3GPP TSG SA4#37 meeting
Tdoc S4-050735
November 14-18, 2005

Bordeaux, France

Source:
Nokia, Ericsson
Title:
MORE: The Mobile Open Rich Media Environment – An Overview of Technology Candidate Proposal for Dynamic and Interactive Multimedia Scenes (DIMS)

Document for:
Discussion and Approval
Agenda Item:
6, 13.4

1. introduction

This document is in response to the preliminary request for information on technologies for dynamic and interactive multimedia scenes (Ref: Tdoc S4-050651). The contribution describes ‘MORE’, the Mobile Open RichMedia Environment as a preliminary technology candidate for fulfilling the draft requirements and goals of the DIMS work item in 3GPP.

To keep things in perspective, to accomplish an end-to-end rich media service we must:

· Provide a presentation format for scene and dynamic updates.

· Define a solution for a container and delivery format.

· Define transport mechanisms for PtP and MBMS bearers.

· Define client feedback protocols and necessary message formats.

· Accommodate client side event handling in the presentation format for scene and dynamic updates.

· Define application specific features such as client data management, persistent storage, user preferences, caching and localization for a complete end-to-end rich media solution.

Note, however that all the above technology components may not directly fall into the scope of 3GPP domain.

2. MOTIVATION

The ‘MORE’ (Mobile Open Rich-media Environment) proposal is based on the following design principles:

Technologies suggested for DIMS:

· MUST be compatible with existing standards

· SVG Mobile 1.2, 3GP, SVG uDOM, JSR226.

· For SVG, it MUST maintain the key-frame based representation.

· MUST integrate and interoperate with the existing mobile application environment. (Browsing, Java Micro Edition, Native Applications).

· MUST be transport agnostic with existing 3GPP services.

· PtP and MBMS bearers.

· MUST be amenable to existing compression solutions.
· deflate/gzip, potentially others in the future for example binaryXML

· The scene/graphics compression ratio is not critical.
· Utilize existing compression techniques for continous (ex; Audio/Video) and discrete (raster images) media.

· MUST support download and play, progressive download and streaming with dynamic updates.

· MUST consider error correction and resiliency during data transmission.

In the following sections, we describe various aspects of the MORE proposal based on the DIMS Scope of Work as discussed during SA4 #36 (Refer: Tdoc S4-050654).
3. PRESENTATION FORMAT FOR SCENE AND DYNAMIC UPDATES

Although SVG Mobile 1.2 supports prefetching for progressive download, during real time streaming, content may change through animations and changes in scene states. This sequence of scene description and its spatial/temporal modifications needs to be streamed from the server to the players on the client device.

A scene describes the spatio-temporal organization of scene elements, synchronization information and interaction among the SVG elements. A scene is typically first sent to the client to initialize the presentation layout. A scene can either be a complete SVG document or content enclosed between <g></g> tags where the g element rendering will start when the g closing tag has been parsed and processed and when all the internal and external resources required by the scene have been resolved. Further, a scene may incorporate <use> elements previously defined in the <defs></defs> block, similar to the prefetch functionality provided by SVG for progress download (For details, refer: http://www.w3.org/TR/SVGMobile12/struct.html#PrefetchElement). Scene updates are incremental updates to the SVG DOM that are transmitted to the client one at a time. These updates include SVG element addition, element deletion, element replacement and element attribute update operations. As the scene updates are concerned directly with SVG content, we propose to reuse the scene update currently being defined in the W3C SVG working group. For more information please refer to document (Ref: Tdoc S4-050736).
4. CONTAINER AND DELIVERY FORMAT

In the case where the presentation format is SVG based, the ‘MORE’ proposal uses the 3GP File Format (ISO Base Media File Format) both for file download and as a server format for streaming. For storage, messaging and download applications, the “Extended-presentation profile” of the 3GP file format (Ref: TS 26.244) is used to embed graphics media (SVG) as a file in the Meta box. Other resources, e.g., raster images (files) and audio/video streams (tracks), are included in the file same 3GP container file, which can be interleaved and optimized for progressive download.

In order to provide a server file format for streaming of SVG, the ‘MORE’ proposal also provides a method to embed vector graphics content in a track of a 3GP file, such that the 3GP File Format can be used for streaming of pre-authored or live rich media content over PSS/MBMS bearers. This method will allow the file format to be used for packaging of rich media content (graphics, video, text, raster images), enable streaming servers to generate RTP packets, and clients to realize, play, or render rich media content.

In our proposal, we allow provision for a new SVG media handler to be defined and for the use of existing XML meta boxes to store the SVG data. Other boxes defined in the format include general presentation information for SVG media, timing and synchronization information for scene and scene updates, and information needed to decode the SVG samples. Random access functionality is also defined to allow the client to move to any point in time during the presentation, where an SVG scene can behave as a random access point. Session description formats are also stored to specify the session description for the transport of SVG and its discrete and continuous embedded media. In order to properly construct RTP packets from the ISO Base Media Container Format, our proposal includes hint track definitions for transporting content over RTP. A similar hint mechanism for FLUTE (and a combination of RTP and FLUTE) may also be used.

[image: image2.png]
5. TRANSPORT MECHANISMS

A rich media service must support “download and play/progressive download” and streaming delivery methods. Furthermore we need to be able to support these delivery methods in 1-to-1 and 1-to-many delivery channels as shown in the table below:

	
	Download and Play/

Progressive Download
	Streaming

	1-to-1 Delivery
	HTTP
	RTP/UDP + PSS

	1-to-Many Delivery
	FLUTE
	RTP/UDP + MBMS Streaming Framework

In our proposal, we provide transport mechanisms for supporting the download of SVG over HTTP for 1-to-1 delivery. For 1-to-many delivery, FLUTE/UDP can be used for progressive download/download and play. An RTP payload format is specified to enable live streaming and the streaming of preauthored rich media content. In addition to the payload format, RTP payload types are defined to categorize and transmit information. Such information includes sample description, SVG scene sample or one or more of its fragments, SVG scene update samples or one or more of its fragments. Other useful information necessary for the SVG presentation is a current list of active SVG elements on the client and SVG sample similarity information to allow for SVG DOM optimisations on the client.

SVG can contain media embedded within the content and are of two types – continuous, e.g. audio and video, and discrete, e.g. images. Our proposal is to transmit SVG content, and embedded continuous media of any length as separate RTP streams. Any embedded discrete media is transmitted over HTTP or FLUTE. This concept is described below in more detail.

The continuous embedded media can be internally embedded with the SVG presentation, i.e. in the same container as the other media or it can be externally embedded, i.e. a url can be provided in the SVG content that references media present on a server or any external resource. Session Description information is provided only for internally embedded continuous media, while the receiver can request externally embedded continuous media from the external streaming server.

Discrete embedded media can be transmitted by either (1) sending them to the user equipment (UE) in advance via a FLUTE session; (2) sending them to each client on a point-to-point bearer before the streaming session, in a manner similar to the way security keys are sent to clients prior to an MBMS session; (3) having a parallel FLUTE transmission session independent of the RTP transmission session if both discrete and continuous media are transmitted at the same time, and if enough radio resources are available, or (4) having non-parallel FLUTE and RTP transmission sessions to transmit all of the data due to the limited radio resources.

In addition to transport mechanisms, we need to take transport resiliency and error management into account. In order to ensure that critical content is delivered reliably to the client, mechanisms for the following two processes must be properly identified:

Error Detection: Being able to detect packet losses either at the server/client side. Our proposal includes priority (PR) and counter (CTR) fields to not only detect a break in the sequential ordering of packets but also determining the priority of the missing packet to evaluate whether error recovery is necessary for the particular application.

Error Recovery: Providing packet loss recovery by several methods such as data redundancy (e.g. using FEC in MBMS), RTP retransmissions (e.g. PSS).

6. CLIENT FEEDBACK

Different transport schemes have different capabilities and their usage depends on the nature of the rich media application. We propose certain extensions to commonly used standard protocols and services such as SMS, HTTP, MMS, RTSP to facilitate rich media based feedback to contain SVG event information, element attributes, information required, etc. In our proposal, we extend text based SMS to contain information about SVG based events. MMS may contain 3GP files and any textual feedback information can be stored in the XMLBox and DataBox. We use the GET/POST/PUT commands in HTTP and the PLAY, PAUSE, RECORD, etc. commands in RTSP for feedback

[image: image1.png]
7. CLIENT SIDE EVENT HANDLING

Since the base presentation format is SVG Mobile 1.2, the client will incorporate DOM Level 3 Events in the rich media player as specified by W3C. The DOM Level 3 Event Model is designed with two main goals. The first goal is the design of a generic event system that allows registration of event handlers describes event flow through a tree structure and provides basic conceptual information for each event. The second goal of this event model is to provide a common subset of the current event systems used in browsers. This is intended to improve interoperability of existing scripts and content. For more information regarding the model, please refer to http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/Overview.html
8. COMPRESSION AND ENCODING

The use of compression and content specific encoding techniques are economically driven decisions. Rich media content consists of SVG scenes and scene updates along with other embedded media. For streaming purposes, existing compression methods can be re-used for embedded media. However, compressing small-sized SVG parts of the content results in significant overhead. Gzip performs well for larger sized SVG content. Hence, there is no specific need for introducing a new compression mechanism for rich media. This approach may be modified depending upon the outcome of the W3C work on XML compression. In any case, it is important to view any encoding and compression decisions as orthogonal and separable from any base design decisions.

9. CONCLUSION

In this document we present solutions that address various technology components that are needed (and are inline with our agreed scope of work) for enhancing rich media capabilities of SVG Mobile 1.2 for several types of real-time, interactive and streaming mobile applications. The solutions include scene update syntax for dynamically delivering and updating scene content, a storage format for SVG content based on ISO Base Media File Format including media synchronization, transport mechanisms and packetization for SVG and its discrete/continuous embedded media, forward transmission, client feedback, client-side event handling, and compression.

_1192970645

