applied to the packets, since the pseudo-code algorithm preemptively warps speech regardless of the actual jitter observed.

The contribution of the pseudo-code to conversational delay is a function of the tunable parameters, and differs across the test conditions. The end-to-end, one-way conversational delay for a symmetric connection is defined as the average delay of the beginning of the first packet and the end of the last packet in each conversational turn (when one user releases floor control to another user). Operationally, we measure conversational delay for each talk spurt, since there is no interactivity in a listening-only test (the listeners never talk). Since there is no actual jitter, the delay for all talk spurt beginnings is 0 ms—these samples start to play back immediately, even though they play for more than the nominal 20 ms frame duration of AMR. As packets are stretched, a virtual buffer of received packets builds in the terminal. This is due to the fact that initial packets are received in 20 ms intervals, but stretched when played back to 30 ms. For every 2 packets stretched, the playback from the receiver lags behind the packet receiver by 20 ms—in other words, the packet receiver queue will grow by 1 packet for every 2 stretched in the current experiment. (If a more aggressive stretching is used, such as playing packets back for 50 ms, then the receiver queue will grow faster.) This provides a virtual “look-ahead” in the receiver queue (see the variable lookAheadPacket in the pseudo-code). When the end of a talk-spurt is detected by the encoder sending a SID frame, all frames in the receiver queue are played back for a shorter duration than the nominal 20 ms. For instance, for the conditions in which VJM_MIN_STRETCH is 7, then each packet in the queue is played for 7 ms. In the case in which stretching is allowed to grow to 60 ms, then 60 / 20 = 3 additional packets are in the receiver queue (a total of 4 packets will be in the queue). All these packets are played for 7 ms, for 4 x 7 = 28 ms of playback time. The nominal playback time for four packets would be 4 x 20 = 80 ms, so 80 – 28 = 52 ms of delay is removed. Since the stretch put the playback delay to 60 ms, and 52 ms was “unstretched” at the ending, a total of 60 – 52 = 8 ms was added to the end of the talk spurt. In other words, this stretched sample ends 8 ms later than normally encoded AMR speech.

Note that for modest overall stretches (e.g., 20 ms) with aggressive acceleration on playback (e.g., 5 ms), it is possible to have a “negative” delay. This can be seen by considering a speech stream with just a single packet. If the packet is nominally 20ms, but played for only 5 ms, it will end -15 ms before it’s nominal playback time. This is possible (and does not violate causality) because the accelerated playback is essentially undoing the buffer delay on the encoder side, in which speech was buffered for 20 ms prior to encoding.

Table 1: Conversational Delays for each tested condition
	Jitter
	Stretch*
	Catch-
up**
	Virtual
Look-Ahead
	Beginning
Delay
	Ending
Delay
	Conversational Delay
	Traditional
Adaptive
Buffer
	Delay
Savings

	20
	20
	5
	1
	0
	-10
	-5
	20
	25

	20
	20
	7
	1
	0
	-6
	-3
	20
	23

	20
	20
	10
	1
	0
	0
	0
	20
	20

	40
	40
	5
	2
	0
	-5
	-2.5
	40
	42.5

	40
	40
	7
	2
	0
	1
	0.5
	40
	40.5

	40
	40
	10
	2
	0
	10
	5
	40
	35

	60
	60
	5
	3
	0
	0
	0
	60
	60

	60
	60
	7
	3
	0
	8
	4
	60
	56

	60
	60
	10
	3
	0
	20
	10
	60
	50

	80
	80
	5
	4
	0
	5
	2.5
	80
	77.5

	80
	80
	7
	4
	0
	15
	7.5
	80
	72.5

	80
	80
	10
	4
	0
	30
	15
	80
	65

	120
	120
	5
	6
	0
	15
	7.5
	120
	112.5

	120
	120
	7
	6
	0
	29
	14.5
	120
	105.5

	120
	120
	10
	6
	0
	50
	25
	120
	95

* This is the variable VJM_TARGET_STRETCH in the pseudo-code.

** This is the variable VJM_MIN_ STRETCH in the pseudo-code.
Table 1 lists the delays associated with each condition. The “Jitter” column shows the amount of system jitter a buffer is trying to protect against (this could be the maximum observed jitter, or, for instance, the 98th-percentile of the observed jitter). The “Conversational Delay” column is the contribution of the pseudo-code to the end-to-end conversational delay. The “Traditional Adaptive Buffer” shows what a buffer that does not timescale speech would achieve in the ideal case in which it converges instantly to provide the same coverage as the pseudo-code. The “Delay Savings” column demonstrates the advantage the pseudo-code has over the ideal Traditional Adaptive Buffer.

Test Results

Figure 1 demonstrates the performance of the algorithm for clean speech. Figure 2 demonstrates performance for noisy speech with both babble speech in the background and car noise. For clarity, error bars have been removed. The 95% confidence interval for the standard error of the mean was roughly +/-.1 in all cases.
[image: image1.emf]3.5

3.6

3.7

3.8

3.9

4.0

4.1

0 20 40 60 80 120

Stretch (msec)

MOS

5

7

10

Figure 1: Clean Speech Results

The clean speech results largely agree with the results presented by Nokia in [
], although the two algorithms differ and different languages were used in the test. The results here demonstrate that the algorithm does not reduce quality ratings at all for up to 40 msec worth of stretch, regardless of the duration of shortened frames. For 60 msec the more aggressive shortenings show a small decline in quality. For 80 msec all samples show a modest decrease in quality of .1 to .2 MOS. Quality appears to degrade gracefully as the stretching goes to 120 ms, which we believe to be outside the normal operational range of the HSDPA system.

Figure 2 demonstrates a modest decline in quality for a 40 msec stretch for the noise conditions, but no effect of the aggressiveness of the shorten frames. It is likely that with some modifications to the pseudo-code that better performance can be achieved, especially given the modifications made to the AMR encoder.

[image: image2.emf]2.5

2.7

2.9

3.1

3.3

3.5

3.7

0 40 60 80 120

Stretch (msec)

MOS

5-Bab

7-Bab

10-Bab

5-Car

7-Car

10-Car

Figure 2: Noisy Speech Results

Figure 3 shows the results for the MNRU samples that were included in each experiment. These curves follow the pattern one expects to see when listeners are consistent in their ratings, and a range of sample quality was presented.

Discussion

The results demonstrate that the pseudo-code can be used within a reasonable operating range with no impact on quality. Even in this simple form, a modest quality impact is observed for the 60 msec case. Previously discussed enhancements to the algorithm, such as “packet resynchronization” will likely increase quality, and can be included in more thorough tests which consider actual jitter patterns.

(a)[image: image3.emf]1

2

3

4

5

4 11 18 25 32 Src

MNRU (dB)

MOS

(b)[image: image4.emf]1

2

3

4

5

4 11 18 25 32 Src

MNRU (dB)

MOS

Figure 3: MNRU for Clean (a) and Noise (b) Experiments

References

[�] S4-060038 “Pseudo Code for an Algorithm Implementation”, Lucent Technologies, Rennes.

[�] “Enhanced Variable Rate Codec, Speech Service Option 3 for Wideband Spread Spectrum Digital Systems”, TIA/EIA/IS-127, January 1997.

[�] “Methods for subjective determination of transmission quality”, ITU-T Recommendation P.800, Aug. 1996.

[�] “Modulated noise reference unit (MNRU)”, ITU-T Recommendation P.810, Feb. 1996.

[�] S4-050721 “Timescaling for adaptive jitter buffer operation”, Nokia, Rennes.

[6] S4-050129 “Updated Subjective Test Results of the Adaptive Jitter Buffer Management”

