3GPP TSG SA4#37 meeting
Tdoc S4-050736
November 14-18, 2005

Bordeaux, France

Source:
Nokia
Title:
Scene Update Proposal for DIMS
Document for:
Discussion and Approval
Agenda Item:
6, 13.4
1. REASON FOR CONTRIBUTION

This document presents a technical proposal for SVG content update syntax to facilitate a complete solution for dynamic and interactive rich media content services.
2. Proposal
Scene describes the spatial organization of scene elements, the temporal organization of scene elements, synchronization information, and interaction among the SVG elements. A scene is typically first sent to the client to initialise the presentation layout. A scene can either be a complete SVG document or the content enclosed within <g></g> tags where the g element rendering will start when the g closing tag has been parsed and processed and when all internal and external resources required by the scene have been resolved. Further, a scene may use elements (<use>) previously defined in the <defs></defs> block. This is similar to the prefetch functionality provided by SVG for progressive download (Refer: http://www.w3.org/TR/SVGMobile12/struct.html#PrefetchElement)

Scene updates are incremental updates to the SVG DOM that get sent to the client device one at a time during streaming. These updates include SVG element addition, element deletion; element replacement and element attribute update in the form of add, delete, and replace operations. Note that the updates can be a combination of one or more of these operations depending on the content provider. The client could potentially choose to update the SVG uDOM with this content update information without destroying and recreating the SVG uDOM for every streamed packet of information. Also, note that a scene update can comprise of a complete scene for example in the case of refreshing the client with a completely new scene.

We would like to coordinate this aspect of the rich media solution with W3C. In light of this, we propose the following scene update elements that can be easily aligned or paralleled to the SVG Micro DOM (uDOM) operations as specified in SVG Mobile 1.2 draft specification. As a note, this proposal is already being discussed in the W3C SVG working group.
[image: image2.wmf]

e) Ap

plying

r

eplace

Child

.

Here the element ‘myCircle’

is replaced with an ellipse

‘myEllipse’.

[image: image3.png]

[image: image4.png]

[image: image5.png]

[image: image6.png]

Here are some examples illustrating the concept of the scene updates.

[image: image7.png]

[image: image1.png]

Figure 1: SVG Content Updates

3. CONCLUSION

In this document we present a proposal for enhancing rich media capabilities of SVG Mobile 1.2 for several types of real-time, interactive and streaming mobile applications. The motivation behind this proposal includes the usage of SVG as an ideal media vehicle for rich media presentations. We believe that this proposal fulfills the scene update requirements to allow dynamic delivery of content to the client and parallels the uDOM tree manipulation methods.
setAttribute: This element is used to update attributes of the content specified by the target element (href). The attributeName and attribute values correspond to attribute and value of the target element to be added or replaced.

<setAttribute attributeName =“x” attributeValue = “10” attributeType =”CSS/XML/auto” xlink:href =“#myRect” />

appendChild: This element is used to append the content with a new element (myCircle) as a child of the specified parent element (href). If insertBefore is specified, the new element is inserted before this element.

<appendChild xlink:href = “#myScene” insertBefore = “#myRect”>

	<circle id = “myCircle” cx =“20” cy =“20” r =“50” fill =“yellow” />

</appendChild>

removeChild: This element is used to remove the specified element (href) from the content or DOM object model.

<removeChild xlink:href =“#myRect”/>

This update is ignored if the element specified in the syntax does not exist. Also, if the element under contention happens to have children, the entire sub-tree is removed from the client’s memory. However, only the element is deleted if it is a leaf node.

replaceChild: This element is used to replace an existing element (href) from the content with a new element (myEllipse). This operation is essentially in-order combination of removeChild and appendChild operations.

<replaceChild xlink:href = “#myCircle”>

<ellipse id = “myEllipse” cx =“40” cy=“35” rx =“110” ry =“60” fill =“blue” />

</replaceChild>

sceneUpdate: The sceneUpdate is used as a container element for carrying the scene updates. The <sceneUpdate> can include one of more update elements. In other words, all the updates must be grouped under this element before they are delivered to the client or user agent. The execution of the updates is performed in the same order in which they are specified within the <sceneUpdate> element. The attribute ‘newScene’ indicates whether the scene update contains a new scene or just an update to the existing scene.

<sceneUpdate newScene=”True|False” >

 <appendChild xlink:href = “#myScene”>

 <circle id = “myCircle” cx =“40” cy =“20” r =“100” fill =“green” />

 </appendChild>

 <removeChild xlink:href =“#myEllipse”/>

</sceneUpdate>

b) Applying setAttribute to the attribute ‘x’ of the rectangle element ‘myRect’ . The update changes the position of the rectangle.

a) The initial scene with a rectangle element ‘myRect’.

d) Applying removeChild. Here the element ‘myRect’ is deleted from the content.

c) Applying appendChild. Here a circle with id ‘myCircle’ is added to the content.

�

f) Applying a group of content updates, where a circle is appended and the ellipse is removed.

_1191243186

