ISO/IEC 14496-1:2001/FDAM 7:2003(E)
ISO/IEC 14496-20 Study

ISO/IEC 14496-20 Study

INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11

MPEG2005/N7480
July 2005, Poznan, PO

Title :

LASeR and SAF editor’s study
Editors :
Jean-Claude Dufourd (Streamezzo), Young Kwon Lim (Netntv)
C:\Documents and Settings\ogura\デスクトップ\ISO-IEC_14496-1_A7_(E).docFINAL DRAFT AMENDMENT

 SET DDOrganization "© ISO/IEC 2003 — All rights reserved" © ISO/IEC 2003 — All rights reserved

 SET LibEnteteISO "ISO/IEC 14496-1:2001/FDAM 7:2003(E)" ISO/IEC 14496-1:2001/FDAM 7:2003(E)

 SET LIBTypeTitreISO " 63" 63

 SET DDTITLE4 "Part 1: Systems, AMENDMENT 7: Use of AVC (Advanced Video Coding) in MPEG-4 systems" Part 1: Systems, AMENDMENT 7: Use of AVC (Advanced Video Coding) in MPEG-4 systems

 SET DDTITLE3 "Information technology — Coding of audio-visual objects" Information technology — Coding of audio-visual objects

 SET DDTITLE2 "Élément introductif — Élément central — Partie 1: Titre de la partie" Élément introductif — Élément central — Partie 1: Titre de la partie

 SET DDTITLE1 "Information technology — Coding of audio-visual objects — Part 1: Systems, AMENDMENT 7: Use of AVC (Advanced Video Coding) in MPEG-4 systems" Information technology — Coding of audio-visual objects — Part 1: Systems, AMENDMENT 7: Use of AVC (Advanced Video Coding) in MPEG-4 systems

 SET DDDocLanguage "E" E

 SET DDWorkDocDate "2003-12-24" 2003-12-24

 SET DDDocStage "(50) Approval" (50) Approval

 SET DDOrganization3 "ISO/IEC" ISO/IEC

 SET DDOrganization1 "ISO/IEC " ISO/IEC

 SET DDBASEYEAR "2001" 2001

 SET DDAmno "7" 7

 SET DDDocSubType "Amendment" Amendment

 SET DDDocType "International Standard" International Standard

 SET DDWorkDocNo """"

 SET DDpubYear "2003" 2003

 SET DDRefNoPart "ISO/IEC 14496" ISO/IEC 14496

 SET DDRefGen "ISO/IEC 14496‑1" ISO/IEC 14496‑1

 SET DDRefNum "ISO/IEC 14496-1/FDAM 7:2003" ISO/IEC 14496-1/FDAM 7:2003

 SET DDSCSecr ""

 SET DDSecr ""

 SET DDSCTitle "Coding of Audio, Picture, Multimedia and Hypermedia Information" Coding of Audio, Picture, Multimedia and Hypermedia Information

 SET DDTCTitle "Information Technology" Information Technology

 SET DDWGNum "11" 11

 SET DDSCNum "29" 29

 SET DDTCNum "JTC 1" JTC 1

 SET LIBLANG " 2" 2

 SET libH2NAME "Heading 2" Heading 2

 SET libH1NAME "Heading 1" Heading 1

 SET LibDesc ""

 SET LibDescD ""

 SET LibDescE ""

 SET LibDescF ""

 SET NATSubVer ""

 SET CENSubVer ""

 SET ISOSubVer ""

 SET LIBVerMSDN "STD Version 2.1" STD Version 2.1

 SET LIBStageCode "50" 50

 SET LibRpl ""

 SET LibICS ""

 SET LIBFIL " 4" 4

 SET LIBFrFileName ""

 SET LIBDeFileName ""

 SET LIBNatFileName ""

 SET LIBFileOld ""

 SET LIBTypeTitreCEN ""

 SET LIBTypeTitreNAT ""

 SET LibEnteteCEN ""

 SET LibEnteteNAT ""

 SET LIBASynchroVF ""

 SET LIBASynchroVE ""

 SET LIBASynchroVD "" REF DDWorkDocNo * CHARFORMAT
Date: 2005-04-13
ISO/IEC TC JTC 1/SC 29/WG 11
Secretariat: REF DDSecr * CHARFORMAT
Information technology — Coding of audio-visual objects — Part 20 : LASeR (Lightweight Applications Scene Representation)
Copyright notice

This ISO document is a Draft International Standard and is copyright-protected by ISO. Except as permitted under the applicable laws of the user's country, neither this ISO draft nor any extract from it may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, photocopying, recording or otherwise, without prior written permission being secured.

Requests for permission to reproduce should be addressed to either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 (CH-1211 Geneva 20

Tel. + 41 22 749 01 11

Fax + 41 22 749 09 47

E-mail copyright@iso.org

Web www.iso.org

Reproduction may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.
Contents
Page
11
Scope

12
Terms, Definitions and Abbreviations

12.1
Terms and definitions

22.2
Abbreviations

23
Document Conventions

24
Normative References

35
Architecture

46
Scene Representation

46.1
Overview

46.2
Relationship with SVG

46.2.1
Scene tree

46.2.2
Fonts

66.3
Timing Model

76.4
Execution Model

86.5
Supported Events

96.6
Encoder Configuration

96.6.1
Overview

96.6.2
LASeR headers

126.7
LASeR Scene Commands

126.7.1
Overview

126.7.2
Add

146.7.3
Clean

146.7.4
Delete

156.7.5
Insert

176.7.6
NewScene

176.7.7
RefreshScene

186.7.8
Replace

206.7.9
Restore

206.7.10
Save

206.7.11
SendEvent

226.8
Scene Description Elements

226.8.1
Conventions

226.8.2
General information

226.8.3
SVG a

226.8.4
SVG animate

226.8.5
SVG animateColor

236.8.6
SVG animateMotion

236.8.7
SVG animateTransform

236.8.8
SMIL audio

236.8.9
SVG circle

246.8.10
SVG defs

246.8.11
SVG desc

246.8.12
SVG ellipse

246.8.13
SVG foreignObject

246.8.14
SVG g

256.8.15
SVG image

256.8.16
SVG line

256.8.17
SVG linearGradient

256.8.18
XML Events listener

266.8.19
SVG metadata

266.8.20
SVG mpath

266.8.21
SVG path

266.8.22
SVG polygon

266.8.23
SVG polyline

266.8.24
SVG radialGradient

266.8.25
SVG rect

266.8.26
SVG script

266.8.27
SVG set

276.8.28
SVG stop

276.8.29
SVG svg

276.8.30
SVG switch

276.8.31
SVG text

276.8.32
SVG title

276.8.33
SVG tspan

276.8.34
SVG use

286.8.35
SMIL video

286.8.36
Summary of Possible Children and Attributes per Element

337
Simple Aggregation Format (SAF)

337.1
Overview

337.2
Time and terminal model specification

337.3
SAF Packet

347.3.1
Syntax

347.3.2
Semantics

357.4
SAF Packet Header

357.4.1
Syntax

357.4.2
Semantics

357.5
SAF Access Unit

357.5.1
Syntax

357.5.2
Semantics

367.6
SimpleDecoderConfigDescriptor

367.6.1
Syntax

367.6.2
Semantics

377.7
SimpleDecoderSpecificInfo

377.8
RemoteStreamHeader

377.8.1
Syntax

377.8.2
Semantics

387.9
Cache Unit

387.9.1
Syntax

387.9.2
Semantics

388 Profiles

388.1
Overview

388.2
LASeR mini

388.2.1
Applications

398.2.2
List of Tools/Functionalities

408.2.3
Comparison with existing profiles and object types

408.2.4
Supporting companies

408.2.5
Profile definition

418.2.6
Conformance test streams

418.2.7
Level definitions

428.3
LASeR full

428.3.1
Applications

428.3.2
List of Tools/Functionalities

428.3.3
Comparison with existing profiles and object types

428.3.4
Supporting companies

428.3.5
Profile definition

428.3.6
Conformance test streams

428.3.7
Level definitions

429 Bibliography

4310 (informative): Compatibility of SAF Packet

4411 (normative): Carriage of LASeR and SAF

4411.1
Storage of LASeR in MP4 files

4411.1.1
LASeR Track Structure

4411.1.2
Resources

4411.1.3
Composition

4511.1.4
LASeR Stream Definition

4511.1.5
Sample description name and format

4511.1.6
Definition

4511.1.7
Syntax

4511.1.8
Semantics

4611.1.9
Sample Format

4611.2
Carriage of SAF Streams over HTTP

4611.3
Carriage of SAF Streams over RTP

4611.4
Carriage of SAF Streams over MPEG-2 Systems

4612 Electronic Attachments

4813 (normative) Binary Syntax for the simple encoding

4914 (normative) Type codecs

4914.1
LASeR Codecs Classification Scheme

5014.2
LASeR Codecs

5014.2.1
ID Codec

5014.2.2
IDRef Codec

5114.2.3
anyURI Codec

5114.2.4
Color Codec

5214.2.5
FontFamily Codec

5214.2.6
Matrix Codec

5314.2.7
Fraction Codec

5314.2.8
Path Codec

5314.2.9
Point Sequence Codec

5514.2.10
valueWithUnits Codec

5514.2.11
AnimatedValues Codec

5714.2.12
AnimatedValue Codec

5814.2.13
AlignedString Codec

5914.2.14
Fixed_16_8 Codec

5914.2.15
Extension Codec

5914.2.16
AnyElement Codec

6014.2.17
AnyAttribute Codec

6014.2.18
Update Value Codec

6315 (normative) Predefined ISO 15938-1 configuration for the Simple Encoding

6516 (normative) Required Changes to 14496-1

Foreword

TBD
Introduction

This document is part 20 of the MPEG-4 standard. It specifies syntax and semantics for:

- The Lightweight Application Scene Representation (LASeR), specified in section 3, which is a binary format for encoding 2D scenes and updates of scenes. The binary format and the scene representation (based on SVG Tiny), are both designed to be suitable for lightweight embedded devices such as mobile phones.
- A Simple Aggregation Format (SAF), specified in section 4, to efficiently and easily transport LASeR data together with audio and/or video content over various delivery channels. This multiplexing scheme is designed to be simple to implement and to allow efficient demultiplexing on low-end devices.

1 Scope
The scope of MPEG-4 part 20 is the definition of a scene description format (LASeR) and an aggregation format (SAF) respectively suitable for representing and delivering rich-media services to resource-constrained devices such as mobile phones.
LASeR aims at fulfilling all the requirements of rich-media services at the scene description level. LASeR supports:
· an optimized set of objects inherited from SVG to describe rich-media scenes,
· a small set of key compatible extensions over SVG,
· the ability to encode and transmit a LASeR stream and then reconstruct SVG content,

· dynamic updating of the scene to achieve a reactive, smooth and continuous service,
· simple yet efficient compression to improve delivery and parsing times, as well as storage size,
· an efficient interface with audio and visual streams with frame-accurate synchronization,
· use of any font format, including the OpenType industry standard,
· and easy conversion from other popular rich-media formats in order to leverage existing content and developer communities.
Technology selection criteria for LASeR included compression efficiency, but also code and memory footprint and performance. Other aims included: scalability, adaptability to the user context, extensibility of the format, ability to define small profiles, feasibility of a J2ME implementation, error resilience and safety of implementations.
SAF aims at fulfilling all the requirements of rich-media services at the interface between media/scene description and existing transport protocols:
· simple aggregation of any type of stream,
· signaling of MPEG and non-MPEG streams,
· optimized packet headers for bandwidth-limited networks,
· easy mapping to popular streaming formats,
· cache management capability,

· and extensibility.

SAF has been designed to complement LASeR for simple, interactive services, bringing:

· efficient and dynamic packaging to cope with high latency networks,
· media interleaving,
· and synchronization support with a very low overhead.
The present specification defines the usage of SAF for LASeR content. However, LASeR can be used independently from SAF.
2 Terms, Definitions and Abbreviations

2.1 Terms and definitions
Access unit: An individually accessible portion of data within a media stream. An access unit is the smallest data entity to which timing information can be attributed.

Media time line: the axis on which times are expressed within the transport or system carrying a LASeR or other stream.

Normal play time: indicates the stream absolute position relative to the beginning of the presentation [09].
Packet: The smallest data entity managed by SAF consisting of a header and a payload.
Scene segment: a set of access units of a LASeR stream, where only the first access unit contains a LASeRHeader.
Scene time line: the axis on which times are expressed within the SVG/LASeR scene, e.g. begin and end.

2.2 Abbreviations

CSS: Cascading Style Sheets, a W3C standard.
SMIL: Synchronized Multimedia Integration Language, a W3C standard.

SVG: Scalable Vector Graphics, a W3C standard.

3 Document Conventions

This document uses the following styling conventions for various types of information.
Any name of element, attribute, descriptor or command defined in this specification is styled in bold italic, such as Add. Any name of element, attribute, descriptor or command defined in another specification is prefixed with the name of that specification, such as SVG animate or SMIL video.
XML examples use the following style:

	<?xml version="1.0" encoding="UTF-8"?>

<svg width="480" height="360" viewBox="0 0 480 360" version="1.1" baseProfile="tiny">

 <defs> …

SDL descriptions of binary syntax use the following style:

Insert extends LASeRUpdate {

 const bit(UpdateBits) InsertCode;

 uint(idBits) ref;

The following is the style used for ECMA Script:

function Insert(parentId, field, value) {…
4 Normative References

[01] ISO/IEC 14496-1 - "Information technology - Coding of audio-visual objects - Part 1: Systems"

[02] W3C, Scalable Vector Graphics (SVG) 1.1 Specification [Recommendation],
 http://www.w3.org/TR/2003/REC-SVG11-20030114/,
[03] ISO/IEC 14496-18:2004 - "Information technology - Coding of audio-visual objects - Part 18: Font Compression and Streaming"
[04] W3C, SMIL Animation, http://www.w3.org/TR/2001/REC-smil-animation-20010904/
[05] MIME formats and encodings, RFC 2045, http://www.ietf.org/rfc/rfc2045.txt
[06] W3C, Cascading Style Sheets, level 2 [Recommendation],

http://www.w3.org/TR/1998/REC-CSS2-19980512/
[07] HTTP State Management Mechanism, RFC 2965, Kristol and Montulli, http://www.ietf.org/rfc/rfc2965.txt
[08] W3C, Synchronized Multimedia Integration Language (SMIL 2.0) - [Second Edition],
 http://www.w3.org/TR/2005/REC-SMIL2-20050107/
[09] Real Time Streaming Protocol, RFC 2326, http://www.ietf.org/rfc/rfc2326.txt
[010] Digital Television Closed Captioning, Standard EIA-708-B, EIA

[011] Synchronized Multimedia Integration Language (SMIL 2.0) - [Second Edition]. J. Ayars, D. Bulterman et. al., 07 January 2005. http://www.w3.org/TR/2005/REC-SMIL2-20050107/
[012] Document Object Model (DOM) Level 2 Events Specification, Version 1.0, W3C Recommendation 13 November, 2000. http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113
[013] XML Events, an Events Syntax for XML, W3C Recommandation 14 October 2003. http://www.w3.org/TR/2003/REC-xml-events-20031014
[014] xml:id Version 1.0, W3C Proposed Recommendation 12 July 2005, http://www.w3.org/TR/2005/PR-xml-id-20050712/
[015] ISO/IEC 13818-1:2000, Information technology -- Generic coding of moving pictures and associated audio information: Systems
5 Architecture

LaSER is defined in terms of abstract access units, which may be adapted for transmission over a variety of protocols. LaSER streams may be packaged with some or all of their related media into files of the ISO base media file format family (e.g. MP4) and delivered over reliable protocols. There is also a simple aggregation format (SAF), which aggregates a LaSER stream with some or all of its associated media into stream order. SAF may be delivered over reliable or unreliable protocols. Finally, LaSER streams could be adapted to other delivery protocols such as RTP [09] or MPEG-2 transport [15]; however, the definitions of these mappings is outside the scope of this specification.
Figure 1 presents the LASeR and SAF architecture.

[image: image1.emf]SVG SceneTree

LASeR

Commands

BinaryEncoding

LASeR

Extensions

SAF

AudioVideoFontImage…

Application

Network

Transport

Figure 1: Architecture of LASeR and SAF
6 Scene Representation
6.1 Overview

In this document, a multimedia presentation is a collection of a scene description and media (zero, one or more). A media is an individual audiovisual content of the following type: image (still picture), video (moving pictures), audio and by extension, font data. A scene description is constituted of text, graphics, animation, interactivity and spatial, audio and temporal layout.
A scene description specifies four aspects of a presentation:

· how the scene elements (media or graphics) are organised spatially, e.g. the spatial layout of the visual elements;

· how the scene elements (media or graphics) are organised temporally, i.e. if and how they are synchronised, when they start or end;

· how to interact with the elements in the scene (media or graphics), e.g. when a user clicks on an image;

· and if the scene is changing, how the scene changes happen.

A scene description may change by means of animations. The different states of the scene during the whole animation may be deterministic (i.e. known when the animation starts) or not. The former case is illustrated by parametric animations. The latter case is illustrated by, for instance, a server sending modification to the scene on the fly. The sequence of a scene description and its timed modifications is called a scene description stream.

The scene description format specified herein is called LASeR. A scene description stream is called a LASeR Stream. Modifications to the scenes are called LASeR Commands. A command is used to act on elements or attributes of the scene at a given instant in time. LASeR Commands that need to be executed at the same time are grouped into one LASeR Access Unit (AU).
This specification defines an XML language to describe scenes which can be encoded with the LASeR format defined throughout subclauses 6.5 to 6.8.36. The exact XML syntax for these elements and attributes is described in the schemas provided as electronic attachments to this specification.

This specification also defines a binary format to efficiently represent 2D scene descriptions. It has two encodings: the first encoding is static and is compatible with the second generic encoding.
6.2 Relationship with SVG

6.2.1 Scene tree
The scene constructs on which the binary format defined in this specification is based are the elements defined by the W3C in the SVG specification [02] [17]. Subclause 6.8 explicitly refers to the SVG or SMIL elements and attributes which can be encoded using the binary format defined in this specification. A LASeR scene is an SVG scene possibly with LASeR extensions. These extensions are also defined in this subclause. This specification defines in subclause 6.6.2.3 a set of commands, called LASeR Commands, which can be applied to a LASeR scene.
6.2.2 Fonts
LASeR supports the encoding of fonts. Fonts shall be encoded separately from the scene, e.g. using MPEG-4 Part 18, and sent as a media stream together with the scene stream. SVG elements related to font description are not supported by LASeR.
Note: to encode SVG scenes with SVG fonts in LASeR, font information shall be extracted from the SVG scene, encoded separately and sent as a media stream. MPEG-4 Part 18 is one option to encode and transmit the font, and more options may be specified in the future.

Note: when using LASeR to encode an SVG scene which includes SVG Fonts derived from OpenType fonts, a better quality can be achieved by transmitting the original OpenType fonts.
Note: care should be taken when extracting font information from an SVG scene that the effective target of references into the SVG scene, e.g. from scripts, is not changed. One possible way is to replace the extracted font element with a suitable supported (possibly empty) element.
	<?xml version="1.0" encoding="UTF-8"?>

<svg width="480" height="360" viewBox="0 0 480 360" version="1.1" baseProfile="tiny">

 <defs>

 <font-face font-family="TestComic" .../>

 <missing-glyph horiz-adv-x="1024" d="M128 0V1638H896V0H1…"/>

 <glyph unicode="@" horiz-adv-x="1907" d="M1306 412Q1200 412 1123 443T999 ..."/>

 <glyph unicode="A" horiz-adv-x="1498" d="M1250 -30Q1158 -30 1090 206Q1064 ..."/>

 <glyph unicode="y" horiz-adv-x="1066" d="M1011 892L665 144Q537 -129 469 ..."/>

 <glyph unicode="Ö" horiz-adv-x="1635" d="M802 -61Q520 -61 324 108Q116 ..."/>

 <glyph unicode="ç" horiz-adv-x="1052" d="M770 -196Q770 -320 710 -382T528 ..."/>

 </defs>

 <g transform="translate(165, 220)" font-family="TestComic" font-size="60" fill="black" stroke="none">

 <line x1="0" y1="0" x2="210" y2="0" stroke-width="1" stroke="#888888"/>

 <text>AyÖ@ç</text>

 </g>

</svg>

Example (informative) 1: SVG scene with embedded font information
	<?xml version="1.0" encoding="UTF-8"?>

<saf:SAFSession xmlns:saf="urn:mpeg:mpeg4:SAF:2005" …>

 <saf:sceneHeader>

 <LASeRHeader …/>

 </saf:sceneHeader>

 <saf:mediaHeader streamType="12" objectTypeIndication="6" streamID="font"/>

 <saf:mediaUnit streamIDref="font" .../> <!--this media unit contains the OpenType font -->

 <saf:sceneUnit>

 <lsru:NewScene>

 <svg width="480" height="360" viewBox="0 0 480 360" version="1.1" baseProfile="tiny">

 <defs>

 <desc>this was a font</desc>

 </defs>

 <g transform="translate(165, 220)" font-family="TestComic" font-size="60" fill="black" stroke="none">

 <line x1="0" y1="0" x2="210" y2="0" stroke-width="1" stroke="#888888"/>

 <text>AyÖ@ç</text>

 </g>

 </svg>

 </lsru:NewScene>

 </saf:sceneUnit>

 <saf:endOfSAFSession/>

</saf:SAFSession>

Example (informative) 2: LASeR/SAF equivalent of Example 1
(the remainder of this subclause is informative)

Differences between example 1 and 2 are:

· the SVG scene has been wrapped in a NewScene update, then in a SAF layer.

· the font description is removed from the SVG scene, encoded with MPEG-4 part 18 and placed in a SAF mediaUnit. The attributes streamType=”12” and objectTypeIndication=”6” in the SAF mediaHeader with streamID “font” identify the content of the SAF stream.

· the SAF mediaHeader and SAF mediaUnit are connected through the streamID “font”, which is encoded as a number, and is strictly local to SAF.

· connection between font-family=”TestComic” and the font encoded in the SAF mediaUnit happens through the font name which is part of the OpenType encoding.

6.3 Timing Model

There are Scene Times, Wallclock Times, SMPTE timecodes, Media Times, and Encoded Scene Times. Wallclock times and SMPTE timecodes are not affected by the following discussion.

Logically, a LASeR scene at any instant could be represented by an XML document, which appears like an SVG document:

<svg>
...
 <animate begin="X" ... \>

...
</svg>

Times within this logical XML document are uniformly expressed in scene times. Scene times have a zero origin and the timescale is defined in SVG.

Logically XML fragments are sent in access units which have Media Time timestamps (MT). These may not have a known origin, and are expressed on a timescale declared at the transport layer. Note that the equations below do not show the correction for timescale units, for simplicity.

The XML fragment containing the "svg" element in this example is sent in an access unit which is a NewScene. The media timestamp MT(ns) of that access unit is arbitrary, but the defined SceneTime of it is zero; ST(ns) = 0.

The XML fragment which supplies the construct "r" is sent in a later access unit with media timestamp MT(r). The defined scene time of that access unit is ST(r) = MT(r) - MT(ns).

Scene times within that access unit ("begin" in this example) are encoded for transmission relative to the scenetime of the access unit. In this example, the "begin" time X is transmitted as the Encoded Scene Time X-ST(r).

A RefreshScene command has an arbitrary media time, as usual, but contains within the access unit the defined SceneTime for that media time. This enables terminals which "tune in" after the NewScene was sent, or for any other reason did not receive the NewScene, to nonetheless establish Scene Times. The encoder could calculate the value of that scenetime by comparing the media timestamp of the RefreshScene MT(rs) with the media timestamp of the preceding NewScene MT(ns), and sending MT(rs) - MT(ns) .
When a scene segment starts with a NewScene, the scene time is reset to 0. In such a scene segment, the scene time of a LASeR access unit is defined as the difference between the media time of that access unit and the media time of the closest previous NewScene.
When a scene segment does not start with a NewScene, the scene time is not reset to 0 and let Ts0 be the scene time within the initial scene segment upon reception of the first access unit of that new scene segment. In such a scene segment, the scene time of a LASeR access unit is defined as the difference between the media time of that access unit and the media time of the first access unit of that scene segment incremented by Ts0. Note: the determination of Ts0 will vary if there is any variation in delivery times between terminals.

[image: image2.emf]NewScene

x

sceneTime(x) = mediaTime(x) –mediaTime(NewScene)

Within a scene segment

NewScene

x

sceneTime(y) = T

s0

With more scene segments

y

z

First scene segment

Second scene segment

T

s0

sceneTime(z) = T

s0

+ mediaTime(z) –mediaTime(y)

Figure 2: scene time and scene segments
Time values are encoded in ticks. The number of ticks per seconds for time values relating to the scene time line is defined by the timeResolution attribute of the LASeRHeader. Attributes “begin” and “end” are encoded as offset from the scene time of the current access unit. Attributes “clipBegin” and “clipEnd”, which hold times in a media time line of another stream, are encoded with a predefined resolution of 1000 ticks per seconds.
6.4 Execution Model

An application which shows a presentation comprising a LASeR stream in a way compliant with this specification is called a LASeR Engine.

The playback algorithm of a compliant LASeR Engine shall produce the same result as the algorithm described below with the following high-level steps for each execution cycle:

1. Compute the new scene time Ts (begin of execution cycle);

2. Decode any LASeR AU with a scene time below or equal to Ts, and not yet presented in earlier execution cycles;

3. Execute LASeR Commands from LASeR AUs decoded at step 2;

4. Process all events (DOM, SVG or LASeR) according to the DOM event model [ref] and resolve all begin and end times that can be resolved according to the SMIL Timing Model [ref];

5. Determine active media objects by inspecting begin and end times,

6. For each active media object, present the media access unit with the normal play time equal to clipBegin + (Ts – begin time) and clamp it using clipEnd.

7. Render the audio and visual element of the scene tree according to the SVG rendering model as described in Section 3 of [02] (end of execution cycle).

[image: image3.emf]LASeR

decoder

LASeR

Scene

Tree

Manager

LASeR

Renderer

Scene

Stream

Decoded

Access

Units

Scene

Tree

Rendered

Scene

Normative in LASeR

Normative in SVG

Figure 3: LASeR engine components and normative parts
6.5 Supported Events

A LASeR engine supports the event model as specified in the DOM Level2 events specification [12] with extensions compatible with the (informative) DOM Level 3 specification [18] and SVG Tiny 1.2 [17]. These extensions are: the definition of a namespace associated with each event; the naming of the events and of the animation events; and the notion of cancellability of an event.

The list of supported events with their properties is given in Table 1.
	Event name
	Namespace
	Description
	Bubble
	Canc.

	“focusin”
(or deprecated “DOMFocusIn”)
	http://www.w3.org/2001/xml-events
	As defined in section 16.2 of [02].
	Yes
	No

	“focusout”
(or deprecated “DOMFocusOut”)
	http://www.w3.org/2001/xml-events
	As defined in section 16.2 of [02].
	Yes
	No

	“activate”
	http://www.w3.org/2001/xml-events
	As defined in section 16.2 of [02].
	Yes
	Yes

	“click”
	http://www.w3.org/2001/xml-events
	As defined in section 16.2 of [02].
	Yes
	Yes

	“mousedown”
	http://www.w3.org/2001/xml-events
	As defined in section 16.2 of [02].
	Yes
	Yes

	“mouseup”
	http://www.w3.org/2001/xml-events
	As defined in section 16.2 of [02].
	Yes
	Yes

	“mouseover”
	http://www.w3.org/2001/xml-events
	As defined in section 16.2 of [02].
	Yes
	Yes

	“mouseout”
	http://www.w3.org/2001/xml-events
	As defined in section 16.2 of [02].
	Yes
	Yes

	“mousemove”
	http://www.w3.org/2001/xml-events
	As defined in section 16.2 of [02].
	Yes
	No

	“load”
(or deprecated “SVGLoad”)
	http://www.w3.org/2001/xml-events
	As defined in section 16.2 of [02].
	No
	No

	“resize”
(or deprecated “SVGResize”)
	http://www.w3.org/2001/xml-events
	As defined in section 16.2 of [02].
	Yes
	No

	“scroll”
(or deprecated “SVGScroll”)
	http://www.w3.org/2001/xml-events
	As defined in section 16.2 of [02].
	Yes
	No

	“zoom”
(or deprecated “SVGZoom”)
	http://www.w3.org/2001/xml-events
	As defined in section 16.2 of [02].
	Yes
	No

	“beginEvent”
	http://www.w3.org/2001/xml-events
	As defined in section 16.2 of [02].
	Yes
	???

	“endEvent”
	http://www.w3.org/2001/xml-events
	As defined in section 16.2 of [02].
	Yes
	???

	“repeatEvent”
	http://www.w3.org/2001/xml-events
	As defined in section 16.2 of [02].
	Yes
	???

	“keyup”
	http://www.w3.org/2001/xml-events
	reserved for future use
	No
	No

	“keydown”
	http://www.w3.org/2001/xml-events
	reserved for future use
	No
	No

	“textInput"
	http://www.w3.org/2001/xml-events
	reserved for future use
	No
	No

	“accessKey(keyCode)”
	urn:mpeg:mpeg4:laser:2005
	The key keyCode has been pressed, as defined

 in section 6.4 of [08]
	No
	No

	“longAccessKey(keyCode)”
	urn:mpeg:mpeg4:laser:2005
	Similar to accessKey but for the fact that the event

is only triggered if the key has been pressed for

a longer time, the definition of “longer” being left

to the appreciation of the browser implementation.
	No
	No

	“pause”
	urn:mpeg:mpeg4:laser:2005
	Freezes the clock of the timed object they are

sent to, and have no effect on non timed objects.
	No
	No

	“resume”
	urn:mpeg:mpeg4:laser:2005
	Restarts the clock of the timed object they are

sent to, and have no effect on non timed objects.
	No
	No

Table 1: List of supported events
The value of keyCode in Table 1 is defined in Table 2
	Key Name
	Key Code
	Comment

	KEY_UP
	0
	

	KEY_DOWN
	1
	

	KEY_LEFT
	2
	

	KEY_RIGHT
	3
	

	KEY_ENTER
	4
	also called FIRE sometimes

	NO_KEY
	5
	special value disabling the wait for a key

	ANY_KEY
	6
	matches any key

	SOFT_KEY_1
	7
	soft key n°1 (usually below the screen to the left)

	SOFT_KEY_2
	8
	soft key n°2 (usually below the screen to the right)

	KEY_POUND
	35
	#

	KEY_STAR
	42
	*

	KEY_0
	48
	

	KEY_1
	49
	

	KEY_2
	50
	

	KEY_3
	51
	

	KEY_4
	52
	

	KEY_5
	53
	

	KEY_6
	54
	

	KEY_7
	55
	

	KEY_8
	56
	

	KEY_9
	57
	

Table 2: Defined key codes
6.6 Encoder Configuration

6.6.1 Overview
The binary encoding has two options. One option is called SimpleEncoding, and is defined using SDL in 13. The other option is called ISO_15938_1_Encoding, and uses the generic encoding defined in ISO/IEC 15938-1. The encoding option is one of the profiling axes.
A decoder implementing the SDL binary syntax in 13 can decode a stream encoded with the SimpleEncoding option. It is possible to identify and skip extensions and it is permitted to do so. A full ISO 15938-1 capable decoder is required to decode streams encoded with the ISO_15938_1_Encoding option.
The next subclause describes the syntax for signalling the encoding configuration.

6.6.2 LASeR headers
6.6.2.1 Semantics
The LASeRHeader specifies the parsing and decoding configuration of a LASeR scene segment.

The LASeRUnitHeader specifies parameters that may change at the beginning of each LASeR access unit.

LASeR defines a way to partition scenes into incremental scene segments, allowing services to be built of different scene segments, the first scene segment containing a NewScene update, the other scene segments having the append bit set and not starting with a NewScene update, and being designed as addition to the first scene segment.

LASeR defines an interface to persistent storage. The LASeR engine shall cache permanent streams and selected scene information on a best effort basis. The principles behind this caching closely follow the state caching mechanism in HTTP, commonly called cookies [07]. Within the LASeR streams, there are two commands that may be used. One command saves, associated with a string name called groupID, the values of some attributes of some nodes. This storage is scoped by the domain-name and path computed from the source using the fields in the LASeR header. The other command restores the attributes (if any) previously saved under the given groupID, as scoped by the domain-name and path.

The stored values and permanent streams are scoped by the domain-name and path. That is, it is possible for both “.acme.com” and “.widget.com” to store data under the same groupID and for that storage to be distinct; similarly for “/user/laser-expert/” and “/user/laser-novice/” at “.acme.com” to save state under the same groupID, and for those saved states to be distinct.

It is possible that there is state saved under the same groupID for more than one domain-name/path pair, and that more than one of these match the request-URI. For example, if the request URI has domain “x.y.z.com” and path “/demos/acme”, and there is state saved under the same groupID for domain “.y.z.com” and “.z.com” then both sets of state apply. Under these circumstances, the saved states are ordered primarily by preferring more specific domains (with more components) over less-specific, and then for states with the same domain, and preferring more specific paths (with more components) over less-specific. Once the saved states have been so ordered all the saved states are restored, starting with the least specific (least preferred) and ending with the most specific (most preferred).

For example, if there is saved state under the same groupID for

1) domain-name “.acme.com”, path “/user/laser-expert/”;

2) domain-name “.acme.com”, path “/user/laser-expert/demo”;

3) domain-name “www.acme.com”, path “/user/laser-expert/”;

4) domain-name “www.acme.com”, path “/user/laser-expert/demo”

Then state (1) is restored, then state (2), (3) and (4), in that order. It is possible that these saved states do not overwrite each other (different attributes or nodes), partially overwrite each other (some attributes in common) or completely overwrite each other.

6.6.2.2 Attributes of LASeRHeader
· profile: this value signals the profile of LASeR that the scene segment starting with this LASeRHeader adheres to.
· level: this value signals the level of LASeR which this scene segment starting with this LASeRHeader adheres to.
· encoding: this value signals which encoding is used within the current content, from Table 3.
	Encoding Type
	Value

	reserved
	0

	SimpleEncoding
	1

	ISO_15938_1_Encoding
	2

	ISO reserved
	3-10

	User private
	11-15

Table 3: Encoding values
· resolution: this attribute is a number between -8 and 7 defining the coordinate resolution as 2-resolution. When reading a coordinate, the encoded value shall be multiplied by the coordinate resolution to obtain the coordinate value expressed in pixels.

Example:
When resolution is 0, 4 or -2, the coordinate resolution is 1, 0.0625 or 4 respectively, and a encoded coordinate value of 100 yields 100, 6.25 and 400 pixels respectively.

· timeResolution: this attribute is a 16-bits positive integer defining a resolution for time values (e.g. clock values). When reading a time value from the bit stream, the encoded value shall be divided by this number to obtain a time value in seconds. The default value for timeResolution is 1000.
· coordBits: this attribute defines the number of bits used for encoding coordinates. The default value is 12.

· scaleBits_minus_coordBits: this attribute defines the number of bits above coordBits used for encoding scaling factors. The default value is 0.

· colorComponentBits: this attribute defines the number of bits used for encoding color components.

· append: this Boolean attribute defines whether the scene segment starting with this LASeRHeader is an addition to the scene already present in the LASeR engine, or if it defines a new scene altogether. The combination of append and the NewScene command is defined in Table 4.
	Append value
	type of the first LASeR Command
following the LASeRHeader
	Behavior

	true
	NewScene
	the new scene segment defines a new scene,
 the append value is ignored

	false
	
	

	true
	other command
	the previous scene is kept

	false
	other command
	the behavior is undefined

Table 4: Behavior of combinations of append and NewScene
· useFullRequestHost: this Boolean attribute indicates whether the full domain name of the request-host is used (1) or the first component of the domain name is elided (0). For example, if the source material came from “www.laser.com”, then this differentiates between associating the “service” with “www.laser.com” and “.laser.com”. (Note the definition of local names in the RFC, and the possibility to associate the “service” with locally loaded files, and that the domain name may be either “<hostname>.local” or “.local” in that case.). Together with pathComponents, this attribute defines the “service”.
· pathComponents: this integer attribute indicates how much of the source path is used. If this takes the value 0, then the “service” is not associated with a path, and if it takes the special value 15 (or any value equal to or greater than the number of components in the path) then the entire path is used up to but excluding the final file-name. For example, if the source was “/user/laser-expert/demo/art.mp4” then a value of 4 or greater selects “/user/laser-expert/demo/art.mp4” as the path, the value 2 selects “/user/laser-expert” and the value zero sets no path. Together with useFullRequestHost, this attribute defines the “service”.
· pointsCodecType: this attribute specifies which strategy is used to encode point lists. Possible values are in Table 5.
	Point sequence encoding strategy
	Code

	ExpGolombPointsCodec
	0

	ISO Reserved
	0x1-0xF

Table 5: pointsCodecType values
· hasStringIds: this Boolean attribute defines whether ids are carried as strings, allowing XML canonical reconstruction.

· ISO_15938_1_DecoderInit_Configuration: this flag signals the presence of an ISO_15938_1 decoder init in the LASeRHeader. In case such decoder init is not present, this flag indicates the default decoder init that should be chosen among a set of predefined ones.
	ISO_15938_1_DecoderInit_Configuration value
	Semantics

	0x00
	The decoder initialisation is inlined. In case the Simple Encoding is chosen, the decoder initialisation shall be identical to the one defined in 15.

	0x01
	the decoder initialisation is the one provided in 15.

	0x02-0x7F
	reserved

	0x80-0xFF
	private

Table 6: Semantics of ISO_15938_1_DecoderInit_Configuration combined with encoding

· ISO_15938_1_DecoderInit: this syntax element defines a decoder init as specified in ISO/IEC 15938-1 – Clause 7.
6.6.2.3 Attributes of LASeRUnitHeader

· resetEncodingContext: when this Boolean attribute is true, the encoding context defined in subclause 6.6.2.3 shall be reset upon reception of this LASeRUnitHeader.
6.6.2.4 Encoding Context

The encoding context consists of the following sets of associations since either the beginning of the scene or the last LASeRHeader with a resetEncodingContext attribute set :

· the set of associations between binary IDs and scene tree elements,

· the set of associations between binary indexes and colors,

· the set of associations between binary IDs and font names as used in font-family attributes.
6.7 LASeR Scene Commands
6.7.1 Overview

Scene Commands are a declarative way (as opposed to programmatic as in a script) of specifying changes to the scene. The following commands are defined:
· NewScene: to create a new scene.
· RefreshScene: to repeat the current state of the scene, for use as a random access point into the LASeR stream or as a means to recover from packet loss.
· Insert: to insert any element in a group, a point in a sequence.

· Delete: to delete any element by id or from a group by index, a point in a sequence.

· Replace: to replace an element by another element (by id or from a group by index), or to replace the value of any attribute of any element.
· Add: similar to replace, but with the notion of adding to the value rather than replacing it.

· Save, Restore and Clean: to save, reload or remove persistent scene information in the form of the value of a list of attributes. Other commands have no influence on persistent scene information.
· SendEvent: to send an event to any element in the scene.

The following restrictions apply to all commands:

· Commands shall refer to existing elements and attributes.

· The following attributes cannot be updated: by, from, to, values, type, xml:space. This constraint can be worked around by updating the whole element.

· Indexed commands can only be applied to attributes with multiple values or lists of children

Commands not following these restrictions shall be ignored.
In the definition of the commands, two pseudo-attributes are used: children refers to the list of children of an element, and textContent refers to the text content of an element.
6.7.2 Add

6.7.2.1 Semantics

The Add command is similar to Attribute Replacement defined in subclause 6.7.8.1, while adding to the designated value instead of replacing it. It thus adds a new value to a specific attribute of an element. The ref attribute specifies the parent element, the attributeName attribute specifies which attribute of the parent element is added to, and the *value attribute specifies the added value. There are specific value attributes for the following primitive type: stringvalue, colorvalue, floatvalue, intvalue, pointvalue, matrixvalue. For a string, addition is concatenation. For numeric types, addition is done component by component.

The Add command may also add the value of another attribute of another element to the target attribute. The value to add is then defined by the element id operandElementId and the attribute name operandAttributeName. The attribute which is the source of the added value shall be of the same type as the target attribute. The only exception is if the target attribute is a string: if the added value belongs to the following types in Table 7, it is then converted to a string and added to the target attribute.

	Values
	Format for string conversion

	integer
	“%d”

	float
	“%.4f”

	point
	x and y as “%.4f %.4f”

	time
	hours, minutes and seconds as “%02d:%02d:%02d”

Table 7: Attribute Values convertible to a string with Add
Informative examples:

· The script s1 adds 3 to the font-size of the text element with ID “txt1”. Resulting font-size is 15.

· The script s2 adds “ bar” to the text content of the text element with ID “txt2”. Resulting text content is “foo bar”.

· The script s3 adds the value of textContent of the text element with ID “txt3” (i.e. “service?3”) to the xlink:href attribute of the a element with ID “a1”. Resulting xlink:href is “http://www.example.org/service?3”

<text id="txt1" font-size="12" …>

<script id="s1">

 <lsr:Add ref="txt1" attributeName="font-size" value="3"/>

</script>

<text id="txt2">foo</text>

<script id="s2">

 <lsru:Add ref="txt2" attributeName="textContent" value=" bar"/>

</script>

<text id="txt3">service?3</text>

…

<script id="s3">

 <lsru:Add ref="a1" attributeName="xlink:href" operandElementId="txt3"

operandAttribute="textContent"/>

</script>

6.7.2.2 Attributes

· ref: the id of the element on which the addition will be applied.

· value: the (constant) added value.
· operandElementId: the id of the element from which the added value is taken

· operandAttributeName: the name of the field from which the added value is taken

· attributeName: the name of the replaced field.
6.7.2.3 DOM Formulation (informative)
//

// partial implementation of incremental update

// adds to 'transform', numeric fields or strings

//

function AddToValue(parentId, field, value) {

 var parent = document.getElementById(parentId);

 if (parent != null) {

 if (field == 'transform') {

 // manipulate as matrices

 var m = new Matrix();

 m.initFromString(parent.getAttribute(field));

 var p = new Matrix();

 p.initFromString(value);

 m.concatRight(p);

 parent.setAttribute(field, m.toString());

 } else {

 var prevval = parseFloat(parent.getAttribute(field));

 var numval = parseFloat(value);

 if (prevval != 'NaN' && numval != 'NaN') {

 // if both are numbers, add

 parent.setAttribute(field, prevval + numval);

 } else {

 // if either is not a number, concatenate as strings

 parent.setAttribute(field, parent.getAttribute(field) + value);

 }

 }

 } else {

 alert("parent not found in add to field");

 }

}

6.7.3 Clean
6.7.3.1 Semantics
The Clean command erases the storing area identified by the attribute groupID with the most specific matching defined in 6.6.2.1. The element information stored in the corresponding memory area is not available anymore.

6.7.3.2 Attributes

· groupID: this string attribute defines the group ID as defined in 6.6.2.1.
6.7.4 Delete

6.7.4.1 Semantics

The Delete command deletes an element by id (use of ref attribute only) or at a specific position in a parent element (use of ref and index attributes).

The element deletion specified with a ref (no use of the index attribute) deletes the element.

The element deletion specified with a ref and an index deletes the index-th child of the referenced element.

When deleting an element all its descendant nodes and attributes are removed from the scene graph.

6.7.4.2 Attributes

· ref: this attribute defines the id of the element that shall be deleted or modified.

· index: this attribute defines the zero-based index of the element to delete in the list of children.

· attributeName: this attribute defines the name of the attribute in which the deletion happens, by default “children”.
6.7.4.3 DOM Formulation (informative)
//

// auxiliary function for delete node by id

//

function DeleteNodeInternal(elem, id, poundId) {

 if (elem) {

 var i;

 if (elem.hasChildNodes()) {

 for (i=0; i<elem.childNodes.length; i++) {

 var child = elem.childNodes.item(i);

 if (child.nodeType == 1) {

 if (child.getAttribute("id") == id) {

 elem.removeChild(child);

 return;

 }

 DeleteNodeInternal(child, id, poundId);

 }

 }

 }

 }

}

//

// implementation of remove child indexed

//

function DeleteChildIndexed(parentId, index) {

 var parent = document.getElementById(parentId);

 if (parent != null) {

 var child = getElementChild(parent, index);

 if (child != null) parent.removeChild(child);

 else alert("child not found");

 } else {

 alert("parent not found in delete");

 }

}

//

// implementation of delete node by id

//

function DeleteNode(nodeId) {

 // remove all instances of nodeId wherever they are

 // including use

 DeleteNodeInternal(document, nodeId, "#"+nodeId);

}

6.7.5 Insert

6.7.5.1 Semantics

The Insert command inserts an element in a parent list.
Examples (fragments):

	 <NewScene>

 <svg id="root" width="333" height="250">

 <g>…</g>

 </svg>

 </NewScene>

 <Insert href="root">

 <g id="Dictionary" visibility="hidden"/>

 </Insert>

 <Insert href="Dictionary" attributeName="children">

 <polyline id="Shape4" stroke="0.0 0.0 0.019607844"

 points="-166.5 359.9 984.6 356.65 983.65 358.5"/>

 </Insert>

 <Insert href="Shape4" attribute="points" value="0.65 8.5" index="0">

In the above sample, the first Insert adds the g with id Dictionary after the single g object already present in the root svg. The attributeName attribute has a default value of “children”. The second Insert adds a polyline at the end of the currently empty Dictionary g. The third Insert adds one point at the beginning of the points attribute of the Shape4 SVG polyline.
6.7.5.2 Attributes

· ref: this attribute defines the id of the insertion point. In the absence of a ref specification, the default insertion point is the root SVG svg element.

· index: this attribute defines the index at which to insert the child. In the absence of an index, the child is inserted at the end of the children list.

· attributeName: this attribute defines the name of the attribute in which the insertion happens, by default “children”.
· value: the (constant) inserted value.
6.7.5.3 Children

Any element.
6.7.5.4 DOM Formulation (informative)
//

// auxiliary function: get the nth child of type element

// this is necessary because scene updates only apply to elements

// and yet there are many other types of nodes in the tree

// (text, comment, ...)

//

function getElementChild(element, i) {

 if (i < 0) return getLastElementChild(element);

 var k;

 for (k = 0; k < element.childNodes.length; k++) {

 var el = element.childNodes.item(k);

 if (el != null && el.nodeType == 1) {

 if (i == 0) return el;

 else i--;

 }

 }

 return null;

}

//

// auxiliary function: similar to getElementChild for the last child

//

function getLastElementChild(element) {

 var k;

 for (k = element.childNodes.length - 1; k >= 0; k--) {

 var el = element.childNodes.item(k);

 if (el != null && el.nodeType == 1) {

 return el;

 }

 }

 return null;

}

//

// implementation of insert child indexed

//

function InsertChildIndexed(parentId, child, index) {

 var parent = document.getElementById(parentId);

 if (parent != null && child != null) {

 parent.insertBefore(child, getElementChild(parent, index));

 } else {

 alert("parent or child not found in insert at");

 }

}

6.7.6 NewScene
6.7.6.1 Semantics

The NewScene command inserts a new scene in the browser. Any currently playing scene is stopped, its resources reclaimed and it is replaced by the scene contained in the NewScene command. The scene time is reset to 0.

Note: it is not possible to reuse an element from the previous scene in the new scene, even by an id reference.
6.7.6.2 Attributes

No attributes
6.7.6.3 Children

A single SVG svg element, which constitutes the initial state of a new scene.

6.7.6.4 DOM Formulation (informative)
function NewScene(svg) {
 document.svgDocument.root = svg;

}
6.7.7 RefreshScene

6.7.7.1 Semantics

The RefreshScene command provides a functionally identical copy of the current scene, to a browser that may have lost some information since the previous NewScene or RefreshScene command, or which has not yet seen a NewScene or RefreshScene command. For browsers in other states (i.e. those that have a scene for which they have received all information) this command shall be ignored. For browsers that interpret this command, it is functionally identical to NewScene except that the scene time is reset to the given value instead of 0. After this command has passed, it should not be possible to differentiate the state of a browser that did not need to interpret it, and skipped it, from one that did interpret it; the scene graph and scene time in the two browsers should identical.
6.7.7.2 Attributes

· time: the current scene time to set if this command is interpreted. This attribute is expressed as a number of ticks, using the LASeR time resolution.
6.7.7.3 Children

A single SVG svg element, which constitutes the initial state of the scene.

6.7.7.4 DOM Formulation (informative)

function NewScene(svg, time) {

 document.svgDocument.root = svg;

 document.time = time;

}

6.7.8 Replace

6.7.8.1 Semantics

The Replace command has two variants: Element Replacement and Attribute Replacement.

The Element Replacement replaces an existing element and its replacement with a new element. The ref attribute specifies the element to be replaced and the element given as child of the Replace is used as replacement. The element replacement replaces the element and all its instances, if it was referenced by a SVG use.

The Attribute Replacement command replaces a specific attribute of an element with a new value. The ref attribute specifies the parent element, the attribute attribute specifies which attribute of the parent element is replaced, and the value attribute specifies the new value. There are specific value attributes for each primitive type: booleanvalue, colorvalue, floatvalue, intvalue, pointvalue, matrixvalue, element, textContent, idvalue. The used value attribute shall match the type of the attribute to be changed.

The Replace command may also replace the target value with the value of another attribute of another element. The replacing value is then defined by the element id operandElementId and the attribute name operandAttributeName. The attribute which is the source of the replacing value shall be of the same type as the target attribute. The only exception is if the target attribute is a string: if the added value belongs to the following types in Table 7, it is then converted to a string and added to the target attribute.
Note: The following attributes cannot be updated: by, from, to, values, type, xml:space. This constraint can be worked around by updating the whole element.

6.7.8.2 Attributes

· ref: this attribute defines the id of the element on which the replacement will be applied.

· index: this attribute defines the position of the replacement

· value: the (constant) replaced value.
· operandElementId: this attribute defines the id of the element from which the added value is taken

· operandAttributeName: this attribute defines the name of the field from which the added value is taken

· attributeName: this attribute defines the name of the replaced attribute. Acceptable values are the name of any attribute of a LASeR element.
6.7.8.3 Children

Any element or text content
6.7.8.4 DOM Formulation (informative)
//

// implementation of replace node by id

//

function Replace(nodeId, newNode) {

 // replace all instances of nodeId wherever they are

 // including use

 if (document.getElementById(newNodeId) == null) {

 alert("replacement element not found");

 } else {

 ReplaceInternal(document, nodeId, "#"+nodeId, newNode);

 }

}

//

// auxiliary function for replace node by id

//

function ReplaceInternal(elem, id, poundId, newNode) {

 if (elem) {

 var i;

 if (elem.hasChildNodes()) {

 for (i=0; i<elem.childNodes.length; i++) {

 var child = elem.childNodes.item(i);

 if (child.nodeType == 1) { // element node

 if (child.getAttribute("id") == id) {

 elem.replaceChild(newNode, child);

 return;

 }

 if (child.nodeName == "use") {

 if (child.getAttributeNS("http://www.w3.org/1999/xlink, href")
 == poundId) {

 elem.replaceChild(newNode, child);

 return;

 }

 }

 ReplaceInternal(child, id, poundId, newNode);

 }

 }

 }

 }

}

//

// implementation of replace field

//

function ReplaceField(parentId, field, value) {

 var parent = document.getElementById(parentId);

 if (parent != null) {

 parent.setAttribute(field, value);

 } else {

 alert("parent not found in replace field");

 }

}

//

//implementation of replace child indexed

//

function ReplaceChildIndexed(parentId, child, index) {

 var parent = document.getElementById(parentId);

 if (parent != null) {

 if (child != null) {

 var replaced = getElementChild(parent, index);

 if (replaced != null) parent.replaceChild(child, replaced);

 else alert("nothing found to replace");

 } else alert("child not found");

 } else {

 alert("parent not found in replace indexed");

 }

}

6.7.9 Restore
6.7.9.1 Semantics
The Restore command restores attributes that have been stored by the Save command. The retrieved values will replace the current attributes in the scene graph. If any saved and restored attribute type does not match, the whole restore command is ignored.
6.7.9.2 Attributes
· groupID: this string attribute defines the group ID as defined in 6.6.2.1.
6.7.10 Save
6.7.10.1 Semantics
The Save command stores in memory a selection of attributes from elements contained in the current scene graph.

The useFullRequestHost and pathComponents attributes defined in the LASeRHeader specify a unique memory area where the element information will be stored. The groupID allows for the same element information to be saved in different areas at different times.

6.7.10.2 Attributes
· groupID: this string attribute defines the group as defined in 6.6.2.1.

· elements: this attribute defines a list of element ids.
· attributes: this attribute defines a list of attribute names, one per element id in the previous list, each pair (element id, attribute name) defining one of the attributes to be saved.
6.7.11 SendEvent

6.7.11.1 Semantics

The SendEvent command is used to send an event to an object, for example sending the activate event to a script to trigger its execution.

6.7.11.2 Attributes

· ref: this attribute defines the id of the element to which the event will be send.

· event: this attribute defines the type of the event that is sent. The list of supported events is defined in 6.5.

· pointvalue: this attribute defines the value of the event in the case of a mouse event

· keyCode: this attribute defines the value of the event in the case of a accesskey or longaccesskey event. Key codes are defined in 6.5.
· intvalue: this attribute defines the value of the event in the case of e.g. an error event

· stringvalue: this attribute defines the value of the event in the case of a text event

6.8 Scene Description Elements
6.8.1 Conventions

For each element defined in other specifications (SVG or SMIL), the reference to the SVG or SMIL element definition is given. When semantics are identical, only that reference is provided. The list of possible attributes for an element is given in the summary table in section 6.8.36. The list of possible children is given in the summary table in section 6.8.36. Only changes and extensions are defined in the element specification within section 6.8.
6.8.2 General information
All elements have two optional attributes for assigning unique identifiers to elements: the SVG id attribute is defined in [02] and the XML id attribute is defined in [14]. Only one of this attribute shall be used at a time on an element.
Some of the SVG attributes are derived from CSS [06]. They can be specified on any parent of the elements that are going to use their value. This behavior is called property inheritance as defined in section 6.2 of [06].
SVG defines the notion of locatable elements. Locatable elements have a transform attribute. LASeR extends the attributes allowed on those elements for efficient updating through LASeR Commands. The extension consists in adding the scale, rotation and translation attributes. The respective encoding of SVG transform and these attributes are:
· SVG transform holds a full matrix and is exclusive of the other attributes.

· scale holds a (sx, sy) scaling factor which is applied before rotation or translation if present; sx is a positive number, only sy is allowed to be negative.

· rotation holds a rotation angle which is applied after a possible scale and before translation.

· translation holds a (tx, ty) translation vector which is applied after scale and rotation if present.

When updating a matrix using LASeR Commands applying to scale or rotate only, the LASeR engine shall decompose the matrix as a sequence of scale then rotate then translate in this order. If this recovery is unsuccessful, the LASeR Commands applying independently to scale, rotation and translation shall be ignored. For instance, when replacing the scale on an object with an existing matrix, the LASeR engine needs to isolate the current scale factors from the rest of the matrix. It does that by decomposing the matrix in the order given above.
6.8.3 SVG a

The SVG a element is specified in section 17.1 of [02].
6.8.4 SVG animate

6.8.4.1 Semantics

The SVG animate element is specified in section 19.2.10 of [02].

6.8.4.2 Attributes

· enabled: this Boolean attribute specifies whether the element is animating its target or not. This attribute does not influence the activation or deactivation of the element by events, nor the sending of events, so has no influence on the SMIL Timing model.

6.8.5 SVG animateColor

6.8.5.1 Semantics

The SVG animateColor element is described in section 19.2.13 of [02].

6.8.5.2 Attributes

· enabled: this Boolean attribute specifies whether the element is animating its target or not. This attribute does not influence the activation or deactivation of the element by events, nor the sending of events, so has no influence on the SMIL Timing model.

6.8.6 SVG animateMotion

6.8.6.1 Semantics

The SVG animateMotion element is described in section 19.2.12 of [02].

6.8.6.2 Attributes

· enabled: this Boolean attribute specifies whether the element is animating its target or not. This attribute does not influence the activation or deactivation of the element by events, nor the sending of events, so has no influence on the SMIL Timing model.

6.8.7 SVG animateTransform

6.8.7.1 Semantics

The SVG animateTransform element is described in section 19.2.14 of [02]

6.8.7.2 Attributes

· enabled: this Boolean attribute specifies whether the element is animating its target or not. This attribute does not influence the activation or deactivation of the element by events, nor the sending of events, so has no influence on the SMIL Timing model.

6.8.8 SMIL audio

6.8.8.1 Semantics

The SMIL audio element is defined in section 12.2 of [04].

6.8.8.2 Attributes

· clipBegin: this attribute is defined in section 7.5.1 of [08]. The value represents a normal play time. The play time of some streams cannot be controlled, and under these circumstances, this attribute has no effect.
· clipEnd: this attribute is defined in section 7.5.1 of [08]. The value represents a normal play time. The play time of some streams cannot be controlled, and under these circumstances, this attribute has no effect.
· syncReference: this attribute holds a reference to the stream of the clock reference.
· syncBehavior: this attribute is defined in section 6.3.1 of [08].
· syncTolerance: this attribute is defined in section 6.3.1 of [08].
6.8.9 SVG circle

The SVG circle element is defined in section 9.3 of [02].
6.8.10 SVG defs

The SVG defs element is specified in section 5.3 of [02].
6.8.11 SVG desc

6.8.11.1 Semantics

The SVG desc element is specified in section 5.4 of [02].
6.8.12 SVG ellipse

The SVG ellipse element is defined in section 9.4 of [02].
6.8.13 SVG foreignObject

The SVG foreignObject element is described in section 23.3 of [02].
6.8.14 SVG g

6.8.14.1 Semantics

The semantics of the SVG g element are based on those of section 5.2 of [02]. Extra semantics are added:

· it may act as a selection element, rendering zero or one of its children,

· it may act as a clipping element, limiting the rendering of its children to a rectangle (whose borders are parallel to the screen borders),

· and it may act as a simple layout tool, by spacing its children by a specified amount, thus creating rows or columns of children.

In the following, N is the number of children of the g element. The choice attribute determines the actual rendering mode:

· choice >= 0 & choice < N: only the child of index choice is displayed

· choice == none | choice >= N: nothing is displayed

· choice == delta & size != null: the first child is displayed at (0,0) of the local coordinate system, and the n-th child is displayed at ((n-1)*size.x,(n-1)*size.y) of the local coordinate system. This creates a row or column of objects.

· choice == clip & size != null: all children are clipped by an axis-aligned rectangle centered on the origin of the local coordinate system and of size (size.x, size.y). The rectangle is not sensitive to rotation or scale of the local coordinate system.
· in all other cases: all the children are displayed at (0,0) of the local coordinate system without clipping.
6.8.14.2 Attributes

· size: a pair of coordinates which, depending on the value of choice, can be used as a column or row spacing, or as clipping rectangle size.
· choice: the rendering mode selector.
6.8.15 SVG image

6.8.15.1 Semantics

The SVG image element is specified in section 5.7 of [02].
6.8.15.2 Attributes

· transformBehavior: the values and semantics of this attribute are the same as those of the transformBehavior attribute of the SVG video element defined in subclause 6.8.35.
6.8.16 SVG line

The SVG line element is defined in section 9.5 of [02].
6.8.17 SVG linearGradient

The SVG linearGradient is defined in section 13.2.2 of [02].

6.8.18 XML Events listener

6.8.18.1 Semantics

The XML Events listener element is defined in section 3.1 of the XML Events Specification [13]. The present specification restricts its usage in a way compatible with the (informative) SVG Tiny 1.2 specification [17] and also adds compatible extensions.

6.8.18.2 Attributes

· event: as specified in the XML Events Specification. The event shall be one of list of supported events as defined in 6.5.

· phase: as specified in XML Events Specification with the restriction that the capture phase is not supported. The only allowed value for this attribute is ‘default’.
· handler: Required as specified in XML Events Specification with the restrictions that supported handlers depend on the event. The following table summarizes the supported handlers and the default action to be performed:

	Event
	Element
	Action

	activate
	any element with timing attributes
	Depends on the value of timeAttribute.

	activate
	a
	follow the hyperlink

	activate
	script
	executes the script content

	activate
	text with editable=”true”
	starts the editing process for timeAttribute=’begin’

	activate
	text with editable=”true”
	aborts the editing process for timeAttibute=’end’

	pause
	any element with timing attributes
	freezes the clock of this element

	resume
	any element with timing attributes
	releases the clock of this element

· enabled: this Boolean attribute specifies whether the listener is currently active or not.
· timeAttribute: ‘begin’ or ‘end’. Defines the action to be performed when an ‘activate’, ‘pause’ or ‘resume’ event happens and the target element is an element with timing attributes or an editable text. The default value is ‘begin’.

· delay: the optional delay before activation in seconds.

6.8.18.3 Children

None.

6.8.19 SVG metadata

The SVG metadata element is defined in section 21 of [02].
6.8.20 SVG mpath

The SVG mpath element is defined in section 19.2.12 of [02].
6.8.21 SVG path

The SVG path element is defined in section 8 of [02].
6.8.22 SVG polygon
The SVG polygon element is defined in section 9.7 of [02].
6.8.23 SVG polyline

The SVG polyline element is defined in section 9.6 of [02].
6.8.24 SVG radialGradient

The SVG radialGradient is defined in section 13.2.3 of [02].

6.8.25 SVG rect

The SVG rect element is defined in section 9.2 of [02]
6.8.26 SVG script

6.8.26.1 Semantics

The SVG script element is defined in section 18.2 of [02]. In the context of this specification, it allows sets of scene updates to be inserted in the scene, for later execution upon activation by time or through the XML Events listener element.
6.8.26.2 Attributes

· begin: this attribute specifies the time at which the script element is triggered.

· enabled: this Boolean attribute specifies whether the element is activatable or not.

6.8.26.3 Children

If the SVG type attribute is “application/laserscript”, the possible children are LASeR Commands to apply to the scene upon activation of the SVG script.
If the SVG type attribute is “application/ecmascript”, the usage of this element is the same as in SVG.
6.8.27 SVG set

The SVG set element is described in section 19.2.11 of [02].
6.8.28 SVG stop

The SVG stop element is defined in section 13.2.4 of [02].

6.8.29 SVG svg

The SVG svg element is described in section 5.1 of [02].
6.8.29.1 Attributes

· syncBehaviorDefault: this attribute is defined in section 6.3.1 of [08].

· syncToleranceDefault: this attribute is defined in section 6.3.1 of [08].

6.8.30 SVG switch

The SVG switch element is specified in section 5.8.2 of [02].
6.8.31 SVG text

6.8.31.1 Semantics

The SVG text element is defined in section 10.4 of [02], with the following extension: through its extended values, the attribute font-style combines the features of SVG font-style, SVG font-weight and SVG text-decoration.
6.8.31.2 Attributes

· additional values for font-style: when this attribute has SVG values (“normal”, “italic”, “oblique” and “inherit”), the SVG behaviour applies. The following additional keywords are taken from [10]: “PLAIN”, “ITALIC”, “BOLD”, “BOLDITALIC”, “UNDERLINE”, “OUTLINE”, “EMBOSS”, “ENGRAVE”, “LEFTDROPSHADOW”, “RIGHTDROPSHADOW”.
· SVG font-size: the size of the font represents the height value of the EM-box of a font in the local coordinate system.
· SVG editable: If set to "false" (default) the contents of the text element are not editable in place through the browser. If set to "true", the browser must provide a way for the user to edit the content of the text element and all contained subelements which are not hidden (with visibility="hidden") or disabled (through the switch element or display="none").
· SVG display-align: this attribute is defined in section 10.11.5 of [17], i.e. it governs alignment in the direction orthogonal to the main direction of the text.
6.8.32 SVG title

The SVG title element is defined in section 6.8.11.1 of [02].
6.8.33 SVG tspan

The SVG tspan element is defined in section 10.5 of [02].

6.8.34 SVG use

The SVG use element is described in section 5.6 of [02].

6.8.35 SMIL video
6.8.35.1 Semantics

The SMIL video element is defined in section 12.3 of [11].

6.8.35.2 Attributes

· clipBegin: this attribute is defined in section 7.5.1 of [08]. The value represents a normal play time. The play time of some streams cannot be controlled, and under these circumstances, this attribute has no effect.
· clipEnd: this attribute is defined in section 7.5.1 of [08]. The value represents a normal play time. The play time of some streams cannot be controlled, and under these circumstances, this attribute has no effect.
· overlay: the following value is added to the SVG list of possible values for overlay: “fullscreen”. The semantic of this value is that the video is rendered alone in the rendering area, possibly filling the whole rendering area.
· syncReference: the stream of the object clock reference

· syncBehavior: this attribute is defined in section 6.3.1 of [08].

· syncTolerance: this attribute is defined in section 6.3.1 of [08].

· transformBehavior: the following values are added to the SVG list of possible values for transformBehavior: “pinned90”, “pinned180” and “pinned270”. The semantics are defined in Table 8.
	Value
	Semantics

	pinned
	Video at the native resolution of the media is painted centered on the local coordinate system origin. The pixels are aligned to the device pixel grid and no resampling will be done.

	pinned_90
	Video at the native resolution of the media is then painted centered on the local coordinate system origin with a rotation of 90° counter-clockwise. The pixels are aligned to the device pixel grid and no resampling will be done.

	pinned_180
	Video at the native resolution of the media is then painted centered on the local coordinate system origin with a rotation of 180° counter-clockwise. The pixels are aligned to the device pixel grid and no resampling will be done.

	pinned_270
	Video at the native resolution of the media is then painted centered on the local coordinate system origin with a rotation of 270° counter-clockwise. The pixels are aligned to the device pixel grid and no resampling will be done.

Table 8: Extended values for transformBehavior
6.8.36 Summary of Possible Children and Attributes per Element
Note on Table 9: In LASeR, to simplify the decoding, all elements have the same content model in the binary format. This binary content model allows all elements as well as extensions and private data. However, failure to comply with the SVG content model will result in the document being in error, as defined in [02]. Any extra attribute in Table 9, not defined in SVG or in this specification, is a place holder for future extension.
	Element name
	Attributes

	a
	audio-level color color-rendering display display-align externalResourcesRequired fill fill-opacity fill-rule focusEast focusNext focusNorth focusNorthEast focusNorthWest focusPrev focusSouth focusSouthEast focusSouthWest focusWest focusable font-family font-size font-style font-weight image-rendering line-increment lsr:rotation lsr:scale lsr:translation pointer-events requiredExtensions requiredFeatures requiredFormats shape-rendering solid-color solid-opacity stop-color stop-opacity stroke stroke-dasharray stroke-dashoffset stroke-linecap stroke-linejoin stroke-miterlimit stroke-opacity stroke-width systemLanguage target text-anchor text-rendering transform vector-effect viewport-fill viewport-fill-opacity visibility xlink:actuate xlink:arcrole xlink:href xlink:role xlink:show xlink:title xlink:type

	animate
	accumulate additive attributeName begin by calcMode class dur enabled end fill from id keySplines keyTimes max min repeatCount repeatDur restart to values xlink:actuate xlink:arcrole xlink:href xlink:role xlink:show xlink:title xlink:type xml:base xml:lang xml:space

	animateColor
	accumulate additive attributeName begin by calcMode class dur enabled end fill from id keySplines keyTimes max min repeatCount repeatDur restart to values xlink:actuate xlink:arcrole xlink:href xlink:role xlink:show xlink:title xlink:type xml:base xml:lang xml:space

	animateMotion
	accumulate additive attributeName begin by calcMode class dur enabled end fill from id keyPoints keySplines keyTimes max min path repeatCount repeatDur restart rotate to values xlink:actuate xlink:arcrole xlink:href xlink:role xlink:show xlink:title xlink:type xml:base xml:lang xml:space

	animateTransform
	accumulate additive attributeName begin by calcMode class dur enabled end fill from id keySplines keyTimes max min repeatCount repeatDur restart to type values xlink:actuate xlink:arcrole xlink:href xlink:role xlink:show xlink:title xlink:type xml:base xml:lang xml:space

	audio
	audio-level begin class dur end externalResourcesRequired id lsr:syncReference repeatCount repeatDur requiredExtensions requiredFeatures requiredFormats syncBehavior syncTolerance systemLanguage type xlink:actuate xlink:arcrole xlink:href xlink:role xlink:show xlink:title xlink:type xml:base xml:lang xml:space

	circle
	audio-level class color color-rendering cx cy display display-align fill fill-opacity fill-rule focusEast focusNext focusNorth focusNorthEast focusNorthWest focusPrev focusSouth focusSouthEast focusSouthWest focusWest focusable font-family font-size font-style font-weight id image-rendering line-increment lsr:rotation lsr:scale lsr:translation pointer-events r requiredExtensions requiredFeatures requiredFormats shape-rendering solid-color solid-opacity stop-color stop-opacity stroke stroke-dasharray stroke-dashoffset stroke-linecap stroke-linejoin stroke-miterlimit stroke-opacity stroke-width systemLanguage text-anchor text-rendering transform vector-effect viewport-fill viewport-fill-opacity visibility xml:base xml:lang xml:space

	cursor
	class id x xlink:actuate xlink:arcrole xlink:href xlink:role xlink:show xlink:title xlink:type xml:base xml:lang xml:space y

	defs
	audio-level class color color-rendering display display-align fill fill-opacity fill-rule font-family font-size font-style font-weight id image-rendering line-increment pointer-events shape-rendering solid-color solid-opacity stop-color stop-opacity stroke stroke-dasharray stroke-dashoffset stroke-linecap stroke-linejoin stroke-miterlimit stroke-opacity stroke-width text-anchor text-rendering vector-effect viewport-fill viewport-fill-opacity visibility xml:base xml:lang xml:space

	desc
	class id xml:base xml:lang xml:space

	ellipse
	audio-level class color color-rendering cx cy display display-align fill fill-opacity fill-rule focusEast focusNext focusNorth focusNorthEast focusNorthWest focusPrev focusSouth focusSouthEast focusSouthWest focusWest focusable font-family font-size font-style font-weight id image-rendering line-increment lsr:rotation lsr:scale lsr:translation pointer-events requiredExtensions requiredFeatures requiredFormats rx ry shape-rendering solid-color solid-opacity stop-color stop-opacity stroke stroke-dasharray stroke-dashoffset stroke-linecap stroke-linejoin stroke-miterlimit stroke-opacity stroke-width systemLanguage text-anchor text-rendering transform vector-effect viewport-fill viewport-fill-opacity visibility xml:base xml:lang xml:space

	foreignObject
	audio-level class color color-rendering display display-align externalResourcesRequired fill fill-opacity fill-rule focusEast focusNext focusNorth focusNorthEast focusNorthWest focusPrev focusSouth focusSouthEast focusSouthWest focusWest focusable font-family font-size font-style font-weight height id image-rendering line-increment pointer-events requiredExtensions requiredFeatures requiredFormats shape-rendering solid-color solid-opacity stop-color stop-opacity stroke stroke-dasharray stroke-dashoffset stroke-linecap stroke-linejoin stroke-miterlimit stroke-opacity stroke-width systemLanguage text-anchor text-rendering vector-effect viewport-fill viewport-fill-opacity visibility width x xml:base xml:lang xml:space y

	g
	audio-level choice color color-rendering display display-align externalResourcesRequired fill fill-opacity fill-rule focusEast focusNext focusNorth focusNorthEast focusNorthWest focusPrev focusSouth focusSouthEast focusSouthWest focusWest focusable font-family font-size font-style font-weight image-rendering line-increment lsr:rotation lsr:scale lsr:translation pointer-events requiredExtensions requiredFeatures requiredFormats shape-rendering size solid-color solid-opacity stop-color stop-opacity stroke stroke-dasharray stroke-dashoffset stroke-linecap stroke-linejoin stroke-miterlimit stroke-opacity stroke-width systemLanguage text-anchor text-rendering transform vector-effect viewport-fill viewport-fill-opacity visibility

	image
	class display externalResourcesRequired focusEast focusNext focusNorth focusNorthEast focusNorthWest focusPrev focusSouth focusSouthEast focusSouthWest focusWest focusable height id lsr:rotation lsr:scale lsr:translation opacity pointer-events requiredExtensions requiredFeatures requiredFormats systemLanguage transform transformBehavior type visibility width x xlink:actuate xlink:arcrole xlink:href xlink:role xlink:show xlink:title xlink:type xml:base xml:lang xml:space y

	line
	audio-level class color color-rendering display display-align fill fill-opacity fill-rule focusEast focusNext focusNorth focusNorthEast focusNorthWest focusPrev focusSouth focusSouthEast focusSouthWest focusWest focusable font-family font-size font-style font-weight id image-rendering line-increment lsr:rotation lsr:scale lsr:translation pointer-events requiredExtensions requiredFeatures requiredFormats shape-rendering solid-color solid-opacity stop-color stop-opacity stroke stroke-dasharray stroke-dashoffset stroke-linecap stroke-linejoin stroke-miterlimit stroke-opacity stroke-width systemLanguage text-anchor text-rendering transform vector-effect viewport-fill viewport-fill-opacity visibility x1 x2 xml:base xml:lang xml:space y1 y2

	linearGradient
	audio-level class color color-rendering display display-align fill fill-opacity fill-rule font-family font-size font-style font-weight gradient-units id image-rendering line-increment pointer-events shape-rendering solid-color solid-opacity stop-color stop-opacity stroke stroke-dasharray stroke-dashoffset stroke-linecap stroke-linejoin stroke-miterlimit stroke-opacity stroke-width text-anchor text-rendering vector-effect viewport-fill viewport-fill-opacity visibility x1 x2 xml:base xml:lang xml:space y1 y2

	ev:listener
	id enabled delay event handler observer phase timeAttribute

	metadata
	class id xml:base xml:lang xml:space

	mpath
	class id xlink:actuate xlink:arcrole xlink:href xlink:role xlink:show xlink:title xlink:type xml:base xml:lang xml:space

	path
	audio-level class color color-rendering d display display-align fill fill-opacity fill-rule focusEast focusNext focusNorth focusNorthEast focusNorthWest focusPrev focusSouth focusSouthEast focusSouthWest focusWest focusable font-family font-size font-style font-weight id image-rendering line-increment lsr:rotation lsr:scale lsr:translation pathLength pointer-events requiredExtensions requiredFeatures requiredFormats shape-rendering solid-color solid-opacity stop-color stop-opacity stroke stroke-dasharray stroke-dashoffset stroke-linecap stroke-linejoin stroke-miterlimit stroke-opacity stroke-width systemLanguage text-anchor text-rendering transform vector-effect viewport-fill viewport-fill-opacity visibility xml:base xml:lang xml:space

	polygon
	audio-level class color color-rendering display display-align fill fill-opacity fill-rule focusEast focusNext focusNorth focusNorthEast focusNorthWest focusPrev focusSouth focusSouthEast focusSouthWest focusWest focusable font-family font-size font-style font-weight id image-rendering line-increment lsr:rotation lsr:scale lsr:translation pointer-events points requiredExtensions requiredFeatures requiredFormats shape-rendering solid-color solid-opacity stop-color stop-opacity stroke stroke-dasharray stroke-dashoffset stroke-linecap stroke-linejoin stroke-miterlimit stroke-opacity stroke-width systemLanguage text-anchor text-rendering transform vector-effect viewport-fill viewport-fill-opacity visibility xml:base xml:lang xml:space

	polyline
	audio-level class color color-rendering display display-align fill fill-opacity fill-rule focusEast focusNext focusNorth focusNorthEast focusNorthWest focusPrev focusSouth focusSouthEast focusSouthWest focusWest focusable font-family font-size font-style font-weight id image-rendering line-increment lsr:rotation lsr:scale lsr:translation pointer-events points requiredExtensions requiredFeatures requiredFormats shape-rendering solid-color solid-opacity stop-color stop-opacity stroke stroke-dasharray stroke-dashoffset stroke-linecap stroke-linejoin stroke-miterlimit stroke-opacity stroke-width systemLanguage text-anchor text-rendering transform vector-effect viewport-fill viewport-fill-opacity visibility xml:base xml:lang xml:space

	radialGradient
	audio-level class color color-rendering cx cy display display-align fill fill-opacity fill-rule font-family font-size font-style font-weight gradient-units id image-rendering line-increment pointer-events r shape-rendering solid-color solid-opacity stop-color stop-opacity stroke stroke-dasharray stroke-dashoffset stroke-linecap stroke-linejoin stroke-miterlimit stroke-opacity stroke-width text-anchor text-rendering vector-effect viewport-fill viewport-fill-opacity visibility xml:base xml:lang xml:space

	rect
	audio-level class color color-rendering display display-align fill fill-opacity fill-rule focusEast focusNext focusNorth focusNorthEast focusNorthWest focusPrev focusSouth focusSouthEast focusSouthWest focusWest focusable font-family font-size font-style font-weight height id image-rendering line-increment lsr:rotation lsr:scale lsr:translation pointer-events requiredExtensions requiredFeatures requiredFormats rx ry shape-rendering solid-color solid-opacity stop-color stop-opacity stroke stroke-dasharray stroke-dashoffset stroke-linecap stroke-linejoin stroke-miterlimit stroke-opacity stroke-width systemLanguage text-anchor text-rendering transform vector-effect viewport-fill viewport-fill-opacity visibility width x xml:base xml:lang xml:space y

	script
	begin class enabled externalResourcesRequired id type xlink:actuate xlink:arcrole xlink:href xlink:role xlink:show xlink:title xlink:type xml:base xml:lang xml:space

	set
	attributeName begin class dur enabled end fill id max min repeatCount repeatDur restart to xlink:actuate xlink:arcrole xlink:href xlink:role xlink:show xlink:title xlink:type xml:base xml:lang xml:space

	stop
	audio-level class color color-rendering display display-align fill fill-opacity fill-rule font-family font-size font-style font-weight id image-rendering line-increment offset pointer-events shape-rendering solid-color solid-opacity stop-color stop-opacity stroke stroke-dasharray stroke-dashoffset stroke-linecap stroke-linejoin stroke-miterlimit stroke-opacity stroke-width text-anchor text-rendering vector-effect viewport-fill viewport-fill-opacity visibility xml:base xml:lang xml:space

	svg
	audio-level baseProfile class color color-rendering contentScriptType display display-align externalResourcesRequired fill fill-opacity fill-rule font-family font-size font-style font-weight height id image-rendering line-increment playbackOrder pointer-events preserveAspectRatio shape-rendering snapshotTime solid-color solid-opacity stop-color stop-opacity stroke stroke-dasharray stroke-dashoffset stroke-linecap stroke-linejoin stroke-miterlimit stroke-opacity stroke-width syncBehaviorDefault syncToleranceDefault text-anchor text-rendering timeLineBegin vector-effect version viewBox viewport-fill viewport-fill-opacity visibility width xml:base xml:lang xml:space zoomAndPan

	switch
	audio-level class color color-rendering display display-align externalResourcesRequired fill fill-opacity fill-rule focusEast focusNext focusNorth focusNorthEast focusNorthWest focusPrev focusSouth focusSouthEast focusSouthWest focusWest focusable font-family font-size font-style font-weight id image-rendering line-increment lsr:rotation lsr:scale lsr:translation pointer-events requiredExtensions requiredFeatures requiredFormats shape-rendering solid-color solid-opacity stop-color stop-opacity stroke stroke-dasharray stroke-dashoffset stroke-linecap stroke-linejoin stroke-miterlimit stroke-opacity stroke-width systemLanguage text-anchor text-rendering transform vector-effect viewport-fill viewport-fill-opacity visibility xml:base xml:lang xml:space

	text
	audio-level color color-rendering display display-align editable fill fill-opacity fill-rule focusEast focusNext focusNorth focusNorthEast focusNorthWest focusPrev focusSouth focusSouthEast focusSouthWest focusWest focusable font-family font-size font-style font-weight image-rendering line-increment lsr:rotation lsr:scale lsr:translation pointer-events requiredExtensions requiredFeatures requiredFormats rotate shape-rendering solid-color solid-opacity stop-color stop-opacity stroke stroke-dasharray stroke-dashoffset stroke-linecap stroke-linejoin stroke-miterlimit stroke-opacity stroke-width systemLanguage text-anchor text-rendering transform vector-effect viewport-fill viewport-fill-opacity visibility x y

	title
	class id xml:base xml:lang xml:space

	tspan
	audio-level class color color-rendering display display-align fill fill-opacity fill-rule focusEast focusNext focusNorth focusNorthEast focusNorthWest focusPrev focusSouth focusSouthEast focusSouthWest focusWest focusable font-family font-size font-style font-weight id image-rendering line-increment pointer-events requiredExtensions requiredFeatures requiredFormats shape-rendering solid-color solid-opacity stop-color stop-opacity stroke stroke-dasharray stroke-dashoffset stroke-linecap stroke-linejoin stroke-miterlimit stroke-opacity stroke-width systemLanguage text-anchor text-rendering vector-effect viewport-fill viewport-fill-opacity visibility xml:base xml:lang xml:space

	use
	audio-level class color color-rendering display display-align externalResourcesRequired fill fill-opacity fill-rule focusEast focusNext focusNorth focusNorthEast focusNorthWest focusPrev focusSouth focusSouthEast focusSouthWest focusWest focusable font-family font-size font-style font-weight id image-rendering line-increment lsr:rotation lsr:scale lsr:translation overflow pointer-events requiredExtensions requiredFeatures requiredFormats shape-rendering solid-color solid-opacity stop-color stop-opacity stroke stroke-dasharray stroke-dashoffset stroke-linecap stroke-linejoin stroke-miterlimit stroke-opacity stroke-width systemLanguage text-anchor text-rendering transform vector-effect viewport-fill viewport-fill-opacity visibility x xlink:actuate xlink:arcrole xlink:href xlink:role xlink:show xlink:title xlink:type xml:base xml:lang xml:space y

	video
	audio-level begin display dur end externalResourcesRequired focusEast focusNext focusNorth focusNorthEast focusNorthWest focusPrev focusSouth focusSouthEast focusSouthWest focusWest focusable height lsr:rotation lsr:scale lsr:syncReference lsr:translation overlay pointer-events repeatCount repeatDur requiredExtensions requiredFeatures requiredFormats syncBehavior syncTolerance systemLanguage transform transformBehavior type visibility width x xlink:actuate xlink:arcrole xlink:href xlink:role xlink:show xlink:title xlink:type y

Table 9: Summary of Possible Children and Attributes per Element
7 Simple Aggregation Format (SAF)
7.1 Overview
The Simple Aggregation Format (SAF) defines the binary representation of a compound data stream composed of different data elementary streams (ES) such as LASeR scene description, video, audio, image, font, metadata streams. Data from these various data elementary streams results in one SAF stream by multiplexing them for simple, efficient and synchronous delivery.
To efficiently carry elementary data streams synchronously as one logical SAF stream, a basic entity to be carried is defined as a SAF Access Unit (SAF AU), encapsulated into a basic entity for synchronization defined as a SAF Packet, (SAF packet).
An XML syntax (normative) providing a readable representation of the SAF Binary Syntax (normative) is defined and the schema for this syntax is provided in electronic attachement.

7.2 Time and terminal model specification

The timing model relies on clock references and time stamps to synchronize audio-visual data conveyed by SAF streams. The concept of a clock is used to convey the notion of time to a receiving terminal. Time stamps are used to indicate the precise time instants at which the receiving terminal decodes the SAF Packet.

Each SAF Packet has an associated nominal composition time, the time at which it must be available for composition. The decoded data contained in a SAF Packet is not guaranteed to be available for composition before this time. Some SAF Packets may have a composition time stamp set to 0; in that case the SAF Packet is decoded and executed as soon as it is received. Otherwise the SAF Packets are decoded and executed at their nominal composition time and in the receiving order. When a SAF Packet is received “late” according to the scene time, the SAF Packet is processed as soon as possible.

7.3 SAF Packet
The SAF Packet consists of a SAF packet header and a SAF packet payload. The SAF packet header carries the coded representation of the time stamps and associated information.
Here is a presentation of the architecture of the SAF Packet in Figure 4
[image: image4.wmf]SAF Packet Header

SAF AU Payload

r

a

n

d

o

m

A

c

c

e

s

s

P

o

i

n

t

F

l

a

g

1

a

c

c

e

s

s

U

n

i

t

L

e

n

g

t

h

16

A

U

_

s

e

q

u

e

n

c

e

N

u

m

b

e

r

15

1

p

r

e

s

e

n

c

e

O

f

C

T

S

=

1

1

c

o

m

p

o

s

i

t

i

o

n

T

i

m

e

S

t

a

m

p

30

payload

(

accessUnitLength

–

 2

) *

8

a

c

c

e

s

s

U

n

i

t

T

y

p

e

4

12

s

t

r

e

a

m

I

D

p

r

e

s

e

n

c

e

O

f

D

T

S

=

1

SL Packet Header

SAF AU

Header

Access Unit

(

SAF

)

SimpleDecoderConfigDescriptor

0

x

0

1

o

r

0

x

0

2

No Data

0

x

0

3

Access Unit

(

LASeR Unit or AU of other

media

)

0

x

0

4

No Data

0

x

0

5

Cache Object

0

x

0

6

url

and

SimpleDecoderConfigDescriptor

0

x

0

7

Figure 4: SAF Packet architecture
7.3.1 Syntax

class SAF_Packet {

SAF_PacketHeader packetHeader;

byte[packetHeader.accessUnitLength] packetPayload;

}

7.3.2 Semantics

packetHeader – a SAF_PacketHeader element as specified in 7.4.
packetPayload – a payload that contains an opaque payload at this level of the specification.

7.4 SAF Packet Header
7.4.1 Syntax

class SAF_PacketHeader {

bit(1) randomAccessPointFlag;

bit(15) AU_sequenceNumber;

const bit(1) presenceOfDTS = 0;

const bit(1) presenceOfCTS = 1;

bit(30) compositionTimeStamp;

uint(16) accessUnitLength;

}

7.4.2 Semantics

AU_sequenceNumber – if present, successive access units shall either have the same sequence number or the value be continuously incremented as a modulo counter.

randomAccessPointFlag – when set to one indicates that random access to the content of this elementary stream is possible here.

compositionTimeStamp – is a composition time stamp. The composition time tc of the first composition unit resulting from this access unit is reconstructed from this composition time stamp according to the formula:
tc = (compositionTimeStamp/1000 + k * 232/1000)
where k is the number of times that the compositionTimeStamp counter has wrapped around. The value of this field from two different packets may be same, if streamID of them are different. When the packet conveys a cacheObject, this field specifies the validity period in second as defined in 0.
For streams which would require a different decoding time stamp and composition time stamp, such as MPEG-4 Part 10 (AVC) streams, the access units shall be provided in decoding order with composition time stamps, which means that time stamps may not be monotonically growing.
accessUnitLength – is the length in bytes of the SAF access unit conveyed in the SAF packet.
7.5 SAF Access Unit

A SAF Access Unit consists of a two-byte header (SAF Header) and a byte-aligned payload (SAF Payload).
7.5.1 Syntax

class safAU {

 bit(4) accessUnitType;

 bit(12) streamID;

 byte(8)[packetHeader.accessUnitLength-2] payload;

}
7.5.2 Semantics

accessUnitType – an indication about the type of the payload. Detailed values of accessUnitType and the data corresponding to each type are defined in the Table 10
	Value
	Type of access unit payload
	Data in payload

	0x00
	Reserved
	-

	0x01
	StreamHeader
	A SimpleDecoderConfigDescriptor

	0x02
	StreamHeader (permanenta)
	A SimpleDecoderConfigDescriptor

	0x03
	EndofStream
	(no data)

	0x04
	AccessUnit
	An Access Unit

	0x05
	EndOfSAFSession
	(no data)

	0x06
	CacheUnit
	A cache object

	0x07
	RemoteStreamHeader
	An url and a SimpleDecoderConfigDescriptor

	0x08 ~ 0x0F
	Reserved
	-

	a “permanent” indicates that the payloads of the SAF access units of this stream shall be stored beyond the life of the current scene for a duration stored in the compositionTimeStamp of this SAF Packet.

Table 10: accessUnitType values and corresponding data in the payload
streamID – the reference of the media stream this AU belongs to.
payload – the data part of the access unit. The size of the payload is signalled by the accessUnitLength field in the packet header as specified in 7.4. The type of data in this field is varied by accessUnitType as defined in the Table 10.

For values of safAU.accessUnitType that refer to StreamHeader, the payload shall convey a SimpleDecoderConfigDescriptor whose syntax and semantics is specified in 7.6.

For values of safAU.accessUnitType that refer to LASeR scene unit or cache unit, the payload shall convey a scene unit or cache unit which syntax and semantics are specified in 0.

For values of safAU.accessUnitType that refer to an access unit, the payload shall convey an access unit for specific media whose syntax and semantics is opaque to this standard.

7.6 SimpleDecoderConfigDescriptor

7.6.1 Syntax

class SimpleDecoderConfigDescriptor {

bit(8) objectTypeIndication;

bit(8) streamType;

bit(24) timeStampResolution;

bit(16) bufferSizeDB;
if (streamType == 0xFF && objectTypeIndication == 0xFF) {

bit(16) mimeTypeLength;

byte mimeType[mimeTypeLength];

}

SimpleDecoderSpecificInfo decSpecificInfo[0 .. 1];

}

7.6.2 Semantics

The SimpleDecoderConfigDescriptor provides information about the decoder type and the required decoder resources needed for the associated media stream. This is needed at the receiving terminal to determine whether it is able to decode the media stream. A stream type identifies the category of the stream while the optional decoder specific information descriptor contains stream specific information for the set up of the decoder in a stream specific format that is opaque to this layer.

objectTypeIndication – an indication of the object or scene description type that needs to be supported by the decoder for this elementary stream as per the table on objectTypeIndication of ISO/IEC 14496-1. ISO-defined as well as registered object type indications can be found at www.mp4ra.org, web site of the MPEG-4 registration authority.
streamType – conveys the type of this elementary stream as per the streamType table of ISO/IEC 14496-1.

bufferSizeDB – is the size of the decoding buffer for this media stream in byte.

decSpecificInfo[] – an array of zero or one decoder specific information classes as specified in 0.

mimeTypeLength – an unsigned integer indicating the size of mimeType in bytes.
mimeType – conveys the MIME Type of the stream as defined in [05] encoded in UTF-8.
7.7 SimpleDecoderSpecificInfo

The decoder specific information constitutes an opaque container with information for a specific media decoder. The existence and semantics of decoder specific information depends on the values of streamType and objectTypeIndication.

For values of objectTypeIndication that refer to streams complying with media standard the syntax and semantics of decoder specific information is defined in each standard.

For values of objectTypeIndication that refer to streams complying with LASeR scene description, the decoder specific information shall carry a LASeR header as defined in 6.5.
7.8 RemoteStreamHeader

7.8.1 Syntax

class RemoteStreamHeader {

bit(8) objectTypeIndication;

bit(8) streamType;

bit(24) timeStampResolution;

bit(16) bufferSizeDB;
if (streamType == 0xFF && objectTypeIndication == 0xFF) {

bit(16) mimeTypeLength;

byte mimeType[mimeTypeLength];

}

bit(16) urlLength;

byte url[urlLength];

SimpleDecoderSpecificInfo decSpecificInfo[0 .. 1];

}

7.8.2 Semantics

The RemoteStreamHeader appears as payload of all SAF Access Units whose safAU.accessUnitType value is 0x07. The RemoteStreamHeader is a simple extension of the SimpleDecoderConfigDescriptor, with the addition of an url
objectTypeIndication – an indication of the object or scene description type that needs to be supported by the decoder for this elementary stream as per the table on objectTypeIndication of ISO/IEC 14496-1.
streamType – conveys the type of this elementary stream as per the streamType table of ISO/IEC 14496-1.
bufferSizeDB – is the size of the decoding buffer for this media stream in byte.

urlLength – is the size of the url in byte.

url – is a UTF-8 string carrying the url of the media access units.

decSpecificInfo[] – an array of zero or one decoder specific information classes as specified in 0.

mimeTypeLength – an unsigned integer indicating the size of mimeType in bytes.
mimeType – conveys the MIME Type of the stream as defined in [05] encoded in UTF-8.
7.9 Cache Unit

A cache unit is the payload of a CacheObject packet and conveys a url and data. If a terminal requests a url, and a cache unit matching the requested url is already present in the terminal, then the terminal may directly load the corresponding data, without requesting the data referred to by this url from the server. A cache unit can be permanent and stored in memory as soon as it is retrieved. A cache object is not expired during the period defined by its receiving time and its receiving time plus the time specified in the compositionTimeStamp field of packet header expressed in seconds. After the end time, the cache object is expired and its SAF content cannot be executed.

7.9.1 Syntax

class cacheUnit {
 bit(1) replace;

 bit(1) permanent;

 bit(6) reserved = 0;

 unit(16) urlLength;

 byte(urlLength) url;

 byte[packetHeader.accessUnitLength-urlLength-5] payload; // 5 is 3 bytes above and 2 in the AU header
}
7.9.2 Semantics

replace – if true, this cacheUnit replaces any previous cacheUnit for the same url; if false, this cacheUnit is appended to any previous cacheUnit with the same url.

permanent – if true, the cacheUnit shall be kept, if the terminal has enough resources, after the end of the application for a duration stored in the compositionTimeStamp of this SAF Packet.

urlLength – an unsigned integer indicating the size of url in bytes.

url – the url of the presentation conveyed in a payload. This url shall not include a protocol. Example: “www.acme.com/service/bar.jpg”
payload – the data, in a format opaque to this specification. The size of this field is signaled by the accessUnitLength field in SL packet header. The payload data shall replace the stored presentation referenced by the url of this cache unit when the safAU.accessUnitType is 0x06. Otherwise, the payload data shall be appended to the existing presentation.
8 Profiles

8.1 Overview

The LASeR mini and full profiles are defined in the SceneGraph dimension of MPEG-4 Systems profiles.
8.2 LASeR mini

8.2.1 Applications

Rich-media services on mid- and lower-end embedded devices.

8.2.2 List of Tools/Functionalities

8.2.2.1 encoding

The value of LASeRHeader.encoding shall be restricted to SimpleEncoding.

8.2.2.2 video element

The attribute transformBehavior shall be restricted to values “pinned | pinned90 | pinned180 | pinned270”.

The attribute overlay shall be restricted to values “top” or “fullscreen”.

8.2.2.3 image element

The attribute transformBehavior shall be restricted to values “pinned | pinned90 | pinned180 | pinned270”.

8.2.2.4 stroking

The attributes stroke-linecap and stroke-linejoin are restricted to the value “butt” and “miter” respectively.

The attributes stroke-miterlimit, stroke-dasharray and stroke-dashoffset are forbidden.

8.2.2.5 animatable attributes

The following attributes are not animatable:

· the CTM scale of an object painted with a gradient with gradientUnits=”objectBoundingBox”.

· the width and height of a rect painted with a gradient with gradientUnits=”objectBoundingBox”.

· the viewBox, width or height of a scene where a gradient has gradientUnits=”userSpaceOnUse”.

· in general, any animation that requires the recomputation of a gradient at each frame.

8.2.2.6 inheritance

Attributes with a possible value of “inherit” are only allowed on objects which use their value directly, not on objects that pass the value to their children. The “inherit” value is forbidden.

Note: this restriction will be implemented in a schema that will be used for validation of the profile.

Hints such as *-rendering are only allowed on the root svg.

pointer-events is only allowed on the root svg.

8.2.2.7 animation

For elements set, animate, animateColor, animateTransform and animateMotion, the following restrictions apply:

· the value of the attribute fill is restricted to “freeze”,

· the value of the attribute additive is restricted to “replace”,

· either attribute from or values must be specified.

8.2.2.8 xlink and xml

Attributes xml:base, xml:lang, xml:space, xlink:title, xlink:type, xlink:role, xlink:arcrole, xlink:actuate and xlink:show are forbidden.

8.2.3 Comparison with existing profiles and object types

This is a subset of LASeR full.

8.2.4 Supporting companies

· Streamezzo

· France Telecom

· ETRI

· ICU

· KPN

· Bouygues Telecom

· 3

8.2.5 Profile definition

This table defines the allowed elements in the profile and the list of their possible attributes, possibly with restrictions when listed in bold.
	Element name
	Attributes

	a
	id externalResourcesRequired display visibility requiredFeatures requiredExtensions systemLanguage requiredFormats lsr:rotation lsr:scale lsr:translation transform xlink:href

	animate
	id enabled begin end dur repeatCount repeatDur restart attributeName fill=”freeze” to xlink:href from by values calcMode keyTimes keySplines additive=”replace” accumulate

	animateColor
	id enabled begin end dur repeatCount repeatDur restart attributeName fill=”freeze”to xlink:href from by values calcMode keyTimes keySplines additive=”replace” accumulate

	animateMotion
	id path keyPoints rotate enabled begin end dur repeatCount repeatDur restart attributeName fill=”freeze”to xlink:href from by values calcMode keyTimes keySplines additive=”replace” accumulate

	animateTransform
	id type enabled begin end dur repeatCount repeatDur restart attributeName fill=”freeze”to xlink:href from by values calcMode keyTimes keySplines additive=”replace” accumulate

	audio
	id externalResourcesRequired begin end repeatCount repeatDur syncBehavior syncBehaviorDefault syncTolerance syncToleranceDefault audio-level syncReference requiredFeatures requiredExtensions systemLanguage requiredFormats xlink:href

	circle
	id cx cy r display fill fill-opacity fill-rule stroke stroke-opacity stroke-width visibility requiredFeatures requiredExtensions systemLanguage requiredFormats lsr:rotation lsr:scale lsr:translation transform

	defs
	id

	desc
	id

	ellipse
	id rx ry cx cy display fill fill-opacity fill-rule stroke stroke-opacity stroke-width visibility requiredFeatures requiredExtensions systemLanguage requiredFormats lsr:rotation lsr:scale lsr:translation transform

	foreignObject
	id externalResourcesRequired width height x y background-fill background-fill-opacity display visibility requiredFeatures requiredExtensions systemLanguage requiredFormats

	g
	id externalResourcesRequired choice size display visibility requiredFeatures requiredExtensions systemLanguage requiredFormats lsr:rotation lsr:scale lsr:translation transform

	image
	id externalResourcesRequired width height x y transformBehavior(no geometric) opacity display visibility requiredFeatures requiredExtensions systemLanguage requiredFormats lsr:rotation lsr:scale lsr:translation transform xlink:href

	line
	id x1 y1 x2 y2 display fill fill-opacity fill-rule stroke stroke-opacity stroke-width visibility requiredFeatures requiredExtensions systemLanguage requiredFormats lsr:rotation lsr:scale lsr:translation transform

	linearGradient
	id gradient-units x1 x2 y1 y2 display visibility

	ev:listener
	id enabled delay event observer timeAttribute handler

	metadata
	id

	mpath
	id xlink:href

	path
	id d display fill fill-opacity fill-rule stroke stroke-opacity stroke-width visibility requiredFeatures requiredExtensions systemLanguage requiredFormats lsr:rotation lsr:scale lsr:translation transform

	polygon
	id points display fill fill-opacity fill-rule stroke stroke-opacity stroke-width visibility requiredFeatures requiredExtensions systemLanguage requiredFormats lsr:rotation lsr:scale lsr:translation transform

	polyline
	id points display fill fill-opacity fill-rule stroke stroke-opacity stroke-width visibility requiredFeatures requiredExtensions systemLanguage requiredFormats lsr:rotation lsr:scale lsr:translation transform

	radialGradient
	id gradient-units cx cy r display visibility

	rect
	id width height x y rx ry display fill fill-opacity fill-rule stroke stroke-opacity stroke-width visibility requiredFeatures requiredExtensions systemLanguage requiredFormats rotation scale translation transform

	script
	externalResourcesRequired id begin type enabled

	set
	id enabled begin end dur repeatCount repeatDur restart attributeName fill=”freeze” to xlink:href

	stop
	id offset display stop-color stop-opacity visibility

	svg
	id externalResourcesRequired width(not animatable if gradient with gradientUnits=”userSpaceOnUse”) height(not animatable if gradient with gradientUnits=”userSpaceOnUse”) viewBox preserveAspectRatio zoomAndPan background-fill background-fill-opacity syncBehavior syncBehaviorDefault syncTolerance syncToleranceDefault display pointer-events visibility color-rendering shape-rendering image-rendering text-rendering

	switch
	id externalResourcesRequired display visibility requiredFeatures requiredExtensions systemLanguage requiredFormats

	text
	id display display-align fill fill-opacity fill-rule font-family font-size font-style font-weight stroke stroke-opacity stroke-width text-anchor visibility requiredFeatures requiredExtensions systemLanguage requiredFormats editable x y lsr:rotation lsr:scale lsr:translation transform

	title
	id

	tspan
	id display fill fill-opacity fill-rule font-family font-size font-style font-weight stroke stroke-opacity stroke-width
text-anchor visibility requiredFeatures requiredExtensions systemLanguage requiredFormats

	use
	id externalResourcesRequired overflow width height x y display visibility requiredFeatures requiredExtensions systemLanguage requiredFormats lsr:rotation lsr:scale lsr:translation transform xlink:href

	video
	id externalResourcesRequired begin end repeatCount repeatDur syncBehavior syncBehaviorDefault syncTolerance syncToleranceDefault audio-level syncReference requiredFeatures requiredExtensions systemLanguage requiredFormats xlink:href width height x y overlay=”top | fullscreen” transformBehavior(no geometric) lsr:rotation lsr:scale lsr:translation transform

8.2.6 Conformance test streams

The sequences are hosted at http://mpeg.nist.gov/cvsweb/MPEG-4/Systems/LASeR/Sequences/

8.2.7 Level definitions

Level 0: no restriction.

8.3 LASeR full
8.3.1 Applications

Advanced rich-media services on higher end embedded devices.

8.3.2 List of Tools/Functionalities

This is the complete profile.

8.3.3 Comparison with existing profiles and object types

This profile is a superset of LASeR mini.

8.3.4 Supporting companies

· Streamezzo
· France Telecom

· ENST

· ETRI

· Apple

· ICU

8.3.5 Profile definition

Table 9 defines the allowed elements in the profile and the list of their possible attributes.

8.3.6 Conformance test streams

The sequences are hosted at http://mpeg.nist.gov/cvsweb/MPEG-4/Systems/LASeR/Sequences/

8.3.7 Level definitions

Level 0: no restriction.
9 Bibliography
[16] Feiner, Foley, Hughes, van Dam, Computer Graphics: Principles and Practice, second edition in C, 1996 Addison-Wesley Publishing Company, Inc., New York

[17] W3C, Scalable Vector Graphics (SVG) Tiny 1.2 Specification [Last Call],

http://www.w3.org/TR/2005/WD-SVGMobile12-20050413/
[18] Document Object Model (DOM) Level 3 Events Specification, Version 1.0, W3C Working Group Note 07 November 2003

10 (informative): Compatibility of SAF Packet

The Packet defined in section 7.3 is compatible with the SL Packet defined in ISO/IEC 14496-1:2004 with the predefined configuration defined in Table 11.
	fields in SLConfigDescriptor
	predefined value

	useAccessUnitStartFlag
	0

	useAccessUnitEndFlag
	0

	useRandomAccessPointFlag
	1

	useTimeStampsFlag
	1

	timeStampResolution
	1000

	timeStampLength
	30

	AU_length
	16

	degradationPriorityLength
	0

	AU_seqNumLength
	15

Table 11: Detailed SLConfigDescriptor values for predefined=0x03
useAccessUnitStartFlag – indicates that the accessUnitStartFlag is present in each packet header of this elementary stream.

useAccessUnitEndFlag – indicates that the accessUnitEndFlag is present in each packet header of this elementary stream.

useRandomAccessPointFlag – indicates that the RandomAccessPointFlag is present in each packet header of this elementary stream.

useTimeStampsFlag: indicates that time stamps are used for synchronisation of this media stream. They are conveyed in the packet headers. Generally it is possible for video to have different values of decoding time and composition time in general, but it shall be assumed that decoding time is same with composition time for SAF stream. Therefore, compositionTimeStamp shall only be presented in the packet header for SAF stream.
timeStampResolution – is the resolution of the time stamps in clock ticks per second.

timeStampLength – is the length of the time stamp fields in packet headers.

AU_Length – is the length of the accessUnitLength fields in packet headers for this media stream.
degradationPriorityLength – is the length of the degradationPriority field in packet headers for this media stream.

AU_seqNumLength – is the length of the AU_sequenceNumber field in SL packet headers for this elementary stream.

11 (normative): Carriage of LASeR and SAF

11.1 Storage of LASeR in MP4 files

11.1.1 LASeR Track Structure

In the terminology of the ISO Base Media File Format specification, LASeR tracks are scene tracks. They therefore use:

a) a handler_type of ‘sdsm’ in the HandlerBox;

b) a video media header ‘vmhd’;

c) and, as defined below, a derivative of the SampleEntry.

An access unit that starts with a ‘replace scene’ or ‘refresh scene’ command is a Sync Sample, and is marked as such in the sync sample table. ‘Refresh scene’ commands may be placed into a ‘switch pictures’ track as defined in the AVC file format, as they are logically equivalent to AVC SI pictures. The use of shadow sync is deprecated, having been superseded by the new switch pictures facility.

The timescale for the LASeR stream should be suitably chosen to achieve the desired accuracy of timing of access units.
11.1.2 Resources

A LASeR track may contain a meta-data atom (‘meta’) with resources in it. Those resources ‘shadow’ data in the same directory as the ISO file itself came from.

If there is no primary meta-data, then the handler_type in the handler box of the meta-data should be set to the code ‘null’.

It is also permitted to store a single access unit of LASeR as the primary item in a meta-box. In that case, the handler_type is set to ‘lsr1’. The actual LASeR access unit is stored in a binary XML box inside the meta box, or is referenced as the primary item. In this case (there is a ‘static’ LASeR scene as the primary item) the meta-box may be at file-level. Otherwise, if it is used as to store resources for the LASeR scene, the meta-box would be stored within the LASeR track.

Items within the meta-box can be referred to using the URL forms documented in sub-clause 8.44.7 of the ISO base media file format specification. If a URL form for tracks within the same ‘moov’ atom as the LASeR track is needed, the fragment syntax “#trackID=<n>” where <n> is the desired track identifier, may be used.

11.1.3 Composition

LASeR tracks in an ISO file that has other audio or video tracks are composed with those tracks. The composition falls into two classes: temporal composition, and audio and visual composition.

As defined in 14496-14, the default behavior is that time-parallel tracks (streams) in ISO-family files have their time-lines ‘locked together’ unless ‘sync’ track references are used. Therefore an ISO file with two (or more) tracks, one of which is a LASeR track, and no ‘sync’ references, has the timelines of those tracks synchronized. The LASeR scene cannot set the time of those other tracks independently of the time of the LASeR track. If this is not desired, an embedded stream (or ISO container) should be used or the time-lines ‘unlocked’ by using ‘sync’ track references.

The visual and audio composition of the other tracks may be defined by the LASeR stream. If the LASeR stream does not reference those tracks, then the audio/visual composition of those tracks with the LASeR stream or with each other is not defined by this specification. LASeR refers to these tracks by streamID, which is the same as the TrackID in ISO family files.

11.1.4 LASeR Stream Definition

This section defines the sample entry and sample format for LASeR video elementary streams.

11.1.5 Sample description name and format
11.1.6 Definition
Box Types:
 ‘lsr1’, ‘lsrC’, ‘m4ds’,’btrt’
Container:
Sample Table Box (‘stbl’)
Mandatory:
The lsr1 box is mandatory
Quantity:
One or more sample entries may be present

An LASeR sample entry shall contain an LASeR Configuration Box, as defined below. This includes a Laser Header.

An optional MPEG4BitRateBox may be present in the LASeR sample entry to signal the bit rate information of the LASeR stream. Extension descriptors that should be inserted into the Elementary Stream Descriptor, when used in MPEG-4, may also be present. (These two boxes are identical to those in the AVC file format, ISO/IEC 14496-15.)

Multiple sample descriptions may be used, as permitted by the ISO Base Media File Format specification, to indicate sections that use different configurations.

11.1.7 Syntax

// Visual Sequences
class LASeRConfigurationBox extends Box(‘lsrC’) {

LASeRHeader() LSRHdr;
}

class MPEG4BitRateBox extends Box(‘btrt’){

unsigned int(32) bufferSizeDB;

unsigned int(32) maxBitrate;

unsigned int(32) avgBitrate;
}

class MPEG4ExtensionDescriptorsBox extends Box(‘m4ds’) {

Descriptor Descr[0 .. 255];
}
class LASeRSampleEntry() extends SampleEntry (‘lsr1’){

LASeRConfigurationBox
config;

MPEG4BitRateBox ();

// optional

MPEG4ExtensionDescriptorsBox ();
// optional
}

11.1.8 Semantics
Descr is a descriptor which should be placed in the ElementaryStreamDescriptor when this stream is used in an MPEG-4 systems context. This does not include SLConfigDescriptor or DecoderConfigDescriptor, but includes the other descriptors in order to be placed after the SLConfigDescriptor.

bufferSizeDB gives the size of the decoding buffer for the elementary stream in bytes
maxBitrate gives the maximum rate in bits/second over any window of one second

avgBitrate gives the average rate in bits/second over the entire presentation
11.1.9 Sample Format
An LASeR sample is an LASeR access unit.

11.2 Carriage of SAF Streams over HTTP

SAF streams can be carried over HTTP with the content type: "application/saf" (for generic SAF) or "application/saf+laser" (for SAF including a LASeR scene)
11.3 Carriage of SAF Streams over RTP

RFC 3640 shall be used to define the mapping of SAF information to RTP information.
Mapping of SAF_packet headers to RTP payload format is illustrated in the Figure 3. Since RFC 3640 allows aggregation of SL packets, CTS-delta may be present if several SAF_packets are carried by one RTP packet.

[image: image5.png]
Figure 3: Mapping of SAF_SL_packet to RTP payload format in RFC 3640

11.4 Carriage of SAF Streams over MPEG-2 Systems

 As all SAF information is defined in terms reusing MPEG-4 Sync Layer definitions, the mapping of SL to MPEG-2 Systems shall be used to transport SAF information over MPEG-2 Systems.
12 Electronic Attachments
Even if some of the schemas below are marked normative, the text of the specification has precedence over the schemas.
The electronic attachments to this specification are:

· saf1.xsd: (normative) documents the syntax of an XML equivalent to the SAF binary syntax for use in LASeR conformance and reference software activities
· laser-datatypes1.xsd: (normative) documents all datatypes used in the other schemas

· laser1.xsd: (normative) documents the XML syntax of LASeR Commands for use in LASeR conformance and reference software activities

· svg1.xsd: (normative) documents the XML syntax of the common part between SVG and LASeR; it is not intended to validate SVGT documents; this is for use in LASeR conformance and reference software activities

· xml.xsd: (informative) copy of the W3C XML schema for XML Base (http://www.w3.org/TR/xmlbase/), which is referenced by the other schemas and is provided here for convenience

· xlink.xsd: (informative) copy of the W3C XML schema for Xlink (http://www.w3.org/TR/xlink/), which is referenced by the other schemas and is provided here for convenience

13 (normative) Binary Syntax for the simple encoding
The ISO 15938-1 compatible SDL for the SimpleEncoding is attached as sdl.txt.
14 (normative) Type codecs
14.1 LASeR Codecs Classification Scheme

In the MPEG-7 framework, the use of a specific codec for a specific type is signalled using the codec configuration mechanism defined in ISO/IEC 15938-1. This mechanism associates a codec using its URI with a list of schema types. For that purpose, a URI is assigned to each codec in a classificationScheme, which defines the list of the specific codecs.

<ClassificationScheme uri="urn:mpeg:mpeg4:LASeR:2005:CodecTypeCS">

<Term termID="1">

<Name xml:lang="en">ID_codec</Name>

<Definition xml:lang="en">Encodes an ID a create an Id dictionnary

</Definition>

</Term>

<Term termID="2">

<Name xml:lang="en">IDRef_codec </Name>

<Definition xml:lang="en">Encodes a reference to an id</Definition>

</Term>

<Term termID="3">

<Name xml:lang="en">Color_codec</Name>

<Definition xml:lang="en">Encodes a reference in a defined color table

</Definition>

</Term>

<Term termID="4">

<Name xml:lang="en">Matrix_codec</Name>

<Definition xml:lang="en">Encodes a matrix</Definition>

</Term>

<Term termID="5">

<Name xml:lang="en">Opacity_codec</Name>

<Definition xml:lang="en">Encodes an opacity value with a uniformQuantizer

 vmin = 0 vmax = 1 and nbits = 8

</Definition>

</Term>

<Term termID="6">

<Name xml:lang="en">Float_codec</Name>

<Definition xml:lang="en">Encodes a float value</Definition>

</Term>

<Term termID="7">

<Name xml:lang="en">Path_codec</Name>

<Definition xml:lang="en">Encodes a path (see 2.6.17.2)

</Definition>

</Term>

<Term termID="8">

<Name xml:lang="en">Point_sequence_codec</Name>

<Definition xml:lang="en">Encodes a list of coordinates (see 2.6.17.2)

</Definition>

</Term>

<Term termID="9">

<Name xml:lang="en">PreserveAspectRatio_codec</Name>

<Definition xml:lang="en">Encodes preserveAspectRatio value (see 2.6.3)

</Definition>

</Term>

<Term termID="10">

<Name xml:lang="en">ValueWithUnits_codec</Name>

<Definition xml:lang="en">Encodes a value with unit.

</Definition>

</Term>

<Term termID="11">

<Name xml:lang="en">AnimatedValues_codec</Name>

<Definition xml:lang="en">Encodes a list of animated values.

</Definition>

</Term>

<Term termID="12">

<Name xml:lang="en">AlignedString_codec</Name>

<Definition xml:lang="en">Encodes a string in UTF_8 on byte boundary.

</Definition>

</Term>

<Term termID="13">

<Name xml:lang="en">Fixed_16_8 codec</Name>

<Definition xml:lang="en">Encodes a float using a fixed point encoding.

</Definition>

</Term>

</ClassificationScheme>

14.2 LASeR Codecs

14.2.1 ID Codec
14.2.1.1 Overview

This codec allocates a number for an id.

If during the decoding process, the string value of the id is required (hasStringIds==true), the string value of this id is encoded
This codec is mapped to the xsd:ID.
The hasStringIds value shall be initialised using the initialisation process defined for the AdvancedOptimisedDecoder (see DecoderBehaviour in ISO/IEC 15938-1/AMD1 subclause 9.2)
14.2.1.2 Syntax

codec_ID{
 uivlc5 ID;

 if (hasStringIds) { // hasStringIds is a LASeRHeader attribute

 codec_byteAlignedString stringId;

 }

}

14.2.2 IDRef Codec

14.2.2.1 Overview

This codec allows pointing to the integer value defined by the ID_codec.

This codec is mapped to the xsd:IDRef type.

14.2.2.2 Syntax

IDRef{

 uivlc5 href;

}

14.2.3 anyURI Codec

14.2.3.1 Overview

This codec allows the encoding of three forms of URI usable in LASeR: string, stream ID and element ID.

This codec is mapped to the xsd:anyURI type.

14.2.3.2 Syntax

class codec_anyURI {

 bit(1) hasUri;

 if (hasUri) codec_byteAlignedString uri;

 bit(1) hasID;

 if (hasID) codec_IDREF idref;

 bit(1) hasStreamID;

 if (hasStreamID) codec_IDREF ref;

}

14.2.4 Color Codec
14.2.4.1 Overview

This codec allows pointing to a color.
This codec is mapped to the urn:mpeg:mpeg4:LASeR:types:2005:colorType.

The colorIndexBits value and the value for each color shall be initialised (ColorInitialisation) using the initialisation process defined for the AdvancedOptimisedDecoder (see DecoderBehaviour in ISO/IEC 15938-1/AMD1 subclause 9.2).

ColorInitialisation {

 bit(1) hasColors;

 if (hasColors) {

 // a color table in front of each AU

 vlc5int nbColors;

 for (int i = 0; i < nbColors; i++) {

 uint(colorComponentBits) red[i];

 uint(colorComponentBits) green[i];

 uint(colorComponentBits) blue[i];

 }

 colorIndexBits = log2sup(nbColors);

 } else {

 colorIndexBits = 0;

 }

 bit(1) hasFonts;

 if (hasFonts) {

 // a font table in front of each AU

 vlc5int nbFonts;

 for (int i = 0; i < nbFonts; i++) {

 fontIndex++;

 codec_byteAlignedString() font[i];

 }

 fontIndexBits = log2sup(nbFonts);

 } else {

 fontIndexBits = 0;

 }

}
14.2.4.2 Syntax

colorType {

 uint(colorIndexBits) colorIndex;

}

14.2.5 FontFamily Codec

14.2.5.1 Overview

This codec allows the coding of font family attributes, as an index into a font table.
This codec is mapped to the urn:mpeg:mpeg4:LASeR:types:2005:fontFaceType type.
14.2.5.2 Syntax

class codec_fontFamily {

 uint(fontIndexBits) fontIndex;

}

14.2.6 Matrix Codec

14.2.6.1 Overview

This codec decodes a matrix value.

This codec is mapped to the urn:mpeg:mpeg4:LASeR:types:2005:matrix
The scaleBits value shall be initialised using the initialisation process defined for the AdvancedOptimisedDecoder (see DecoderBehaviour in ISO/IEC 15938-1/AMD1 subclause 9.2).
14.2.6.2 Syntax

matrix {
 bit(1) xx_yy_present;

 if (xx_yy_present) {

 uint(12+scaleBits) xx;

 uint(12+scaleBits) yy;

 }

 bit(1) xy_yx_present;

 if (xy_yx_present) {

 uint(12+scaleBits) xx;

 uint(12+scaleBits) yy;

 }

 bit(1) xz_yz_present;

 if (xz_yz_present) {

 uint(12+scaleBits) xz;

 uint(12+scaleBits) yz;

 }

 }

}

14.2.7 Fraction Codec

This codec decodes an opacity value.

This codec is mapped to urn:mpeg:mpeg4:LASeR:types:2005:opacityType and :audioLevelType and :offsetType.
This codec is a UniformQuantizer where vmin = 0 vmax = 1 and nbits = 8 (see UniformQuantizer advanced optimised decoder in ISO/IEC 15938-1/AMD1.)
14.2.8 Path Codec

14.2.8.1 Overview

Description (see description in 6.8.20)

This codec is mapped to the urn:mpeg:mpeg4:types:2005:pathType.
14.2.8.2 Syntax

PathType {

pointSequence seq;

 uivlc5 nbOfTypes;

 for (int i = 0; i < nbOfTypes; i++) {

 uint(4) type[i];

 }

}

14.2.9 Point Sequence Codec
14.2.9.1 Overview

Description (see description in 6.8.20)

This codec is mapped to the urn:mpeg:mpeg4:types:2005:coordinatesType.
14.2.9.2 Syntax

pointSequence {

 uivlc5 nbPoints;

 uint(1) flag;

 if (flag == 0) {

 if (nbPoints < 3) {

 uint(5) bits;

 for (int i = 0; i < nbPoints; i++) {

 uint(bits) x[i];

 uint(bits) y[i];

 }

 } else {

 uint(5) bits;

 uint(bits) x[0];

 uint(bits) y[0];

 uint(5) bitsx;

 uint(5) bitsy;

 for (int i = 1; i < nbPoints; i++) {

 uint(bitsx) dx;

 uint(bitsy) dy;

 x[i] = dx + x[i-1];

 y[i] = dy + y[i-1];

 }

 }

 }

 else {

 uint(4) kvalue;

 uint(5) bits;

 uint(bits) x[0];

 uint(bits) y[0];

 int XMvalue,YMvalue = 0;

 int CodeNum = 0;

 int Diff =0;

 for(i=1; i < nbPoints; i++) {
 // to calculate X point
 do {

 bit(1) bitX;

 XMvalue ++;

 } while (bitX == 0);
 const bit(1) endX = 1;
 uint(XMvalue+kvalue) INFO_dx;

 CodeNum = GetCodeNum(kvalue, XMvalue, INFO_dx);
 Diff = GetDiff(CodeNum);

 x[i] = x[i-1] + Diff;

 // to calculate Y point
 do {

 unit(1) bitY;

 YMvalue ++;

 } while (bitY == 0);
 const bit(1) endY = 1;
 uint(YMvalue+kvalue) INFO_dy;

 CodeNum = GetCodeNum(kvalue, YMvalue, INFO_dy);
 Diff = GetDiff(CodeNum);
 y[i] = y[i-1] + Diff;

 }

 }

}
uint GetCodeNum(int k, int Mvalue, int INFO){

 return 2(k+Mvalue) + INFO - 2k ;

}

14.2.10 valueWithUnits Codec

14.2.10.1 Overview

This codec decodes a value with unit.

This codec is mapped to the urn:mpeg:mpeg4:LASeR:types:2005:valueWithUnitsType.

14.2.10.2 Syntax

ValuesWithUnits {

 uint(32) value; // float represented as 24.8
 units(3) units; // 0 no unit, 1 ‘in’, 2 ‘cm’, 3 ‘mm’, 4 ‘pt’, 5 ‘pc’, 6 ‘px’, 7 ‘%’
}
14.2.11 AnimatedValues Codec

14.2.11.1 Overview

This codec decodes a list of animated values.

This codec is mapped to the urn:mpeg:mpeg4:LASeR:types:2005:AnimatedValuesType.

14.2.11.2 Syntax

class codec_AnimatedValues {

uint(4) type;

 vlc5int nbValue;

 for(i=0; i < nbValue; i++) {

 bit(1) escapeFlag;

 if (escapeFlag) {

 // case for inherit and other mixed enum+number cases

 bit(2) escapeEnum;

 }

 switch(type) {

case 0: // string

string value[i];

break;

case 1: // float

codec_fixed16_8() value[i];

break;

case 2: // path

codec_path() value[i];

break;

case 3: // pointSeq

codec_pointSequence() value[i];

break;

case 4: // fraction

codec_0to1float() value[i];

break;

case 5: // color

codec_color() value[i];

break;

 case 6: // enum

 case 10: // id

 vlc5int value[i];

 break;

 case 11: // font

 vlc5int j;

 value[i] = fontTable[j];

 break;

 case 7: // ints

 vlc5int nbInts;

 for (k = 0; k < nbInts; k++) {

 vlc5int value[i][k];

 }

 break;

 case 8: // floats

 vlc5int nbFloats;

 for (k = 0; k < nbFloats; k++) {

 codec_fixed_16_8() value[i][k];

 }

 break;

 case 9: // point

 codec_fixed16_8() valueX[i];

 codec_fixed16_8() valueY[i];

 break;

 default:

 codec_extension() privateData;

 break;

 }

}

}
14.2.12 AnimatedValue Codec

14.2.12.1 Overview

This codec decodes one animated value.

This codec is mapped to the urn:mpeg:mpeg4:LASeR:types:2005:AnimatedValueType.

14.2.12.2 Syntax

class codec_AnimatedValue {

uint(4) type;

 bit(1) escapeFlag;

 if (escapeFlag) {

 // case for inherit and other mixed enum+number cases

 bit(2) escapeEnum;

 }

 switch(type) {

case 0:

string value;

break;

case 1:

codec_fixed16_8() value;

break;

case 2:

codec_path() value;

break;

case 3:

codec_pointSequence() value;

break;

case 4:

codec_0to1float() value;

break;

case 5:

codec_color() value;

break;

 case 6: // enum

 case 10: // id

 vlc5int value;

 break;

 case 11: // font

 vlc5int j;

 value = fontTable[j];

 break;

 case 7: // ints

 vlc5int nbInts;

 for (k = 0; k < nbInts; k++) {

 vlc5int value[k];

 }

 break;

 case 8: // floats

 vlc5int nbFloats;

 for (k = 0; k < nbFloats; k++) {

 codec_fixed_16_8() value[k];

 }

 break;

 case 9: // point

 codec_fixed16_8() valueX;

 codec_fixed16_8() valueY;

 break;

 default:

 codec_extension() privateData;

 break;

 }

}
14.2.13 AlignedString Codec

14.2.13.1 Overview

This codec decodes a string. This codec is mapped to the xsd:string.

14.2.13.2 Syntax

AlignedString {

byteAlignment();

uint(8) slen;

uint(8)[slen] UTF-string;

}
14.2.14 Fixed_16_8 Codec

14.2.14.1 Overview

This codec decodes a fixed point number.

This codec is mapped to the type urn:mpeg:mpeg4:LASeR:types:2005:fixed16_8Type.

14.2.14.2 Syntax

Fixed_16_8 {

int(24) // fixed point 16 8

}

14.2.15 Extension Codec

14.2.15.1 Overview

This codec decodes a placeholder for forward compatibility (attribute value space extension).

This codec is mapped to the type urn:mpeg:mpeg4:LASeR:types:2005:attrExtensionType.

14.2.15.2 Syntax

class codec_extension {

 vlc5int len;

 byte[len] privateData;

}

14.2.16 AnyElement Codec

14.2.16.1 Overview

This codec decodes a fixed private element.

This codec is mapped to the type urn:mpeg:mpeg4:LASeR:types:2005: privateElementType.

14.2.16.2 Syntax

class codec_anyElement {

 codec_byteAlignedString elementQName;

 codec_anyAttribute attrs;

 vlc5int len1;

 for (int t = 0 ; t < len ; t++) {

 codec_anyElement child[[t]];

 }

}

14.2.17 AnyAttribute Codec

14.2.17.1 Overview

This codec decodes a private attribute.

This codec is mapped to the type urn:mpeg:mpeg4:LASeR:types:2005: privateAttributeType.

14.2.17.2 Syntax

class anyAttribute {

 bit(1) has_attrs;

 if (has_attrs) {

 vlc5int len;

 for (int t = 0 ; t < len ; t++) {

 codec_byteAlignedString attributeName[[t]];

 codec_byteAlignedString attributeValue[[t]];

 }

 }

}
14.2.18 Update Value Codec

14.2.18.1 Overview

This codec decodes a constant value in an update.

This codec is mapped to the type urn:mpeg:mpeg4:LASeR:types:2005:updateValueType.

14.2.18.2 Syntax

codec_updateValue {

 if (updateHasIndex) { // is the hasIndex bit set in the update ?

 // indexed

 switch(indexedTypeOfAttribute(attributeName)) {

 case 0:

 // point

 uivlc5() x; //coordinate expressed with resolution

 uivlc5() y;

 break;

 case 1:

 // small int

 byte intValue;

 break;

 case 2:

 // float

 codec_fixed16_8 floatValue;

 break;

 case 3:

 // time

 timeType() timevalue;

 break;

 default:

 codec_extension() privateData;

 break;

 }

 } else {

 // non indexed

 bit(1) escapeFlag;

 if (escapeFlag) {

 // case for inherit and other mixed enum+number cases

 bit(2) escapeEnum;

 }

 switch(updateTypeOfAttribute(attributeName)) {

 case 0:

 bit(1) booleanvalue;

 break;

 case 1: // enum

 case 15: // index

 case 17: // ID

 uivlc5() enumOrIndexOrIDValue

 break;

 case 2:

 codec_color() colorValue;

 break;

 case 3:

 codec_0to1float() fractionValue;

 break;

 case 4:

 codec_fixed16_8() floatValue;

 break;

 case 5:

 timeType() timeValue;

 break;

 case 6:

 codec_fixed16_8() pointValueX;

 codec_fixed16_8() pointValueY;

 break;

 case 7:

 codec_matrix() matrixValue;

 break;

 case 8:

 codec_byteAlignedString() stringValue;

 break;

 case 9:

 codec_pointSequence() pointValues;

 break;

 case 10:

 codec_path() pathValue;

 break;

 case 11:

 uivlc5() nb;

 for (int i = 0; i < nb; i++) {

 uint(8) intValue[i];

 }

 break;

 case 12: // floatValues

 uivlc5() nb1;

 for (int i = 0; i < nb1; i++) {

 codec_fixed16_8 floatValue[i];

 }

 break;

 case 13: // timeValues

 uivlc5() nb2;

 for (int i = 0; i < nb1; i++) {

 timeType() timeValue[i];

 }

 case 14: // unitValue

 codec_valueWithUnits() unitValue;

 break;

 case 16: // URI

 codec_anyURI() uri;

 break;

 default:

 codec_extension() privateData;

 break;

 }

 }

}
15 (normative) Predefined ISO 15938-1 configuration for the Simple Encoding
This is the syntax of the Decoder Initialisation for ISO 15938-1 generic decoders.
BiMDecoderInit(uint Profile){
 switch(Profile){

 case 1:

 uint(8) SystemsProfileLevelIndication;

 bit(3) UnitSizeCode;

 bit(1) NoAdvancedFeatures;

 bit(4) ReservedBits;

 uint(8) AdvancedFeatureFlags_Length;

 bit (1) InsertFlag;

 bit (1) AdvancedOptimisedDecodersFlag;

 bit (1) AdditionalSchemaFlag;

 bit (1) AdditionalSchemaUpdatesOnlyFlag;

 bit (1) FragmentReferenceFlag;

 bit (1) MPCOnlyFlag;

 bit (2) ReservedBitsZero;

 uint(8) NumberOfSchemas;

 uint(8) SchemaURI_Length[0];

 uint(8*32) SchemaURI[0]

 uint(8) LocationHint_Length[0];

 uint(8) NumberOfTypeCodecs[0];

 uint(8) NumOfAdvancedOptimisedDecoderTypes;

 uint(8) AdvancedOptimisedDecoderTypeURI_Length[0];

 uint(8*39) AdvancedOptimisedDecoderTypeURI[0];

 uint(8) AdvancedOptimisedDecoderTypeURI_Length[1];

 uint(8*39) AdvancedOptimisedDecoderTypeURI[1];

 uint(8) AdvancedOptimisedDecoderTypeURI_Length[2];

 uint (8*39) AdvancedOptimisedDecoderTypeURI[2];

 uint(8) AdvancedOptimisedDecoderTypeURI_Length[3];

 uint (8*39) AdvancedOptimisedDecoderTypeURI[3];

 uint(8) AdvancedOptimisedDecoderTypeURI_Length[4];

 uint (8*39) AdvancedOptimisedDecoderTypeURI[4];

 uint(8) AdvancedOptimisedDecoderTypeURI_Length[5];

 uint (8*39) AdvancedOptimisedDecoderTypeURI[5];

 uint(8) AdvancedOptimisedDecoderTypeURI_Length[6];

 uint (8*39) AdvancedOptimisedDecoderTypeURI[6];

 uint(8) AdvancedOptimisedDecoderTypeURI_Length[7];

 uint (8*39) AdvancedOptimisedDecoderTypeURI[7];

 uint(8) AdvancedOptimisedDecoderTypeURI_Length[8];

 uint (8*39) AdvancedOptimisedDecoderTypeURI[8];

 uint(8) AdvancedOptimisedDecoderTypeURI_Length[9];

 uint (8*39) AdvancedOptimisedDecoderTypeURI[9];

 uint(8) AdvancedOptimisedDecoderTypeURI_Length[10];

 uint (8*40) AdvancedOptimisedDecoderTypeURI[10];

 uint (8) NumberOfAdditionalSchemas;

 uint (8) NumberOfKnownAdditionalSchemas;

 uint(8) InitialDescription_Length;

 uint(4)KnownAdditionalSchemaID;

 uint (8) AdditionalSchemaURI_Length[0];

 uint (8*31) AdditionalSchemaURI[0];

// urn:mpeg:mpeg4:LASeR:2005

 uint (8) BinaryLocationHint_Length[0];

 uint(4)KnownAdditionalSchemaID;

 uint (8) AdditionalSchemaURI_Length[1];

 uint (8*33) AdditionalSchemaURI[1];

// urn:mpeg:mpeg4:LASeR:types:2005
 uint (8) BinaryLocationHint_Length[1];

 uint(4)KnownAdditionalSchemaID;

 uint (8) AdditionalSchemaURI_Length[3];

 uint (8*36) AdditionalSchemaURI[3];

// urn:mpeg:mpeg4:SAF:2005
 uint (8) BinaryLocationHint_Length[3];

 uint(4)KnownAdditionalSchemaID;

 uint (8) AdditionalSchemaURI_Length[4];

 uint (8*23) AdditionalSchemaURI[4];
 // urn:mpeg:mpeg4:LASeR:updates:2005

 uint (8) BinaryLocationHint_Length[4];

 uint (8) SchemaEncodingMethod;

 uint(4)KnownAdditionalSchemaID;

 uint (8) AdditionalSchemaURI_Length[5];

 uint (8*36) AdditionalSchemaURI[5];
// http://www.w3.org/XML/1998/namespace

 uint (8) BinaryLocationHint_Length[5];

 break;

 }

}

16 (normative) Required Changes to 14496-1

The following entry should be added to the objectTypeIndication table of ISO/IEC 14496-1 by Amendment.

	0x09
	LASeR scene description stream

(editor’s note: this annex will disappear at FDIS, going into an AMD to part 1)
	ii
	© ISO/IEC 2003 — All rights reserved

	ii
	© ISO/IEC 2003 — All rights reserved

	© ISO/IEC 2003 — All rights reserved
	i

_1175384585.ppt

LASeR

decoder

LASeR

Scene

Tree

Manager

LASeR

Renderer

Scene

Stream

Decoded

Access

Units

Scene

Tree

Rendered

Scene

Normative in LASeR

Normative in SVG

_1183893250.ppt

NewScene

x

sceneTime(x) = mediaTime(x) – mediaTime(NewScene)

Within a scene segment

NewScene

x

sceneTime(y) = Ts0

With more scene segments

y

z

First scene segment

Second scene segment

Ts0

sceneTime(z) = Ts0 + mediaTime(z) – mediaTime(y)

_1175158129.ppt

SVG Scene Tree

LASeR

Commands

Binary Encoding

LASeR

Extensions

SAF

Audio

Video

Font

Image

…

Application

Network

Transport

