Fehler! Kein Text mit angegebener Formatvorlage im Dokument.
20
Fehler! Kein Text mit angegebener Formatvorlage im Dokument.

TSG System Aspects WG4 PSM ad hoc
S4-AHP238
Sophia Antipolis, France, 6-8 April 2005

Source:
Digital Fountain, Siemens

Title:
Specification Text for Systematic Raptor Forward Error Correction
Document for:

 Discussion
Agenda Item:
5.4.1

1.
Introduction

This document provides specification text for Systematic Raptor Forward Error Correction code to be included within TS26.346. Changes from the version proposed in AHP205 are shown with changebars.

2.
Specification Text proposal for TS26.346

Annex (normative):
FEC encoder specification
This Annex specifies the systematic Raptor forward error correction code and its application to MBMS [7]. Raptor is a fountain code, i.e., as many encoding symbols as needed can be generated by the encoder on-the-fly from the source symbols of a block. The decoder is able to recover the source block from any set of encoding symbols only slightly more in number than the number of source symbols.

The code described in this document is a Systematic code, that is, the original source symbols are sent unmodified from sender to receiver, as well as a number of repair symbols.
B.1
Definitions, Symbols and abbreviations

B.1.1
Definitions

For the purposes of this Annex, the following terms and definitions apply.

Source block: a block of K source symbols which are considered together for Raptor encoding purposes.

Source symbol: the smallest unit of data used during the encoding process. All source symbols within a source block have the same size.

Encoding symbol: a symbol that is included in a data packet. The encoding symbols consist of the source symbols and the repair symbols. Repair symbols generated from a source block have the same size as the source symbols of that source block.

Systematic code: a code in which the source symbols are included as part of the encoding symbols sent for a source block.

Repair symbol: the encoding symbols sent for a source block that are not the source symbols. The repair symbols are generated based on the source symbols.

Intermediate symbols: symbols generated from the source symbols using an inverse encoding process . The repair symbols are then generated directly from the intermediate symbols. The encoding symbols do not include the intermediate symbols, i.e., intermediate symbols are not included in data packets.
Symbol: a unit of data. The size, in bytes, of a symbol is known as the symbol size.

Encoding symbol group: a group of encoding symbols that are sent together, i.e., within the same packet whose relationship to the source symbols can be derived from a single Encoding Symbol ID.

Encoding Symbol ID: information that defines the relationship between the symbols of an encoding symbol group and the source symbols.

Encoding packet: data packets that contain encoding symbols
Sub-block: a source block is sometime broken into sub-blocks, each of which is sufficiently small to be decoded in working memory. For a source block consisting of K source symbols, each sub-block consists of K sub-symbols, each symbol of the source block being composed of one sub-symbol from each sub-block.

Sub-symbol: part of a symbol. Each source symbol is composed of as many sub-symbols as there are sub-blocks in the source block.

Source packet: data packets that contain source symbols.

Repair packet: data packets that contain repair symbols.

B.1.2.
Symbols

i, j, x, h, a, b, d, v, m
represent positive integers

ceil(x)

denotes the smallest positive integer which is greater than or equal to x
choose(i,j)
denotes the number of ways j objects can be chosen from among i objects without repetition

floor(x)

denotes the largest positive integer which is less than or equal to x

i % j

denotes i modulo j

X ^ Y
denotes, for equal-length bit strings X and Y, the bitwise exclusive-or of X and Y

A
denote a symbol alignment parameter. Symbol and sub-symbol sizes are restricted to be multiples of A.
AT
denotes the transposed matrix of matrix A
A-1
denotes the inverse matrix of matrix A
K

denotes the number of symbols in a single source block

KMAX

denotes the maximum number of source symbols that can be in a single source block. Set to 8192.
L

denotes the number of pre-coding symbols for a single source block
S

denotes the number of LDPC symbols for a single source block
H

denotes the number of Half symbols for a single source block

C

denotes an array of intermediate symbols, C[0], C[1], C[2],…, C[L-1]
C’

denotes an array of source symbols, C’[0], C’[1], C’[2],…, C’[K-1]

X

a non-negative integer value

V0, V1

two arrays of 4-byte integers, V0[0], V0[1],…, V0[255] and V1[0], V1[1],…, V1[255]

Rand[X, i, m]
a pseudo-random number generator

Deg[v]

a degree generator

LTEnc[K, C ,(d, a, b)]

a LT encoding symbol generator

Trip[K, X]
a triple generator function
G

the number of symbols within an encoding symbol group

N

the number of sub-blocks within a source block

T

the symbol size in bytes. If the source block is partitioned into sub-blocks, then T = T’∙N.

T’
the sub-symbol size, in bytes. If the source block is not partitioned into sub-blocks then T’ is not relevant.

F

the file size, for file download, in bytes

I

the sub-block size in bytes

P

for file download, the payload size of each packet, in bytes, that is used in the recommended derivation of the file download transport parameters. For streaming, the payload size of each repair packet, in bytes, that is used in the recommended derivation of the streaming transport parameters.

Q
Q = 65521, i.e., Q is the largest prime smaller than 216
Z

the number of source blocks, for file download

J(K)

the systematic index associated with K
G

denotes any generator matrix

IS

denotes the SxS identity matrix

0SxH

denotes the SxH zero matrix
B.1.3
Abbreviations

For the purposes of the present document, the following abbreviations apply:

ESI
Encoding Symbol ID

LDPC
Low Density Parity Check

LT
Luby Transform

SBN
Source Block Number

SBL
Source Block Length (in units of symbols)

B.2.
Overview

The Raptor forward error correction code can be applied to both the MBMS file delivery and MBMS streaming applications described in the main body of this document. Raptor code aspects which are specific to each of these applications are discussed in Sections B.3 and B.4 of this document.

The principle component of the systematic Raptor code is the basic encoder described in Section B.5. First, it is described how to derive values for a set of intermediate symbols from the original source symbols such that knowledge of the intermediate symbols is sufficient to reconstruct the source symbols. Secondly, the encoder produces repair symbols which are each the exclusive OR of a number of the intermediate symbols. The encoding symbols are the combination of the source and repair symbols. The repair symbols are produced in such a way that the intermediate symbols and therefore also the source symbols can be recovered from any sufficiently large set of encoding symbols.

This document defines the systematic Raptor code encoder. A number of possible decoding algorithms are possible. An efficient decoding algorithm is provided in Annex C.

The construction of the intermediate and repair symbols is based in part on a pseudo-random number generator described in Section B.5. This generator is based on a fixed set of 512 random numbers which must be available to both sender and receiver. These are provided in Section B.7.

Finally, the construction of the intermediate symbols from the source symbols is governed by a ‘systematic index’, values of which are provided in Section B.6 for source block sizes from 4 source symbols to KMAX = 8192 source symbols.

B.3.
File download

B.3.1.
Source block construction

B.3.1.1.
General

In order to apply the Raptor encoder to a source file, the file may be broken into Z ≥ 1 blocks, known as source blocks. The Raptor encoder is applied independently to each source block. Each source block is identified by a unique integer Source Block Number (SBN), where the first source block has SBN zero, the second has SBN one, etc. Each source block is divided into a number, K, of source symbols of size T bytes each. Each source symbol is identified by a unique integer Encoding Symbol Identifier (ESI), where the first source symbol of a source block has ESI zero, the second has ESI one, etc.
Each source block with K source symbols is divided into N ≥ 1 sub-blocks, which are small enough to be decoded in the working memory. Each sub-block is divided into K sub-symbols of size T’.
Note that the value of K is not necessarily the same for each source block of a file and the value of T’ may not necessarily be the same for each sub-block of a source block. However, the symbol size T is the same for all source blocks of a file and the number of symbols, K is the same for every sub-block of a source block. Exact partitioning of the file into source blocks and sub-blocks is described in B.3.1.2 below.
Figure B.3.1.1.-1 shows an example source block placed into a two dimensional array, where each entry is a T’-byte sub-symbol, each row is a sub-block and each column is a source symbol. In this example, the value of T’ is the same for every sub-block. The number shown in each sub-symbol entry indicates their original order within the source block. For example, the sub-symbol numbered K contains bytes T’·K through T’·(K+1)-1 of the source block. Then, source symbol i is the concatenation of the ith sub-symbol from each of the sub-blocks, which corresponds to the sub-symbols of the source block numbered i, K+i, 2·K+i,…, (N-1)·K+i.

	0
	1
	2
	…
	…
	…
	…
	K-1

	K
	K+1
	K+2
	…
	…
	…
	…
	2·K-1

	2·K
	2·K+1
	2·K+2
	…
	…
	…
	…
	3·K-1

	…
	…
	…
	…
	…
	…
	…
	

	(N-1)·K
	…
	…
	…
	…
	…
	…
	N·K-1

Figure B.3.1.1-1 – Source symbols from sub-symbols– the 3 highlighted columns show source symbols 0, 2 and K-1

B.3.1.2
Source block and sub-block partitioning
The construction of source blocks and sub-blocks is determined based on five input parameters, F, A, T, Z and N and a function Partition[]. The five input parameters are defined as follows:
-
F
the size of the file, in bytes

-
A
a symbol alignment parameter, in bytes

-
T
the symbol size, in bytes, which must be a multiple of A
-
Z
the number of source blocks

-
N
the number of sub-blocks in each source block

These parameters shall be set so that ceil(ceil(F/T)/Z) ≤ KMAX. Recommendations for derivation of these parameters are provided in Section B.3.4.

The function Partition[] takes a pair of integers (I, J) as input and derives four integers (IS, IL, JS, JL) as output. Specifically, the value of Partition[I, J] is a sequence of four integers (IL, IS, JL, JS), where IL = ceil(I/J), IS = floor(I/J), JL = I – IS · J and JS = J - JL. Partition[] derives parameters for partitioning a block of size I into J approximately equal sized blocks. Specifically, JL blocks of length IL and JS blocks of length IS.

The source file shall be partitioned into source blocks and sub-blocks as follows:

Let,

Kt = ceil(F/T)

(KL, KS, ZL, ZS) = Partition[Kt, Z]

(TL, TS, NL, NS) = Partition[T/A, N]

Then, the file shall be partitioned into Z = ZL + ZS contiguous source blocks, the first ZL source blocks each having length KL·T bytes and the remaining ZS source blocks each having KS·T bytes.

If Kt ·T > F then for encoding purposes, the last symbol shall be padded at the end with Kt ·T – F zero bytes.

Next, each source block shall be divided into N = NL + NS contiguous sub-blocks, the first NL sub-blocks each consisting of K contiguous sub-symbols of size of TL ·A and the remaining NS sub-blocks each consisting of K contiguous sub-symbols of size of TS ·A. The symbol alignment parameter A ensures that sub-symbols are always a multiple of A bytes.
Finally, the mth symbol of a source block consists of the concatenation of the mth sub-symbol from each of the N sub-blocks.

B.3.2.
Encoding packet construction

B.3.2.1.
General

Each encoding packet contains the following information:

-
Source Block Number (SBN)

-
Encoding Symbol ID (ESI)

-
encoding symbol(s)
Each source block is encoded independently of the others. Source blocks are numbered consecutively from zero.

Encoding Symbol ID values from 0 to K-1 identify the source symbols. Encoding Symbol IDs from K onwards identify repair symbols.
B.3.2.2
Encoding packet construction

Each encoding packet either consists entirely of source symbols (source packet) or entirely of repair symbols (repair packet). A packet may contain any number of symbols from the same source block. In the case that the last symbol in the packet includes padding bytes added for FEC encoding purposes then these bytes need not be included in the packet. Otherwise, only whole symbols shall be included.
The Encoding Symbol ID, X, carried in each source packet is the Encoding Symbol ID of the first source symbol carried in that packet. The subsequent source symbols in the packet have Encoding Symbol IDs, X+1 to X+G-1, in sequential order, where G is the number of symbols in the packet.
Similarly, the Encoding Symbol ID, X, placed into a repair packet is the Encoding Symbol ID of the first repair symbol in the repair packet and the subsequent repair symbols in the packet have Encoding Symbol IDs X+1 to X+G-1 in sequential order, where G is the number of symbols in the packet.
Note that it is not necessary for the receiver to know the total number of repair packets. The G repair symbol triples (d[0], a[0], b[0]),…, (d[G-1], a[G-1], b[G-1]) for the repair symbols placed into a repair packet with ESI X are computed using the Triple generator defined in B.5.3.4 as follows:

For each i = 0, …, G-1

(d[i], a[i], b[i]) = Trip[K,X+i]

The G repair symbols to be placed in repair packet with ESI X are calculated based on the repair symbol triples as described in Section B.5.3 using the intermediate symbols C and the LT encoder LTenc[K, C, (d[i], a[i], b[i])].
B.3.3.
Transport

This section describes the information exchange between the Raptor encoder/decoder and any transport protocol making use of Raptor forward error correction for file delivery.

The Raptor encoder and decoder for file delivery require the following information from the transport protocol:

· The file size, F, in bytes

· The symbol alignment parameter, A
· The symbol size, T, in bytes, which must be a multiple of A
· The number of source blocks, Z
· The number of sub-blocks in each source block, N
The Raptor encoder for file delivery additionally requires:
· the file to be encoded, F bytes

The Raptor encoder supplies the transport protocol with encoding packet information consisting, for each packet, of:

-

Source Block Number (SBN)
· Encoding Symbol ID (ESI)
· encoding symbol(s)
The transport protocol shall communicate this information transparently to the Raptor decoder.

Suitable transport protocols based on FLUTE/ALC and HTTP are defined in this specification.

B.3.4.
Recommended Parameters (informative)
B.3.4.1
Parameter derivation algorithm

This section provides recommendations for the derivation of the four transport parameters, A, T, Z and N. This recommendation is based on the following input parameters:

-
F
the file size, in bytes
-
W
a target on the sub-block size, in bytes

-
P
the maximum packet payload size, in bytes, which is assumed to be a multiple of A
-
A
the symbol alignment factor, in bytes

- KMAX the maximum number of source symbols per source block.
-
KMIN a minimum target on the number of symbols per source block

-
GMAX a maximum target number of symbols per packet
Based on the above inputs, the transport parameters T, Z and N are calculated as follows:

 Let,

G = min{ceil(P ·KMIN/F), P/A, GMAX}

- the approximate number of symbols per packet
T = floor(P/(A·G))·A
Kt = ceil(F/T)

- the total number of symbols in the file

Z = ceil(Kt /KMAX)

N = min{ceil(ceil(Kt/Z)·T/W), T/A}
The values of G and N derived above should be considered as lower bounds. It may be advantageous to increase these values, for example to the nearest power of two. In particular, the above algorithm does not guarantee that the symbol size, T, divides the maximum packet size, P, and so it may not be possible to use the packets of size exactly P. If, instead, G is chosen to be a value which divides P/A, then the symbol size, T, will be a divisor of P and packets of size P can be used.
Recommended settings for the input parameters, W, A, KMIN and GMAX are as follows:

W = 256 KB

A = 4

KMIN = 1024

GMAX = 10
B.3.4.2
Examples

The above algorithm leads to transport parameters as shown in Table B.3.4.2-1 below, assuming the recommended values for W, A, KMIN and GMAX and P = 512:
	File size F
	G
	Symbol size T
	G*T
	Kt
	Source blocks Z
	Sub-blocks N
	KL
	KS
	TL ∙A
	TS ∙A

	100 KB
	6
	84
	504
	1,220
	1
	1
	1,220
	1,220
	N/A
	N/A

	100 KB
	8
	64
	512
	1,600
	1
	1
	1,600
	1,600
	N/A
	N/A

	300 KB
	2
	256
	512
	1,200
	1
	2
	1,200
	1,200
	128
	128

	1,000 KB
	1
	512
	512
	2,000
	1
	5
	2,000
	2,000
	104
	100

	3,000 KB
	1
	512
	512
	6,000
	1
	12
	6,000
	6,000
	44
	40

	10,000 KB
	1
	512
	512
	20,000
	3
	14
	6,666
	6,667
	40
	36

Table B.3.4.2-1
B.4.
Streaming

B.4.1.
Source block construction

A source block is constructed by the transport protocol, for example as defined in this document, making use of the Systematic Raptor Forward Error Correction code. The symbol size, T, to be used for source block construction and the repair symbol construction are provided by the transport protocol. The parameter T shall be set so that the number of source symbols in any source block is at most KMAX.
Recommended parameters are presented in section B.4.4.
B.4.2.
Encoding packet construction

As described in B.4.3., each repair packet contains the following information:

-
Source Block Number (SBN)

-
Encoding Symbol ID (ESI)

-
Source Block Length (SBL)

-
repair symbol(s)
The number of repair symbols contained within a repair packet is computed from the packet length. The ESI values placed into the repair packets and the repair symbol triples used to generate the repair symbols are computed as described in Section B.3.2.2..

B.4.3.
Transport

This section describes the information exchange between the Raptor encoder/decoder and any transport protocol making use of Raptor forward error correction for streaming.

The Raptor encoder for streaming requires the following information from the transport protocol for each source block:

-
The symbol size, T, in bytes

-
The number of symbols in the source block, K
-
The Source Block Number (SBN)
-
The source symbols to be encoded, K∙T bytes
The Raptor encoder supplies the transport protocol with encoding packet information consisting, for each repair packet, of:

-
Source Block Number (SBN)

-
Encoding Symbol ID (ESI)

-
Source Block Length (SBL)

-
repair symbol(s)
The transport protocol shall communicate this information transparently to the Raptor decoder.

A suitable transport protocol is defined in this specification.

B.4.4.
Recommended Parameters (informative)
B.4.4.1
Parameter derivation algorithm

This section provides recommendations for the derivation of the transport parameter T. This recommendation is based on the following input parameters:

-
B
the maximum source block size, in bytes
-
P
the maximum repair packet payload size, in bytes, which is a multiple of A
-
A
the symbol alignment factor, in bytes

- KMAX the maximum number of source symbols per source block.
-
KMIN a minimum target on the number of symbols per source block

-
GMAX a maximum target number of symbols per repair packet
A requirement on these inputs is that ceil(B/P) ≤ KMAX. Based on the above inputs, the transport parameter T is calculated as follows:

 Let,

G = min{ceil(P·KMIN/B), P/A, GMAX}

- the approximate number of symbols per packet

T = floor(P/(A·G))·A
The value of T derived above should be considered as a guide to the actual value of T used. It may be advantageous to ensure that T divides into P, or it may be advantageous to set the value of T smaller to minimize wastage when full size repair symbols are used to recover partial source symbols at the end of lost source packets (as long as the maximum number of source symbols in a source block does not exceed KMAX). Furthermore, the choice of T may depend on the source packet size distribution, e.g., if all source packets are the same size then it is advantageous to choose T so that the actual payload size of a repair packet P’, where P’ is a multiple of T, is equal to (or as few bytes as possible larger than) the number of bytes each source packet occupies in the source block.

Recommended settings for the input parameters, A, KMIN and GMAX are as follows:

A = 4

KMIN = 1024

GMAX = 10
B.4.4.2
Examples

The above algorithm leads to transport parameters as shown in Table B.4.4.2-1 below, assuming the recommended values for A, KMIN and GMAX and P = 512:

	Max source block size B
	G
	Symbol size T
	G∙T

	40 KB
	10
	48
	480

	160 KB
	4
	128
	512

	640 KB
	1
	512
	512

Table B.4.4.2-1
B.5.
Systematic Raptor encoder
B.5.1.
Encoding overview

The systematic Raptor encoder is used to generate repair symbols from a source block that consists of K source symbols.

Symbols are the fundamental data units of the encoding and decoding process. For each source block (sub-block) all symbols (sub-symbols) are the same size. The atomic operation performed on symbols (sub-symbols) for both encoding and decoding is the exclusive-or operation.
Let C’[0],…, C’[K-1] denote the K source symbols.
Let C[0],…, C[L-1] denote L intermediate symbols.

The first step of encoding is to generate a number, L > K, of intermediate symbols from the K source symbols. In this step, K source triples (d[0], a[0], b[0]), …, (d[K-1], a[K-1], b[K-1]) are generated using the Trip[] generator as described in Section B.5.4.4. The K source triples are associated with the K source symbols and are then used to determine the L intermediate symbols C[0],…, C[L-1] from the source symbols using an inverse encoding process. This process can be can be realized by a Raptor decoding process.

Certain “pre-coding relationships” must hold within the L intermediate symbols. Section B.5.2 describes these relationships and how the intermediate symbols are generated from the source symbols.

Once the intermediate symbols have been generated, repair symbols are produced and one or more repair symbols are placed as a group into a single data packet. Each repair symbol group is associated with an Encoding Symbol ID (ESI) and a number, G, of encoding symbols. The ESI is used to generate a triple of three integers, (d, a, b) for each repair symbol, again using the Trip[] generator as described in Section B.5.4.4. This is done as described in Sections B.3 and B.4 using the generators described in Section B.5.4 . Then, each (d,a,b)-triple is used to generate the corresponding repair symbol from the intermediate symbols using the LTEnc[K, C[0],…, C[L-1], (d,a,b)] generator described in Section B.5.4.3.

B.5.2.
First encoding step: Intermediate Symbol Generation
B.5.2.1
General

The first encoding step is a pre-coding step to generate the L intermediate symbols C[0], …, C[L-1] from the source symbols C’[0], …, C’[K-1]. The intermediate symbols are uniquely defined by two sets of constraints:

1.
The intermediate symbols are related to the source symbols by a set of source symbol triples. The generation of the source symbol triples is defined in Section B.5.2.2 using the the Trip[] generator as described in Section B.5.4.4.

2.
A set of pre-coding relationships hold within the intermediate symbols themselves. These are defined in Section B.5.2.3.

The generation of the L intermediate symbols is then defined in Section 5.2.4.
B.5.2.2
Source symbol triples

Each of the K source symbols is associated with a triple (d[i], a[i], b[i]) for 0 ≤ i < K. The source symbol triples are determined using the Triple generator defined in Section B.5.4.4 as:

For each i, 0 ≤ i < K
(d[i], a[i], b[i]) = Trip[K, i]
B.5.2.3
Pre-coding relationships
The pre-coding relationships amongst the L intermediate symbols are defined by expressing the last L-K intermediate symbols in terms of the first K intermediate symbols.
The last L-K intermediate symbols C[K],…,C[L-1] consist of S LDPC symbols and H Half symbols The values of S and H are determined from K as described below. Then L= K+S+H.

Let

X
be the smallest positive integer such that X·(X–1) = 2·K.

S
be the smallest prime integer such that S ≥ ceil(0.01·K) + X
H
be the smallest integer such that choose(H,ceil(H/2)) ≥ K + S
H’
= ceil(H/2)L
= K+S+H

C[0],…, C[K-1] denote the first K intermediate symbols
C[K],…, C[K+S-1] denote the S LDPC symbols, initialised to zero

C[K+S],…, C[L-1] denote the H Half symbols, initialised to zero

 The S LDPC symbols are defined to be the values of C[K],…, C[K+S-1] at the end of the following process:

For i = 0,…,K-1 do

a = 1 + (floor(i/S) % (S-1))

b = i % S
C[K + b] = C[K + b] ^ C[i]

b = (b + a) % S
C[K + b] = C[K + b] ^ C[i]

b = (b + a) % S
C[K + b] = C[K + b] ^ C[i]

The H Half symbols are defined as follows:

Let

g[i] = i ^ (floor(i/2)) for all positive integers i

Note: g[i] is the Gray sequence, in which each element differs from the previous one in a single bit position

g[j,k] denote the jth element, j=0, 1, 2, …, of the subsequence of g[i] whose elements have exactly k non-zero bits in their binary representation

Then, the Half symbols are defined as the values of C[K+S],…, C[L-1] after the following process:

For h = 0,…,H-1 do

For j = 0,…,K+S-1 do

If bit h of g[j,H’] is equal to 1 then C[h+K+S] = C[h+K+S] ^ C[j].

B.5.2.4
Intermediate symbols

B.5.2.4.1
Definition

Given the K source symbols C’[0], C’[1],…, C’[K-1] the L intermediate symbols C[0], C[1],…, C[L-1] are the uniquely defined symbol values that satisfy the following conditions:

1. The K source symbols C’[0], C’[1],…, C’[K-1] satisfy the K constraints
C’[i] ≡ LTEnc[K, (C[0],…, C[L-1]), (d[i], a[i], b[i])], for all i, 0 ≤ i < K.

2. The L intermediate symbols C[0], C[1],…, C[L-1] satisfy the pre-coding relationships defined in B.5.2.3.
B.5.2.4.2
Calculation of intermediate symbols (informative)

This subsection describes a possible method for calculation of the L intermediate symbols C[0], C[1],…, C[L-1] satisfying the constraints in B.5.2.4.1

The generator matrix G for a code which generates N output symbols from K input symbols is an NxK matrix over GF(2), where each row corresponds to one of the output symbols and each column to one of the input symbols and where the ith output symbol is equal to the sum of those input symbols whose column contains a non-zero entry in row i.

Then, the L intermediate symbols can be calculated as follows:

Let

C denote the column vector of the L intermediate symbols, C[0], C[1],…, C[L-1].

D denote the column vector consisting of S+H zero symbols followed by the K source symbols C’[0], C’[1], …, C’[K-1]

Then the above constraints define an LxL matrix over GF(2), A, such that:
A·C = D
The matrix A can be constructed as follows:

Let:

GLDPC be the S x K generator matrix of the LDPC symbols. So,
GLDPC · (C[0], …, C[K-1])T = (C[K], …, C[K+S-1])T
GHalf be the H x (K+S) generator matrix of the Half symbols, So,
GHalf · (C[0], …, C[S+K-1])T = (C[K+S], …, C[K+S+H-1])T
IS be the S x S identity matrix
IH be the H x H identity matrix

0SxH be the S x H zero matrix

GLT be the KxL generator matrix of the encoding symbols generated by the LT Encoder.
So,
GLT · (C[0], …, C[L-1])T = (C’[0], C’[1],…, C’[K-1])T
i.e. GLTi,j = 1 if and only if C[i] is included in the symbols which are XORed to produce LTEnc[K, (C[0], …, C[L-1]), (d[i], a[i], b[i])].
Then:

The first S rows of A are equal to GLDPC | IS |ZSxH.

The next H rows of A are equal to GHalf | IH.

The remaining K rows of A are equal to GLT.

The matrix A is depicted in the figure below:

	
	K
	S
	H

	S
	GLDPC
	IS
	ZSxH

	H
	GHalf
	IH

	K
	GLT

Figure B.5.2.5.2-1: The matrix A
The intermediate symbols can then be calculated as:

C = A-1·D
The source triples are generated such that for any K matrix A has full rank and is therefore invertible. This calculation can be realized by applying a Raptor decoding process to the K source symbols C’[0], C’[1],…, C’[K-1] to produce the L intermediate symbols C[0], C[1],…, C[L-1].

To efficiently generate the intermediate symbols from the source symbols, it is recommended that an efficient decoder implementation such as that described in Annex C be used. The source symbol triples are designed to facilitate efficient decoding of the source symbols using that algorithm.

B.5.3.
Second encoding step: LT encoding
In the second encoding step, the repair symbol with ESI X is generated by applying the generator LTEnc[K, (C[0], C[1],…, C[L-1]), (d, a, b)] defined in Section B.5.4 to the L intermediate symbols C[0], C[1],…, C[L-1] using the triple (d, a, b)=Trip[K,X] generated according to Sections B.3.2.2 and B.4.2.
B.5.4.
Generators

B.5.4.1
Random Generator

The random number generator Rand[X, i, m] is defined as follows, where X is a non-negative integer, i is a non-negative integer and m is a positive integer and the value produced is an integer between 0 and m-1. Let V​0​​ and V​1​​ be arrays of 256 entries each, where each entry is a 4-byte unsigned integer. These arrays are provided in Annex C.
Then,

Rand[X, i, m] = (V​0[(X + i) % 256] ^ V​1[(floor(X/256)+ i) % 256]) % m
B.5.4.2
Degree Generator

The degree generator Deg[v] is defined as follows, where v is an integer that is at least 0 and less than 220 = 1048576.

In Table 7.3.2-1, find the index j such that f[j-1] ≤ v < f[j]

Deg[v] = d[j]

	Index j
	f[j]
	d[j]

	0
	0
	--

	1
	10241
	1

	2
	491582
	2

	3
	712794
	3

	4
	831695
	4

	5
	948446
	10

	6
	1032189
	11

	7
	1048576
	40

Table 7.3.2-1 – Defines the degree distribution for encoding symbols
B.5.4.3

LT Encoding Symbol Generator

The encoding symbol generator LTEnc[K, (C[0], C[1],…, C[L-1]), (d, a, b)] takes the following inputs:

K is the number of source symbols (or sub-symbols) for the source block (sub-block). Let L be derived from K as described in Section B.5.2, and let L’ be the smallest prime integer greater than or equal to L.

(C[0], C[1],…, C[L-1]) is the array of L intermediate symbols (sub-symbols) generated as described in Section B.5.2

(d, a, b) is a source triple determined using the Triple generator defined in Section B.5.3.4, whereby
d is an integer denoting an encoding symbol degree

a is an integer between 1 and L’-1 inclusive

b is an integer between 0 and L’-1 inclusive

The encoding symbol generator produces a single encoding symbol as output, according to the following algorithm:

While (b ≥ L) do b = (b + a) % L’
LTEnc[K, (C[0], C[1],…, C[L-1]), (d, a, b)] = C[b].

For j = 1,…,min(d-1,L-1) do

b = (b + a) % L’
While (b ≥ L) do b = (b + a) % L’
LTEnc[K, (C[0], C[1],…, C[L-1]), (d, a, b)] = LTEnc[K, (C[0], C[1],…, C[L-1]), (d, a, b)] ^ C[b]

B.5.4.4
Triple generator

The triple generator Trip[K,X] takes the following inputs:

K
The number of source symbols

X
An encoding symbol ID

Let

L be determined from K as described in Section B.5.2

L’ be the smallest prime that is greater than or equal to L

Q = 65521, the largest prime smaller than 216.

J(K) be the systematic index associated with K, as defined in Section B.7
The output of the triple generator is a triples, (d, a, b) determined as follows:

1.
A = (53591 + J(K)∙997) % Q
2.
B = 10267∙(J(K)+1) % Q
3.
Y = (B + X·A) % Q
4.
v = Rand[Y, 0, 220]

5.
d = Deg[v]

6.
a = 1 + Rand[Y, 1, L’-1]

7.
b = Rand[Y, 2, L’]

B.6 Systematic Indices J(K)
For each value of K the systematic index J(K) is designed to have the property that the set of source symbol triples (d[0], a[0], b[0]), …, (d[L-1], a[L-1], b[L-1]) are such that the L intermediate symbols are uniquely defined, i.e. the matrix A in Section B.5.2.4.2 has full rank and is therefore invertible.
The following is the list of the systematic indices for values of K between 4 and 8192 inclusive,

18, 14, 61, 46, 14, 22, 20, 40, 48, 1, 29, 40, 43, 46, 18, 8, 20, 2, 61, 26, 13, 29, 36, 19, 58, 5, 58, 0, 54, 56, 24, 14, 5, 67, 39, 31, 25, 29, 24, 19, 14, 56, 49, 49, 63, 30, 4, 39, 2, 1, 20, 19, 61, 4, 54, 70, 25, 52, 9, 26, 55, 69, 27, 68, 75, 19, 64, 57, 45, 3, 37, 31, 100, 41, 25, 41, 53, 23, 9, 31, 26, 30, 30, 46, 90, 50, 13, 90, 77, 61, 31, 54, 54, 3, 21, 66, 21, 11, 23, 11, 29, 21, 7, 1, 27, 4, 34, 17, 85, 69, 17, 75, 93, 57, 0, 53, 71, 88, 119, 88, 90, 22, 0, 58, 41, 22, 96, 26, 79, 118, 19, 3, 81, 72, 50, 0, 32, 79, 28, 25, 12, 25, 29, 3, 37, 30, 30, 41, 84, 32, 31, 61, 32, 61, 7, 56, 54, 39, 33, 66, 29, 3, 14, 75, 75, 78, 84, 75, 84, 25, 54, 25, 25, 107, 78, 27, 73, 0, 49, 96, 53, 50, 21, 10, 73, 58, 65, 27, 3, 27, 18, 54, 45, 69, 29, 3, 65, 31, 71, 76, 56, 54, 76, 54, 13, 5, 18, 142, 17, 3, 37, 114, 41, 25, 56, 0, 23, 3, 41, 22, 22, 31, 18, 48, 31, 58, 37, 75, 88, 3, 56, 1, 95, 19, 73, 52, 52, 4, 75, 26, 1, 25, 10, 1, 70, 31, 31, 12, 10, 54, 46, 11, 74, 84, 74, 8, 58, 23, 74, 8, 36, 11, 16, 94, 76, 14, 57, 65, 8, 22, 10, 36, 36, 96, 62, 103, 6, 75, 103, 58, 10, 15, 41, 75, 125, 58, 15, 10, 34, 29, 34, 4, 16, 29, 18, 18, 28, 71, 28, 43, 77, 18, 41, 41, 41, 62, 29, 96, 15, 106, 43, 15, 3, 43, 61, 3, 18, 103, 77, 29, 103, 19, 58, 84, 58, 1, 146, 32, 3, 70, 52, 54, 29, 70, 69, 124, 62, 1, 26, 38, 26, 3, 16, 26, 5, 51, 120, 41, 16, 1, 43, 34, 34, 29, 37, 56, 29, 96, 86, 54, 25, 84, 50, 34, 34, 93, 84, 96, 29, 29, 50, 50, 6, 1, 105, 78, 15, 37, 19, 50, 71, 36, 6, 54, 8, 28, 54, 75, 75, 16, 75, 131, 5, 25, 16, 69, 17, 69, 6, 96, 53, 96, 41, 119, 6, 6, 88, 50, 88, 52, 37, 0, 124, 73, 73, 7, 14, 36, 69, 79, 6, 114, 40, 79, 17, 77, 24, 44, 37, 69, 27, 37, 29, 33, 37, 50, 31, 69, 29, 101, 7, 61, 45, 17, 73, 37, 34, 18, 94, 22, 22, 63, 3, 25, 25, 17, 3, 90, 34, 34, 41, 34, 41, 54, 41, 54, 41, 41, 41, 163, 143, 96, 18, 32, 39, 86, 104, 11, 17, 17, 11, 86, 104, 78, 70, 52, 78, 17, 73, 91, 62, 7, 128, 50, 124, 18, 101, 46, 10, 75, 104, 73, 58, 132, 34, 13, 4, 95, 88, 33, 76, 74, 54, 62, 113, 114, 103, 32, 103, 69, 54, 53, 3, 11, 72, 31, 53, 102, 37, 53, 11, 81, 41, 10, 164, 10, 41, 31, 36, 113, 82, 3, 125, 62, 16, 4, 41, 41, 4, 128, 49, 138, 128, 74, 103, 0, 6, 101, 41, 142, 171, 39, 105, 121, 81, 62, 41, 81, 37, 3, 81, 69, 62, 3, 69, 70, 21, 29, 4, 91, 87, 37, 79, 36, 21, 71, 37, 41, 75, 128, 128, 15, 25, 3, 108, 73, 91, 62, 114, 62, 62, 36, 36, 15, 58, 114, 61, 114, 58, 105, 114, 41, 61, 176, 145, 46, 37, 30, 220, 77, 138, 15, 1, 128, 53, 50, 50, 58, 8, 91, 114, 105, 63, 91, 37, 37, 13, 169, 51, 102, 6, 102, 23, 105, 23, 58, 6, 29, 29, 19, 82, 29, 13, 36, 27, 29, 61, 12, 18, 127, 127, 12, 44, 102, 18, 4, 15, 206, 53, 127, 53, 17, 69, 69, 69, 29, 29, 109, 25, 102, 25, 53, 62, 99, 62, 62, 29, 62, 62, 45, 91, 125, 29, 29, 29, 4, 117, 72, 4, 30, 71, 71, 95, 79, 179, 71, 30, 53, 32, 32, 49, 25, 91, 25, 26, 26, 103, 123, 26, 41, 162, 78, 52, 103, 25, 6, 142, 94, 45, 45, 94, 127, 94, 94, 94, 47, 209, 138, 39, 39, 19, 154, 73, 67, 91, 27, 91, 84, 4, 84, 91, 12, 14, 165, 142, 54, 69, 192, 157, 185, 8, 95, 25, 62, 103, 103, 95, 71, 97, 62, 128, 0, 29, 51, 16, 94, 16, 16, 51, 0, 29, 85, 10, 105, 16, 29, 29, 13, 29, 4, 4, 132, 23, 95, 25, 54, 41, 29, 50, 70, 58, 142, 72, 70, 15, 72, 54, 29, 22, 145, 29, 127, 29, 85, 58, 101, 34, 165, 91, 46, 46, 25, 185, 25, 77, 128, 46, 128, 46, 188, 114, 46, 25, 45, 45, 114, 145, 114, 15, 102, 142, 8, 73, 31, 139, 157, 13, 79, 13, 114, 150, 8, 90, 91, 123, 69, 82, 132, 8, 18, 10, 102, 103, 114, 103, 8, 103, 13, 115, 55, 62, 3, 8, 154, 114, 99, 19, 8, 31, 73, 19, 99, 10, 6, 121, 32, 13, 32, 119, 32, 29, 145, 30, 13, 13, 114, 145, 32, 1, 123, 39, 29, 31, 69, 31, 140, 72, 72, 25, 25, 123, 25, 123, 8, 4, 85, 8, 25, 39, 25, 39, 85, 138, 25, 138, 25, 33, 102, 70, 25, 25, 31, 25, 25, 192, 69, 69, 114, 145, 120, 120, 8, 33, 98, 15, 212, 155, 8, 101, 8, 8, 98, 68, 155, 102, 132, 120, 30, 25, 123, 123, 101, 25, 123, 32, 24, 94, 145, 32, 24, 94, 118, 145, 101, 53, 53, 25, 128, 173, 142, 81, 81, 69, 33, 33, 125, 4, 1, 17, 27, 4, 17, 102, 27, 13, 25, 128, 71, 13, 39, 53, 13, 53, 47, 39, 23, 128, 53, 39, 47, 39, 135, 158, 136, 36, 36, 27, 157, 47, 76, 213, 47, 156, 25, 25, 53, 25, 53, 25, 86, 27, 159, 25, 62, 79, 39, 79, 25, 145, 49, 25, 143, 13, 114, 150, 130, 94, 102, 39, 4, 39, 61, 77, 228, 22, 25, 47, 119, 205, 122, 119, 205, 119, 22, 119, 258, 143, 22, 81, 179, 22, 22, 143, 25, 65, 53, 168, 36, 79, 175, 37, 79, 70, 79, 103, 70, 25, 175, 4, 96, 96, 49, 128, 138, 96, 22, 62, 47, 95, 105, 95, 62, 95, 62, 142, 103, 69, 103, 30, 103, 34, 173, 127, 70, 127, 132, 18, 85, 22, 71, 18, 206, 206, 18, 128, 145, 70, 193, 188, 8, 125, 114, 70, 128, 114, 145, 102, 25, 12, 108, 102, 94, 10, 102, 1, 102, 124, 22, 22, 118, 132, 22, 116, 75, 41, 63, 41, 189, 208, 55, 85, 69, 8, 71, 53, 71, 69, 102, 165, 41, 99, 69, 33, 33, 29, 156, 102, 13, 251, 102, 25, 13, 109, 102, 164, 102, 164, 102, 25, 29, 228, 29, 259, 179, 222, 95, 94, 30, 30, 30, 142, 55, 142, 72, 55, 102, 128, 17, 69, 164, 165, 3, 164, 36, 165, 27, 27, 45, 21, 21, 237, 113, 83, 231, 106, 13, 154, 13, 154, 128, 154, 148, 258, 25, 154, 128, 3, 27, 10, 145, 145, 21, 146, 25, 1, 185, 121, 0, 1, 95, 55, 95, 95, 30, 0, 27, 95, 0, 95, 8, 222, 27, 121, 30, 95, 121, 0, 98, 94, 131, 55, 95, 95, 30, 98, 30, 0, 91, 145, 66, 179, 66, 58, 175, 29, 0, 31, 173, 146, 160, 39, 53, 28, 123, 199, 123, 175, 146, 156, 54, 54, 149, 25, 70, 178, 128, 25, 70, 70, 94, 224, 54, 4, 54, 54, 25, 228, 160, 206, 165, 143, 206, 108, 220, 234, 160, 13, 169, 103, 103, 103, 91, 213, 222, 91, 103, 91, 103, 31, 30, 123, 13, 62, 103, 50, 106, 42, 13, 145, 114, 220, 65, 8, 8, 175, 11, 104, 94, 118, 132, 27, 118, 193, 27, 128, 127, 127, 183, 33, 30, 29, 103, 128, 61, 234, 165, 41, 29, 193, 33, 207, 41, 165, 165, 55, 81, 157, 157, 8, 81, 11, 27, 8, 8, 98, 96, 142, 145, 41, 179, 112, 62, 180, 206, 206, 165, 39, 241, 45, 151, 26, 197, 102, 192, 125, 128, 67, 128, 69, 128, 197, 33, 125, 102, 13, 103, 25, 30, 12, 30, 12, 30, 25, 77, 12, 25, 180, 27, 10, 69, 235, 228, 343, 118, 69, 41, 8, 69, 175, 25, 69, 25, 125, 41, 25, 41, 8, 155, 146, 155, 146, 155, 206, 168, 128, 157, 27, 273, 211, 211, 168, 11, 173, 154, 77, 173, 77, 102, 102, 102, 8, 85, 95, 102, 157, 28, 122, 234, 122, 157, 235, 222, 241, 10, 91, 179, 25, 13, 25, 41, 25, 206, 41, 6, 41, 158, 206, 206, 33, 296, 296, 33, 228, 69, 8, 114, 148, 33, 29, 66, 27, 27, 30, 233, 54, 173, 108, 106, 108, 108, 53, 103, 33, 33, 33, 176, 27, 27, 205, 164, 105, 237, 41, 27, 72, 165, 29, 29, 259, 132, 132, 132, 364, 71, 71, 27, 94, 160, 127, 51, 234, 55, 27, 95, 94, 165, 55, 55, 41, 0, 41, 128, 4, 123, 173, 6, 164, 157, 121, 121, 154, 86, 164, 164, 25, 93, 164, 25, 164, 210, 284, 62, 93, 30, 25, 25, 30, 30, 260, 130, 25, 125, 57, 53, 166, 166, 166, 185, 166, 158, 94, 113, 215, 159, 62, 99, 21, 172, 99, 184, 62, 259, 4, 21, 21, 77, 62, 173, 41, 146, 6, 41, 128, 121, 41, 11, 121, 103, 159, 164, 175, 206, 91, 103, 164, 72, 25, 129, 72, 206, 129, 33, 103, 102, 102, 29, 13, 11, 251, 234, 135, 31, 8, 123, 65, 91, 121, 129, 65, 243, 10, 91, 8, 65, 70, 228, 220, 243, 91, 10, 10, 30, 178, 91, 178, 33, 21, 25, 235, 165, 11, 161, 158, 27, 27, 30, 128, 75, 36, 30, 36, 36, 173, 25, 33, 178, 112, 162, 112, 112, 112, 162, 33, 33, 178, 123, 123, 39, 106, 91, 106, 106, 158, 106, 106, 284, 39, 230, 21, 228, 11, 21, 228, 159, 241, 62, 10, 62, 10, 68, 234, 39, 39, 138, 62, 22, 27, 183, 22, 215, 10, 175, 175, 353, 228, 42, 193, 175, 175, 27, 98, 27, 193, 150, 27, 173, 17, 233, 233, 25, 102, 123, 152, 242, 108, 4, 94, 176, 13, 41, 219, 17, 151, 22, 103, 103, 53, 128, 233, 284, 25, 265, 128, 39, 39, 138, 42, 39, 21, 86, 95, 127, 29, 91, 46, 103, 103, 215, 25, 123, 123, 230, 25, 193, 180, 30, 60, 30, 242, 136, 180, 193, 30, 206, 180, 60, 165, 206, 193, 165, 123, 164, 103, 68, 25, 70, 91, 25, 82, 53, 82, 186, 53, 82, 53, 25, 30, 282, 91, 13, 234, 160, 160, 126, 149, 36, 36, 160, 149, 178, 160, 39, 294, 149, 149, 160, 39, 95, 221, 186, 106, 178, 316, 267, 53, 53, 164, 159, 164, 165, 94, 228, 53, 52, 178, 183, 53, 294, 128, 55, 140, 294, 25, 95, 366, 15, 304, 13, 183, 77, 230, 6, 136, 235, 121, 311, 273, 36, 158, 235, 230, 98, 201, 165, 165, 165, 91, 175, 248, 39, 185, 128, 39, 39, 128, 313, 91, 36, 219, 130, 25, 130, 234, 234, 130, 234, 121, 205, 304, 94, 77, 64, 259, 60, 60, 60, 77, 242, 60, 145, 95, 270, 18, 91, 199, 159, 91, 235, 58, 249, 26, 123, 114, 29, 15, 191, 15, 30, 55, 55, 347, 4, 29, 15, 4, 341, 93, 7, 30, 23, 7, 121, 266, 178, 261, 70, 169, 25, 25, 158, 169, 25, 169, 270, 270, 13, 128, 327, 103, 55, 128, 103, 136, 159, 103, 327, 41, 32, 111, 111, 114, 173, 215, 173, 25, 173, 180, 114, 173, 173, 98, 93, 25, 160, 157, 159, 160, 159, 159, 160, 320, 35, 193, 221, 33, 36, 136, 248, 91, 215, 125, 215, 156, 68, 125, 125, 1, 287, 123, 94, 30, 184, 13, 30, 94, 123, 206, 12, 206, 289, 128, 122, 184, 128, 289, 178, 29, 26, 206, 178, 65, 206, 128, 192, 102, 197, 36, 94, 94, 155, 10, 36, 121, 280, 121, 368, 192, 121, 121, 179, 121, 36, 54, 192, 121, 192, 197, 118, 123, 224, 118, 10, 192, 10, 91, 269, 91, 49, 206, 184, 185, 62, 8, 49, 289, 30, 5, 55, 30, 42, 39, 220, 298, 42, 347, 42, 234, 42, 70, 42, 55, 321, 129, 172, 173, 172, 13, 98, 129, 325, 235, 284, 362, 129, 233, 345, 175, 261, 175, 60, 261, 58, 289, 99, 99, 99, 206, 99, 36, 175, 29, 25, 432, 125, 264, 168, 173, 69, 158, 273, 179, 164, 69, 158, 69, 8, 95, 192, 30, 164, 101, 44, 53, 273, 335, 273, 53, 45, 128, 45, 234, 123, 105, 103, 103, 224, 36, 90, 211, 282, 264, 91, 228, 91, 166, 264, 228, 398, 50, 101, 91, 264, 73, 36, 25, 73, 50, 50, 242, 36, 36, 58, 165, 204, 353, 165, 125, 320, 128, 298, 298, 180, 128, 60, 102, 30, 30, 53, 179, 234, 325, 234, 175, 21, 250, 215, 103, 21, 21, 250, 91, 211, 91, 313, 301, 323, 215, 228, 160, 29, 29, 81, 53, 180, 146, 248, 66, 159, 39, 98, 323, 98, 36, 95, 218, 234, 39, 82, 82, 230, 62, 13, 62, 230, 13, 30, 98, 0, 8, 98, 8, 98, 91, 267, 121, 197, 30, 78, 27, 78, 102, 27, 298, 160, 103, 264, 264, 264, 175, 17, 273, 273, 165, 31, 160, 17, 99, 17, 99, 234, 31, 17, 99, 36, 26, 128, 29, 214, 353, 264, 102, 36, 102, 264, 264, 273, 273, 4, 16, 138, 138, 264, 128, 313, 25, 420, 60, 10, 280, 264, 60, 60, 103, 178, 125, 178, 29, 327, 29, 36, 30, 36, 4, 52, 183, 183, 173, 52, 31, 173, 31, 158, 31, 158, 31, 9, 31, 31, 353, 31, 353, 173, 415, 9, 17, 222, 31, 103, 31, 165, 27, 31, 31, 165, 27, 27, 206, 31, 31, 4, 4, 30, 4, 4, 264, 185, 159, 310, 273, 310, 173, 40, 4, 173, 4, 173, 4, 250, 250, 62, 188, 119, 250, 233, 62, 121, 105, 105, 54, 103, 111, 291, 236, 236, 103, 297, 36, 26, 316, 69, 183, 158, 206, 129, 160, 129, 184, 55, 179, 279, 11, 179, 347, 160, 184, 129, 179, 351, 179, 353, 179, 129, 129, 351, 11, 111, 93, 93, 235, 103, 173, 53, 93, 50, 111, 86, 123, 94, 36, 183, 60, 55, 55, 178, 219, 253, 321, 178, 235, 235, 183, 183, 204, 321, 219, 160, 193, 335, 121, 70, 69, 295, 159, 297, 231, 121, 231, 136, 353, 136, 121, 279, 215, 366, 215, 353, 159, 353, 353, 103, 31, 31, 298, 298, 30, 30, 165, 273, 25, 219, 35, 165, 259, 54, 36, 54, 54, 165, 71, 250, 327, 13, 289, 165, 196, 165, 165, 94, 233, 165, 94, 60, 165, 96, 220, 166, 271, 158, 397, 122, 53, 53, 137, 280, 272, 62, 30, 30, 30, 105, 102, 67, 140, 8, 67, 21, 270, 298, 69, 173, 298, 91, 179, 327, 86, 179, 88, 179, 179, 55, 123, 220, 233, 94, 94, 175, 13, 53, 13, 154, 191, 74, 83, 83, 325, 207, 83, 74, 83, 325, 74, 316, 388, 55, 55, 364, 55, 183, 434, 273, 273, 273, 164, 213, 11, 213, 327, 321, 21, 352, 185, 103, 13, 13, 55, 30, 323, 123, 178, 435, 178, 30, 175, 175, 30, 481, 527, 175, 125, 232, 306, 232, 206, 306, 364, 206, 270, 206, 232, 10, 30, 130, 160, 130, 347, 240, 30, 136, 130, 347, 136, 279, 298, 206, 30, 103, 273, 241, 70, 206, 306, 434, 206, 94, 94, 156, 161, 321, 321, 64, 161, 13, 183, 183, 83, 161, 13, 169, 13, 159, 36, 173, 159, 36, 36, 230, 235, 235, 159, 159, 335, 312, 42, 342, 264, 39, 39, 39, 34, 298, 36, 36, 252, 164, 29, 493, 29, 387, 387, 435, 493, 132, 273, 105, 132, 74, 73, 206, 234, 273, 206, 95, 15, 280, 280, 280, 280, 397, 273, 273, 242, 397, 280, 397, 397, 397, 273, 397, 280, 230, 137, 353, 67, 81, 137, 137, 353, 259, 312, 114, 164, 164, 25, 77, 21, 77, 165, 30, 30, 231, 234, 121, 234, 312, 121, 364, 136, 123, 123, 136, 123, 136, 150, 264, 285, 30, 166, 93, 30, 39, 224, 136, 39, 355, 355, 397, 67, 67, 25, 67, 25, 298, 11, 67, 264, 374, 99, 150, 321, 67, 70, 67, 295, 150, 29, 321, 150, 70, 29, 142, 355, 311, 173, 13, 253, 103, 114, 114, 70, 192, 22, 128, 128, 183, 184, 70, 77, 215, 102, 292, 30, 123, 279, 292, 142, 33, 215, 102, 468, 123, 468, 473, 30, 292, 215, 30, 213, 443, 473, 215, 234, 279, 279, 279, 279, 265, 443, 206, 66, 313, 34, 30, 206, 30, 51, 15, 206, 41, 434, 41, 398, 67, 30, 301, 67, 36, 3, 285, 437, 136, 136, 22, 136, 145, 365, 323, 323, 145, 136, 22, 453, 99, 323, 353, 9, 258, 323, 231, 128, 231, 382, 150, 420, 39, 94, 29, 29, 353, 22, 22, 347, 353, 39, 29, 22, 183, 8, 284, 355, 388, 284, 60, 64, 99, 60, 64, 150, 95, 150, 364, 150, 95, 150, 6, 236, 383, 544, 81, 206, 388, 206, 58, 159, 99, 231, 228, 363, 363, 121, 99, 121, 121, 99, 422, 544, 273, 173, 121, 427, 102, 121, 235, 284, 179, 25, 197, 25, 179, 511, 70, 368, 70, 25, 388, 123, 368, 159, 213, 410, 159, 236, 127, 159, 21, 373, 184, 424, 327, 250, 176, 176, 175, 284, 316, 176, 284, 327, 111, 250, 284, 175, 175, 264, 111, 176, 219, 111, 427, 427, 176, 284, 427, 353, 428, 55, 184, 493, 158, 136, 99, 287, 264, 334, 264, 213, 213, 292, 481, 93, 264, 292, 295, 295, 6, 367, 279, 173, 308, 285, 158, 308, 335, 299, 137, 137, 572, 41, 137, 137, 41, 94, 335, 220, 36, 224, 420, 36, 265, 265, 91, 91, 71, 123, 264, 91, 91, 123, 107, 30, 22, 292, 35, 241, 356, 298, 14, 298, 441, 35, 121, 71, 63, 130, 63, 488, 363, 71, 63, 307, 194, 71, 71, 220, 121, 125, 71, 220, 71, 71, 71, 71, 235, 265, 353, 128, 155, 128, 420, 400, 130, 173, 183, 183, 184, 130, 173, 183, 13, 183, 130, 130, 183, 183, 353, 353, 183, 242, 183, 183, 306, 324, 324, 321, 306, 321, 6, 6, 128, 306, 242, 242, 306, 183, 183, 6, 183, 321, 486, 183, 164, 30, 78, 138, 158, 138, 34, 206, 362, 55, 70, 67, 21, 375, 136, 298, 81, 298, 298, 298, 230, 121, 30, 230, 311, 240, 311, 311, 158, 204, 136, 136, 184, 136, 264, 311, 311, 312, 312, 72, 311, 175, 264, 91, 175, 264, 121, 461, 312, 312, 238, 475, 350, 512, 350, 312, 313, 350, 312, 366, 294, 30, 253, 253, 253, 388, 158, 388, 22, 388, 22, 388, 103, 321, 321, 253, 7, 437, 103, 114, 242, 114, 114, 242, 114, 114, 242, 242, 242, 306, 242, 114, 7, 353, 335, 27, 241, 299, 312, 364, 506, 409, 94, 462, 230, 462, 243, 230, 175, 175, 462, 461, 230, 428, 426, 175, 175, 165, 175, 175, 372, 183, 572, 102, 85, 102, 538, 206, 376, 85, 85, 284, 85, 85, 284, 398, 83, 160, 265, 308, 398, 310, 583, 289, 279, 273, 285, 490, 490, 211, 292, 292, 158, 398, 30, 220, 169, 368, 368, 368, 169, 159, 368, 93, 368, 368, 93, 169, 368, 368, 443, 368, 298, 443, 368, 298, 538, 345, 345, 311, 178, 54, 311, 215, 178, 175, 222, 264, 475, 264, 264, 475, 478, 289, 63, 236, 63, 299, 231, 296, 397, 299, 158, 36, 164, 164, 21, 492, 21, 164, 21, 164, 403, 26, 26, 588, 179, 234, 169, 465, 295, 67, 41, 353, 295, 538, 161, 185, 306, 323, 68, 420, 323, 82, 241, 241, 36, 53, 493, 301, 292, 241, 250, 63, 63, 103, 442, 353, 185, 353, 321, 353, 185, 353, 353, 185, 409, 353, 589, 34, 271, 271, 34, 86, 34, 34, 353, 353, 39, 414, 4, 95, 95, 4, 225, 95, 4, 121, 30, 552, 136, 159, 159, 514, 159, 159, 54, 514, 206, 136, 206, 159, 74, 235, 235, 312, 54, 312, 42, 156, 422, 629, 54, 465, 265, 165, 250, 35, 165, 175, 659, 175, 175, 8, 8, 8, 8, 206, 206, 206, 50, 435, 206, 432, 230, 230, 234, 230, 94, 299, 299, 285, 184, 41, 93, 299, 299, 285, 41, 285, 158, 285, 206, 299, 41, 36, 396, 364, 364, 120, 396, 514, 91, 382, 538, 807, 717, 22, 93, 412, 54, 215, 54, 298, 308, 148, 298, 148, 298, 308, 102, 656, 6, 148, 745, 128, 298, 64, 407, 273, 41, 172, 64, 234, 250, 398, 181, 445, 95, 236, 441, 477, 504, 102, 196, 137, 364, 60, 453, 137, 364, 367, 334, 364, 299, 196, 397, 630, 589, 589, 196, 646, 337, 235, 128, 128, 343, 289, 235, 324, 427, 324, 58, 215, 215, 461, 425, 461, 387, 440, 285, 440, 440, 285, 387, 632, 325, 325, 440, 461, 425, 425, 387, 627, 191, 285, 440, 308, 55, 219, 280, 308, 265, 538, 183, 121, 30, 236, 206, 30, 455, 236, 30, 30, 705, 83, 228, 280, 468, 132, 8, 132, 132, 128, 409, 173, 353, 132, 409, 35, 128, 450, 137, 398, 67, 432, 423, 235, 235, 388, 306, 93, 93, 452, 300, 190, 13, 452, 388, 30, 452, 13, 30, 13, 30, 306, 362, 234, 721, 635, 809, 784, 67, 498, 498, 67, 353, 635, 67, 183, 159, 445, 285, 183, 53, 183, 445, 265, 432, 57, 420, 432, 420, 477, 327, 55, 60, 105, 183, 218, 104, 104, 475, 239, 582, 151, 239, 104, 732, 41, 26, 784, 86, 300, 215, 36, 64, 86, 86, 675, 294, 64, 86, 528, 550, 493, 565, 298, 230, 312, 295, 538, 298, 295, 230, 54, 374, 516, 441, 54, 54, 323, 401, 401, 382, 159, 837, 159, 54, 401, 592, 159, 401, 417, 610, 264, 150, 323, 452, 185, 323, 323, 185, 403, 185, 423, 165, 425, 219, 407, 270, 231, 99, 93, 231, 631, 756, 71, 364, 434, 213, 86, 102, 434, 102, 86, 23, 71, 335, 164, 323, 409, 381, 4, 124, 41, 424, 206, 41, 124, 41, 41, 703, 635, 124, 493, 41, 41, 487, 492, 124, 175, 124, 261, 600, 488, 261, 488, 261, 206, 677, 261, 308, 723, 908, 704, 691, 723, 488, 488, 441, 136, 476, 312, 136, 550, 572, 728, 550, 22, 312, 312, 22, 55, 413, 183, 280, 593, 191, 36, 36, 427, 36, 695, 592, 19, 544, 13, 468, 13, 544, 72, 437, 321, 266, 461, 266, 441, 230, 409, 93, 521, 521, 345, 235, 22, 142, 150, 102, 569, 235, 264, 91, 521, 264, 7, 102, 7, 498, 521, 235, 537, 235, 6, 241, 420, 420, 631, 41, 527, 103, 67, 337, 62, 264, 527, 131, 67, 174, 263, 264, 36, 36, 263, 581, 253, 465, 160, 286, 91, 160, 55, 4, 4, 631, 631, 608, 365, 465, 294, 427, 427, 335, 669, 669, 129, 93, 93, 93, 93, 74, 66, 758, 504, 347, 130, 505, 504, 143, 505, 550, 222, 13, 352, 529, 291, 538, 50, 68, 269, 130, 295, 130, 511, 295, 295, 130, 486, 132, 61, 206, 185, 368, 669, 22, 175, 492, 207, 373, 452, 432, 327, 89, 550, 496, 611, 527, 89, 527, 496, 550, 516, 516, 91, 136, 538, 264, 264, 124, 264, 264, 264, 264, 264, 535, 264, 150, 285, 398, 285, 582, 398, 475, 81, 694, 694, 64, 81, 694, 234, 607, 723, 513, 234, 64, 581, 64, 124, 64, 607, 234, 723, 717, 367, 64, 513, 607, 488, 183, 488, 450, 183, 550, 286, 183, 363, 286, 414, 67, 449, 449, 366, 215, 235, 95, 295, 295, 41, 335, 21, 445, 225, 21, 295, 372, 749, 461, 53, 481, 397, 427, 427, 427, 714, 481, 714, 427, 717, 165, 245, 486, 415, 245, 415, 486, 274, 415, 441, 456, 300, 548, 300, 422, 422, 757, 11, 74, 430, 430, 136, 409, 430, 749, 191, 819, 592, 136, 364, 465, 231, 231, 918, 160, 589, 160, 160, 465, 465, 231, 157, 538, 538, 259, 538, 326, 22, 22, 22, 179, 22, 22, 550, 179, 287, 287, 417, 327, 498, 498, 287, 488, 327, 538, 488, 583, 488, 287, 335, 287, 335, 287, 41, 287, 335, 287, 327, 441, 335, 287, 488, 538, 327, 498, 8, 8, 374, 8, 64, 427, 8, 374, 417, 760, 409, 373, 160, 423, 206, 160, 106, 499, 160, 271, 235, 160, 590, 353, 695, 478, 619, 590, 353, 13, 63, 189, 420, 605, 427, 643, 121, 280, 415, 121, 415, 595, 417, 121, 398, 55, 330, 463, 463, 123, 353, 330, 582, 309, 582, 582, 405, 330, 550, 405, 582, 353, 309, 308, 60, 353, 7, 60, 71, 353, 189, 183, 183, 183, 582, 755, 189, 437, 287, 189, 183, 668, 481, 384, 384, 481, 481, 481, 477, 582, 582, 499, 650, 481, 121, 461, 231, 36, 235, 36, 413, 235, 209, 36, 689, 114, 353, 353, 235, 592, 36, 353, 413, 209, 70, 308, 70, 699, 308, 70, 213, 292, 86, 689, 465, 55, 508, 128, 452, 29, 41, 681, 573, 352, 21, 21, 648, 648, 69, 509, 409, 21, 264, 21, 509, 514, 514, 409, 21, 264, 443, 443, 427, 160, 433, 663, 433, 231, 646, 185, 482, 646, 433, 13, 398, 172, 234, 42, 491, 172, 234, 234, 832, 775, 172, 196, 335, 822, 461, 298, 461, 364, 1120, 537, 169, 169, 364, 694, 219, 612, 231, 740, 42, 235, 321, 279, 960, 279, 353, 492, 159, 572, 321, 159, 287, 353, 287, 287, 206, 206, 321, 287, 159, 321, 492, 159, 55, 572, 600, 270, 492, 784, 173, 91, 91, 443, 443, 582, 261, 497, 572, 91, 555, 352, 206, 261, 555, 285, 91, 555, 497, 83, 91, 619, 353, 488, 112, 4, 592, 295, 295, 488, 235, 231, 769, 568, 581, 671, 451, 451, 483, 299, 1011, 432, 422, 207, 106, 701, 508, 555, 508, 555, 125, 870, 555, 589, 508, 125, 749, 482, 125, 125, 130, 544, 643, 643, 544, 488, 22, 643, 130, 335, 544, 22, 130, 544, 544, 488, 426, 426, 4, 180, 4, 695, 35, 54, 433, 500, 592, 433, 262, 94, 401, 401, 106, 216, 216, 106, 521, 102, 462, 518, 271, 475, 365, 193, 648, 206, 424, 206, 193, 206, 206, 424, 299, 590, 590, 364, 621, 67, 538, 488, 567, 51, 51, 513, 194, 81, 488, 486, 289, 567, 563, 749, 563, 338, 338, 502, 563, 822, 338, 563, 338, 502, 201, 230, 201, 533, 445, 175, 201, 175, 13, 85, 960, 103, 85, 175, 30, 445, 445, 175, 573, 196, 877, 287, 356, 678, 235, 489, 312, 572, 264, 717, 138, 295, 6, 295, 523, 55, 165, 165, 295, 138, 663, 6, 295, 6, 353, 138, 6, 138, 169, 129, 784, 12, 129, 194, 605, 784, 445, 234, 627, 563, 689, 627, 647, 570, 627, 570, 647, 206, 234, 215, 234, 816, 627, 816, 234, 627, 215, 234, 627, 264, 427, 427, 30, 424, 161, 161, 916, 740, 180, 616, 481, 514, 383, 265, 481, 164, 650, 121, 582, 689, 420, 669, 589, 420, 788, 549, 165, 734, 280, 224, 146, 681, 788, 184, 398, 784, 4, 398, 417, 417, 398, 636, 784, 417, 81, 398, 417, 81, 185, 827, 420, 241, 420, 41, 185, 185, 718, 241, 101, 185, 185, 241, 241, 241, 241, 241, 185, 324, 420, 420, 1011, 420, 827, 241, 184, 563, 241, 183, 285, 529, 285, 808, 822, 891, 822, 488, 285, 486, 619, 55, 869, 39, 567, 39, 289, 203, 158, 289, 710, 818, 158, 818, 355, 29, 409, 203, 308, 648, 792, 308, 308, 91, 308, 6, 592, 792, 106, 106, 308, 41, 178, 91, 751, 91, 259, 734, 166, 36, 327, 166, 230, 205, 205, 172, 128, 230, 432, 623, 838, 623, 432, 278, 432, 42, 916, 432, 694, 623, 352, 452, 93, 314, 93, 93, 641, 88, 970, 914, 230, 61, 159, 270, 159, 493, 159, 755, 159, 409, 30, 30, 836, 128, 241, 99, 102, 984, 538, 102, 102, 273, 639, 838, 102, 102, 136, 637, 508, 627, 285, 465, 327, 327, 21, 749, 327, 749, 21, 845, 21, 21, 409, 749, 1367, 806, 616, 714, 253, 616, 714, 714, 112, 375, 21, 112, 375, 375, 51, 51, 51, 51, 393, 206, 870, 713, 193, 802, 21, 1061, 42, 382, 42, 543, 876, 42, 876, 382, 696, 543, 635, 490, 353, 353, 417, 64, 1257, 271, 64, 377, 127, 127, 537, 417, 905, 353, 538, 465, 605, 876, 427, 324, 514, 852, 427, 53, 427, 557, 173, 173, 7, 1274, 563, 31, 31, 31, 745, 392, 289, 230, 230, 230, 91, 218, 327, 420, 420, 128, 901, 552, 420, 230, 608, 552, 476, 347, 476, 231, 159, 137, 716, 648, 716, 627, 740, 718, 679, 679, 6, 718, 740, 6, 189, 679, 125, 159, 757, 1191, 409, 175, 250, 409, 67, 324, 681, 605, 550, 398, 550, 931, 478, 174, 21, 316, 91, 316, 654, 409, 425, 425, 699, 61, 699, 321, 698, 321, 698, 61, 425, 699, 321, 409, 699, 299, 335, 321, 335, 61, 698, 699, 654, 698, 299, 425, 231, 14, 121, 515, 121, 14, 165, 81, 409, 189, 81, 373, 465, 463, 1055, 507, 81, 81, 189, 1246, 321, 409, 886, 104, 842, 689, 300, 740, 380, 656, 656, 832, 656, 380, 300, 300, 206, 187, 175, 142, 465, 206, 271, 468, 215, 560, 83, 215, 83, 215, 215, 83, 175, 215, 83, 83, 111, 206, 756, 559, 756, 1367, 206, 559, 1015, 559, 559, 946, 1015, 548, 559, 756, 1043, 756, 698, 159, 414, 308, 458, 997, 663, 663, 347, 39, 755, 838, 323, 755, 323, 159, 159, 717, 159, 21, 41, 128, 516, 159, 717, 71, 870, 755, 159, 740, 717, 374, 516, 740, 51, 148, 335, 148, 335, 791, 120, 364, 335, 335, 51, 120, 251, 538, 251, 971, 1395, 538, 78, 178, 538, 538, 918, 129, 918, 129, 538, 538, 656, 129, 538, 538, 129, 538, 1051, 538, 128, 838, 931, 998, 823, 1095, 334, 870, 334, 367, 550, 1061, 498, 745, 832, 498, 745, 716, 498, 498, 128, 997, 832, 716, 832, 130, 642, 616, 497, 432, 432, 432, 432, 642, 159, 432, 46, 230, 788, 160, 230, 478, 46, 693, 103, 920, 230, 589, 643, 160, 616, 432, 165, 165, 583, 592, 838, 784, 583, 710, 6, 583, 583, 6, 35, 230, 838, 592, 710, 6, 589, 230, 838, 30, 592, 583, 6, 583, 6, 6, 583, 30, 30, 6, 375, 375, 99, 36, 1158, 425, 662, 417, 681, 364, 375, 1025, 538, 822, 669, 893, 538, 538, 450, 409, 632, 527, 632, 563, 632, 527, 550, 71, 698, 550, 39, 550, 514, 537, 514, 537, 111, 41, 173, 592, 173, 648, 173, 173, 173, 1011, 514, 173, 173, 514, 166, 648, 355, 161, 166, 648, 497, 327, 327, 550, 650, 21, 425, 605, 555, 103, 425, 605, 842, 836, 1011, 636, 138, 756, 836, 756, 756, 353, 1011, 636, 636, 1158, 741, 741, 842, 756, 741, 1011, 677, 1011, 770, 366, 306, 488, 920, 920, 665, 775, 502, 500, 775, 775, 648, 364, 833, 207, 13, 93, 500, 364, 500, 665, 500, 93, 295, 183, 1293, 313, 272, 313, 279, 303, 93, 516, 93, 1013, 381, 6, 93, 93, 303, 259, 643, 168, 673, 230, 1261, 230, 230, 673, 1060, 1079, 1079, 550, 741, 741, 590, 527, 741, 741, 442, 741, 442, 848, 741, 590, 925, 219, 527, 925, 335, 442, 590, 239, 590, 590, 590, 239, 527, 239, 1033, 230, 734, 241, 741, 230, 549, 548, 1015, 1015, 32, 36, 433, 465, 724, 465, 73, 73, 73, 465, 808, 73, 592, 1430, 250, 154, 154, 250, 538, 353, 353, 353, 353, 353, 175, 194, 206, 538, 632, 1163, 960, 175, 175, 538, 452, 632, 1163, 175, 538, 960, 194, 175, 194, 632, 960, 632, 94, 632, 461, 960, 1163, 1163, 461, 632, 960, 755, 707, 105, 382, 625, 382, 382, 784, 707, 871, 559, 387, 387, 871, 784, 559, 784, 88, 36, 570, 314, 1028, 975, 335, 335, 398, 573, 573, 573, 21, 215, 562, 738, 612, 424, 21, 103, 788, 870, 912, 23, 186, 757, 73, 818, 23, 73, 563, 952, 262, 563, 137, 262, 1022, 952, 137, 1273, 442, 952, 604, 137, 308, 384, 913, 235, 325, 695, 398, 95, 668, 776, 713, 309, 691, 22, 10, 364, 682, 682, 578, 481, 1252, 1072, 1252, 825, 578, 825, 1072, 1149, 592, 273, 387, 273, 427, 155, 1204, 50, 452, 50, 1142, 50, 367, 452, 1142, 611, 367, 50, 50, 367, 50, 1675, 99, 367, 50, 1501, 1099, 830, 681, 689, 917, 1089, 453, 425, 235, 918, 538, 550, 335, 161, 387, 859, 324, 21, 838, 859, 1123, 21, 723, 21, 335, 335, 206, 21, 364, 1426, 21, 838, 838, 335, 364, 21, 21, 859, 920, 838, 838, 397, 81, 639, 397, 397, 588, 933, 933, 784, 222, 830, 36, 36, 222, 1251, 266, 36, 146, 266, 366, 581, 605, 366, 22, 966, 681, 681, 433, 730, 1013, 550, 21, 21, 938, 488, 516, 21, 21, 656, 420, 323, 323, 323, 327, 323, 918, 581, 581, 830, 361, 830, 364, 259, 364, 496, 496, 364, 691, 705, 691, 475, 427, 1145, 600, 179, 427, 527, 749, 869, 689, 335, 347, 220, 298, 689, 1426, 183, 554, 55, 832, 550, 550, 165, 770, 957, 67, 1386, 219, 683, 683, 355, 683, 355, 355, 738, 355, 842, 931, 266, 325, 349, 256, 1113, 256, 423, 960, 554, 554, 325, 554, 508, 22, 142, 22, 508, 916, 767, 55, 1529, 767, 55, 1286, 93, 972, 550, 931, 1286, 1286, 972, 93, 1286, 1392, 890, 93, 1286, 93, 1286, 972, 374, 931, 890, 808, 779, 975, 975, 175, 173, 4, 681, 383, 1367, 173, 383, 1367, 383, 173, 175, 69, 238, 146, 238, 36, 148, 888, 238, 173, 238, 148, 238, 888, 185, 925, 925, 797, 925, 815, 925, 469, 784, 289, 784, 925, 797, 925, 925, 1093, 925, 925, 925, 1163, 797, 797, 815, 925, 1093, 784, 636, 663, 925, 187, 922, 316, 1380, 709, 916, 916, 187, 355, 948, 916, 187, 916, 916, 948, 948, 916, 355, 316, 316, 334, 300, 1461, 36, 583, 1179, 699, 235, 858, 583, 699, 858, 699, 1189, 1256, 1189, 699, 797, 699, 699, 699, 699, 427, 488, 427, 488, 175, 815, 656, 656, 150, 322, 465, 322, 870, 465, 1099, 582, 665, 767, 749, 635, 749, 600, 1448, 36, 502, 235, 502, 355, 502, 355, 355, 355, 172, 355, 355, 95, 866, 425, 393, 1165, 42, 42, 42, 393, 939, 909, 909, 836, 552, 424, 1333, 852, 897, 1426, 1333, 1446, 1426, 997, 1011, 852, 1198, 55, 32, 239, 588, 681, 681, 239, 1401, 32, 588, 239, 462, 286, 1260, 984, 1160, 960, 960, 486, 828, 462, 960, 1199, 581, 850, 663, 581, 751, 581, 581, 1571, 252, 252, 1283, 264, 430, 264, 430, 430, 842, 252, 745, 21, 307, 681, 1592, 488, 857, 857, 1161, 857, 857, 857, 138, 374, 374, 1196, 374, 1903, 1782, 1626, 414, 112, 1477, 1040, 356, 775, 414, 414, 112, 356, 775, 435, 338, 1066, 689, 689, 1501, 689, 1249, 205, 689, 765, 220, 308, 917, 308, 308, 220, 327, 387, 838, 917, 917, 917, 220, 662, 308, 220, 387, 387, 220, 220, 308, 308, 308, 387, 1009, 1745, 822, 279, 554, 1129, 543, 383, 870, 1425, 241, 870, 241, 383, 716, 592, 21, 21, 592, 425, 550, 550, 550, 427, 230, 57, 483, 784, 860, 57, 308, 57, 486, 870, 447, 486, 433, 433, 870, 433, 997, 486, 443, 433, 433, 997, 486, 1292, 47, 708, 81, 895, 394, 81, 935, 81, 81, 81, 374, 986, 916, 1103, 1095, 465, 495, 916, 667, 1745, 518, 220, 1338, 220, 734, 1294, 741, 166, 828, 741, 741, 1165, 1371, 1371, 471, 1371, 647, 1142, 1878, 1878, 1371, 1371, 822, 66, 327, 158, 427, 427, 465, 465, 676, 676, 30, 30, 676, 676, 893, 1592, 93, 455, 308, 582, 695, 582, 629, 582, 85, 1179, 85, 85, 1592, 1179, 280, 1027, 681, 398, 1027, 398, 295, 784, 740, 509, 425, 968, 509, 46, 833, 842, 401, 184, 401, 464, 6, 1501, 1501, 550, 538, 883, 538, 883, 883, 883, 1129, 550, 550, 333, 689, 948, 21, 21, 241, 2557, 2094, 273, 308, 58, 863, 893, 1086, 409, 136, 1086, 592, 592, 830, 830, 883, 830, 277, 68, 689, 902, 277, 453, 507, 129, 689, 630, 664, 550, 128, 1626, 1626, 128, 902, 312, 589, 755, 755, 589, 755, 407, 1782, 589, 784, 1516, 1118, 407, 407, 1447, 589, 235, 755, 1191, 235, 235, 407, 128, 589, 1118, 21, 383, 1331, 691, 481, 383, 1129, 1129, 1261, 1104, 1378, 1129, 784, 1129, 1261, 1129, 947, 1129, 784, 784, 1129, 1129, 35, 1104, 35, 866, 1129, 1129, 64, 481, 730, 1260, 481, 970, 481, 481, 481, 481, 863, 481, 681, 699, 863, 486, 681, 481, 481, 55, 55, 235, 1364, 944, 632, 822, 401, 822, 952, 822, 822, 99, 550, 2240, 550, 70, 891, 860, 860, 550, 550, 916, 1176, 1530, 425, 1530, 916, 628, 1583, 916, 628, 916, 916, 628, 628, 425, 916, 1062, 1265, 916, 916, 916, 280, 461, 916, 916, 1583, 628, 1062, 916, 916, 677, 1297, 924, 1260, 83, 1260, 482, 433, 234, 462, 323, 1656, 997, 323, 323, 931, 838, 931, 1933, 1391, 367, 323, 931, 1391, 1391, 103, 1116, 1116, 1116, 769, 1195, 1218, 312, 791, 312, 741, 791, 997, 312, 334, 334, 312, 287, 287, 633, 1397, 1426, 605, 1431, 327, 592, 705, 1194, 592, 1097, 1118, 1503, 1267, 1267, 1267, 618, 1229, 734, 1089, 785, 1089, 1129, 1148, 1148, 1089, 915, 1148, 1129, 1148, 1011, 1011, 1229, 871, 1560, 1560, 1560, 563, 1537, 1009, 1560, 632, 985, 592, 1308, 592, 882, 145, 145, 397, 837, 383, 592, 592, 832, 36, 2714, 2107, 1588, 1347, 36, 36, 1443, 1453, 334, 2230, 1588, 1169, 650, 1169, 2107, 425, 425, 891, 891, 425, 2532, 679, 274, 274, 274, 325, 274, 1297, 194, 1297, 627, 314, 917, 314, 314, 1501, 414, 1490, 1036, 592, 1036, 1025, 901, 1218, 1025, 901, 280, 592, 592, 901, 1461, 159, 159, 159, 2076, 1066, 1176, 1176, 516, 327, 516, 1179, 1176, 899, 1176, 1176, 323, 1187, 1229, 663, 1229, 504, 1229, 916, 1229, 916, 1661, 41, 36, 278, 1027, 648, 648, 648, 1626, 648, 646, 1179, 1580, 1061, 1514, 1008, 1741, 2076, 1514, 1008, 952, 1089, 427, 952, 427, 1083, 425, 427, 1089, 1083, 425, 427, 425, 230, 920, 1678, 920, 1678, 189, 189, 953, 189, 133, 189, 1075, 189, 189, 133, 1264, 725, 189, 1629, 189, 808, 230, 230, 2179, 770, 230, 770, 230, 21, 21, 784, 1118, 230, 230, 230, 770, 1118, 986, 808, 916, 30, 327, 918, 679, 414, 916, 1165, 1355, 916, 755, 733, 433, 1490, 433, 433, 433, 605, 433, 433, 433, 1446, 679, 206, 433, 21, 2452, 206, 206, 433, 1894, 206, 822, 206, 2073, 206, 206, 21, 822, 21, 206, 206, 21, 383, 1513, 375, 1347, 432, 1589, 172, 954, 242, 1256, 1256, 1248, 1256, 1256, 1248, 1248, 1256, 842, 13, 592, 13, 842, 1291, 592, 21, 175, 13, 592, 13, 13, 1426, 13, 1541, 445, 808, 808, 863, 647, 219, 1592, 1029, 1225, 917, 1963, 1129, 555, 1313, 550, 660, 550, 220, 660, 552, 663, 220, 533, 220, 383, 550, 1278, 1495, 636, 842, 1036, 425, 842, 425, 1537, 1278, 842, 554, 1508, 636, 554, 301, 842, 792, 1392, 1021, 284, 1172, 997, 1021, 103, 1316, 308, 1210, 848, 848, 1089, 1089, 848, 848, 67, 1029, 827, 1029, 2078, 827, 1312, 1029, 827, 590, 872, 1312, 427, 67, 67, 67, 67, 872, 827, 872, 2126, 1436, 26, 2126, 67, 1072, 2126, 1610, 872, 1620, 883, 883, 1397, 1189, 555, 555, 563, 1189, 555, 640, 555, 640, 1089, 1089, 610, 610, 1585, 610, 1355, 610, 1015, 616, 925, 1015, 482, 230, 707, 231, 888, 1355, 589, 1379, 151, 931, 1486, 1486, 393, 235, 960, 590, 235, 960, 422, 142, 285, 285, 327, 327, 442, 2009, 822, 445, 822, 567, 888, 2611, 1537, 323, 55, 1537, 323, 888, 2611, 323, 1537, 323, 58, 445, 593, 2045, 593, 58, 47, 770, 842, 47, 47, 842, 842, 648, 2557, 173, 689, 2291, 1446, 2085, 2557, 2557, 2291, 1780, 1535, 2291, 2391, 808, 691, 1295, 1165, 983, 948, 2000, 948, 983, 983, 2225, 2000, 983, 983, 705, 948, 2000, 1795, 1592, 478, 592, 1795, 1795, 663, 478, 1790, 478, 592, 1592, 173, 901, 312, 4, 1606, 173, 838, 754, 754, 128, 550, 1166, 551, 1480, 550, 550, 1875, 1957, 1166, 902, 1875, 550, 550, 551, 2632, 551, 1875, 1875, 551, 2891, 2159, 2632, 3231, 551, 815, 150, 1654, 1059, 1059, 734, 770, 555, 1592, 555, 2059, 770, 770, 1803, 627, 627, 627, 2059, 931, 1272, 427, 1606, 1272, 1606, 1187, 1204, 397, 822, 21, 1645, 263, 263, 822, 263, 1645, 280, 263, 605, 1645, 2014, 21, 21, 1029, 263, 1916, 2291, 397, 397, 496, 270, 270, 1319, 264, 1638, 264, 986, 1278, 1397, 1278, 1191, 409, 1191, 740, 1191, 754, 754, 387, 63, 948, 666, 666, 1198, 548, 63, 1248, 285, 1248, 169, 1248, 1248, 285, 918, 224, 285, 1426, 1671, 514, 514, 717, 514, 51, 1521, 1745, 51, 605, 1191, 51, 128, 1191, 51, 51, 1521, 267, 513, 952, 966, 1671, 897, 51, 71, 592, 986, 986, 1121, 592, 280, 2000, 2000, 1165, 1165, 1165, 1818, 222, 1818, 1165, 1252, 506, 327, 443, 432, 1291, 1291, 2755, 1413, 520, 1318, 227, 1047, 828, 520, 347, 1364, 136, 136, 452, 457, 457, 132, 457, 488, 1087, 1013, 2225, 32, 1571, 2009, 483, 67, 483, 740, 740, 1013, 2854, 866, 32, 2861, 866, 887, 32, 2444, 740, 32, 32, 866, 2225, 866, 32, 1571, 2627, 32, 850, 1675, 569, 1158, 32, 1158, 1797, 2641, 1565, 1158, 569, 1797, 1158, 1797, 55, 1703, 42, 55, 2562, 675, 1703, 42, 55, 749, 488, 488, 347, 1206, 1286, 1286, 488, 488, 1206, 1286, 1206, 1286, 550, 550, 1790, 860, 550, 2452, 550, 550, 2765, 1089, 1633, 797, 2244, 1313, 194, 2129, 194, 194, 194, 818, 32, 194, 450, 1313, 2387, 194, 1227, 2387, 308, 2232, 526, 476, 278, 830, 830, 194, 830, 194, 278, 194, 714, 476, 830, 714, 830, 278, 830, 2532, 1218, 1759, 1446, 960, 1747, 187, 1446, 1759, 960, 105, 1446, 1446, 1271, 1446, 960, 960, 1218, 1446, 1446, 105, 1446, 960, 488, 1446, 427, 534, 842, 1969, 2460, 1969, 842, 842, 1969, 427, 941, 2160, 427, 230, 938, 2075, 1675, 1675, 895, 1675, 34, 129, 1811, 239, 749, 1957, 2271, 749, 1908, 129, 239, 239, 129, 129, 2271, 2426, 1355, 1756, 194, 1583, 194, 194, 1583, 194, 1355, 194, 1628, 2221, 1269, 2425, 1756, 1355, 1355, 1583, 1033, 427, 582, 30, 582, 582, 935, 1444, 1962, 915, 733, 915, 938, 1962, 767, 353, 1630, 1962, 1962, 563, 733, 563, 733, 353, 822, 1630, 740, 2076, 2076, 2076, 589, 589, 2636, 866, 589, 947, 1528, 125, 273, 1058, 1058, 1161, 1635, 1355, 1161, 1161, 1355, 1355, 650, 1206, 1206, 784, 784, 784, 784, 784, 412, 461, 412, 2240, 412, 679, 891, 461, 679, 679, 189, 189, 1933, 1651, 2515, 189, 1386, 538, 1386, 1386, 1187, 1386, 2423, 2601, 2285, 175, 175, 2331, 194, 3079, 384, 538, 2365, 2294, 538, 2166, 1841, 3326, 1256, 3923, 976, 85, 550, 550, 1295, 863, 863, 550, 1249, 550, 1759, 146, 1069, 920, 2633, 885, 885, 1514, 1489, 166, 1514, 2041, 885, 2456, 885, 2041, 1081, 1948, 362, 550, 94, 324, 2308, 94, 2386, 94, 550, 874, 1329, 1759, 2280, 1487, 493, 493, 2099, 2599, 1431, 1086, 1514, 1086, 2099, 1858, 368, 1330, 2599, 1858, 2846, 2846, 2907, 2846, 713, 713, 1854, 1123, 713, 713, 3010, 1123, 3010, 538, 713, 1123, 447, 822, 555, 2011, 493, 508, 2292, 555, 1736, 2135, 2704, 555, 2814, 555, 2000, 555, 555, 822, 914, 327, 679, 327, 648, 537, 2263, 931, 1496, 537, 1296, 1745, 1592, 1658, 1795, 650, 1592, 1745, 1745, 1658, 1592, 1745, 1592, 1745, 1658, 1338, 2124, 1592, 1745, 1745, 1745, 837, 1726, 2897, 1118, 1118, 230, 1118, 1118, 1118, 1388, 1748, 514, 128, 1165, 931, 514, 2974, 2041, 2387, 2041, 979, 185, 36, 1269, 550, 173, 812, 36, 1165, 2676, 2562, 1473, 2885, 1982, 1578, 1578, 383, 383, 2360, 383, 1578, 2360, 1584, 1982, 1578, 1578, 1578, 2019, 1036, 355, 724, 2023, 205, 303, 355, 1036, 1966, 355, 1036, 401, 401, 401, 830, 401, 849, 578, 401, 849, 849, 578, 1776, 1123, 552, 2632, 808, 1446, 1120, 373, 1529, 1483, 1057, 893, 1284, 1430, 1529, 1529, 2632, 1352, 2063, 1606, 1352, 1606, 2291, 3079, 2291, 1529, 506, 838, 1606, 1606, 1352, 1529, 1529, 1483, 1529, 1606, 1529, 259, 902, 259, 902, 612, 612, 284, 398, 2991, 1534, 1118, 1118, 1118, 1118, 1118, 734, 284, 2224, 398, 734, 284, 734, 398, 3031, 398, 734, 1707, 2643, 1344, 1477, 475, 1818, 194, 1894, 691, 1528, 1184, 1207, 1501, 6, 2069, 871, 2069, 3548, 1443, 2069, 2685, 3265, 1350, 3265, 2069, 2069, 128, 1313, 128, 663, 414, 1313, 414, 2000, 128, 2000, 663, 1313, 699, 1797, 550, 327, 550, 1526, 699, 327, 1797, 1526, 550, 550, 327, 550, 1426, 1426, 1426, 2285, 1123, 890, 728, 1707, 728, 728, 327, 253, 1187, 1281, 1364, 1571, 2170, 755, 3232, 925, 1496, 2170, 2170, 1125, 443, 902, 902, 925, 755, 2078, 2457, 902, 2059, 2170, 1643, 1129, 902, 902, 1643, 1129, 606, 36, 103, 338, 338, 1089, 338, 338, 338, 1089, 338, 36, 340, 1206, 1176, 2041, 833, 1854, 1916, 1916, 1501, 2132, 1736, 3065, 367, 1934, 833, 833, 833, 2041, 3017, 2147, 818, 1397, 828, 2147, 398, 828, 818, 1158, 818, 689, 327, 36, 1745, 2132, 582, 1475, 189, 582, 2132, 1191, 582, 2132, 1176, 1176, 516, 2610, 2230, 2230, 64, 1501, 537, 1501, 173, 2230, 2988, 1501, 2694, 2694, 537, 537, 173, 173, 1501, 537, 64, 173, 173, 64, 2230, 537, 2230, 537, 2230, 2230, 2069, 3142, 1645, 689, 1165, 1165, 1963, 514, 488, 1963, 1145, 235, 1145, 1078, 1145, 231, 2405, 552, 21, 57, 57, 57, 1297, 1455, 1988, 2310, 1885, 2854, 2014, 734, 1705, 734, 2854, 734, 677, 1988, 1660, 734, 677, 734, 677, 677, 734, 2854, 1355, 677, 1397, 2947, 2386, 1698, 128, 1698, 3028, 2386, 2437, 2947, 2386, 2643, 2386, 2804, 1188, 335, 746, 1187, 1187, 861, 2519, 1917, 2842, 1917, 675, 1308, 234, 1917, 314, 314, 2339, 2339, 2592, 2576, 902, 916, 2339, 916, 2339, 916, 2339, 916, 1089, 1089, 2644, 1221, 1221, 2446, 308, 308, 2225, 2225, 3192, 2225, 555, 1592, 1592, 555, 893, 555, 550, 770, 3622, 2291, 2291, 3419, 465, 250, 2842, 2291, 2291, 2291, 935, 160, 1271, 308, 325, 935, 1799, 1799, 1891, 2227, 1799, 1598, 112, 1415, 1840, 2014, 1822, 2014, 677, 1822, 1415, 1415, 1822, 2014, 2386, 2159, 1822, 1415, 1822, 179, 1976, 1033, 179, 1840, 2014, 1415, 1970, 1970, 1501, 563, 563, 563, 462, 563, 1970, 1158, 563, 563, 1541, 1238, 383, 235, 1158, 383, 1278, 383, 1898, 2938, 21, 2938, 1313, 2201, 2059, 423, 2059, 1313, 872, 1313, 2044, 89, 173, 3327, 1660, 2044, 1623, 173, 1114, 1114, 1592, 1868, 1651, 1811, 383, 3469, 1811, 1651, 869, 383, 383, 1651, 1651, 3223, 2166, 3469, 767, 383, 1811, 767, 2323, 3355, 1457, 3341, 2640, 2976, 2323, 3341, 2323, 2640, 103, 103, 1161, 1080, 2429, 370, 2018, 2854, 2429, 2166, 2429, 2094, 2207, 871, 1963, 1963, 2023, 2023, 2336, 663, 2893, 1580, 691, 663, 705, 2046, 2599, 409, 2295, 1118, 2494, 1118, 1950, 549, 2494, 2453, 2046, 2494, 2453, 2046, 2453, 2046, 409, 1118, 4952, 2291, 2225, 1894, 1423, 2498, 567, 4129, 1475, 1501, 795, 463, 2084, 828, 828, 232, 828, 232, 232, 1818, 1818, 666, 463, 232, 220, 220, 2162, 2162, 833, 4336, 913, 35, 913, 21, 2927, 886, 3037, 383, 886, 876, 1747, 383, 916, 916, 916, 2927, 916, 1747, 837, 1894, 717, 423, 481, 1894, 1059, 2262, 3206, 4700, 1059, 3304, 2262, 871, 1831, 871, 3304, 1059, 1158, 1934, 1158, 756, 1511, 41, 978, 1934, 2603, 720, 41, 756, 41, 325, 2611, 1158, 173, 1123, 1934, 1934, 1511, 2045, 2045, 2045, 1423, 3206, 3691, 2512, 3206, 2512, 2000, 1811, 2504, 2504, 2611, 2437, 2437, 2437, 1455, 893, 150, 2665, 1966, 605, 398, 2331, 1177, 516, 1962, 4241, 94, 1252, 760, 1292, 1962, 1373, 2000, 1990, 3684, 42, 1868, 3779, 1811, 1811, 2041, 3010, 5436, 1780, 2041, 1868, 1811, 1780, 1811, 1868, 1811, 2041, 1868, 1811, 5627, 4274, 1811, 1868, 4602, 1811, 1811, 1474, 2665, 235, 1474, 2665
B.7. Random Numbers

The two tables V0 and V1 described in Section B.5.4.1 are given below. Each entry is a 32-bit integer in decimal representation.

B.7.1. The table V0
 251291136, 3952231631, 3370958628, 4070167936, 123631495, 3351110283, 3218676425, 2011642291, 774603218, 2402805061, 1004366930, 1843948209, 428891132, 3746331984, 1591258008, 3067016507, 1433388735, 504005498, 2032657933, 3419319784,

 2805686246, 3102436986, 3808671154, 2501582075, 3978944421, 246043949, 4016898363, 649743608, 1974987508, 2651273766, 2357956801, 689605112, 715807172, 2722736134, 191939188, 3535520147, 3277019569, 1470435941, 3763101702, 3232409631,

 122701163, 3920852693, 782246947, 372121310, 2995604341, 2045698575, 2332962102, 4005368743, 218596347, 3415381967, 4207612806, 861117671, 3676575285, 2581671944, 3312220480, 681232419, 307306866, 4112503940, 1158111502, 709227802,

 2724140433, 4201101115, 4215970289, 4048876515, 3031661061, 1909085522, 510985033, 1361682810, 129243379, 3142379587, 2569842483, 3033268270, 1658118006, 932109358, 1982290045, 2983082771, 3007670818, 3448104768, 683749698, 778296777,

 1399125101, 1939403708, 1692176003, 3868299200, 1422476658, 593093658, 1878973865, 2526292949, 1591602827, 3986158854, 3964389521, 2695031039, 1942050155, 424618399, 1347204291, 2669179716, 2434425874, 2540801947, 1384069776, 4123580443,

 1523670218, 2708475297, 1046771089, 2229796016, 1255426612, 4213663089, 1521339547, 3041843489, 420130494, 10677091, 515623176, 3457502702, 2115821274, 2720124766, 3242576090, 854310108, 425973987, 325832382, 1796851292, 2462744411,

 1976681690, 1408671665, 1228817808, 3917210003, 263976645, 2593736473, 2471651269, 4291353919, 650792940, 1191583883, 3046561335, 2466530435, 2545983082, 969168436, 2019348792, 2268075521, 1169345068, 3250240009, 3963499681, 2560755113,

 911182396, 760842409, 3569308693, 2687243553, 381854665, 2613828404, 2761078866, 1456668111, 883760091, 3294951678, 1604598575, 1985308198, 1014570543, 2724959607, 3062518035, 3115293053, 138853680, 4160398285, 3322241130, 2068983570,

 2247491078, 3669524410, 1575146607, 828029864, 3732001371, 3422026452, 3370954177, 4006626915, 543812220, 1243116171, 3928372514, 2791443445, 4081325272, 2280435605, 885616073, 616452097, 3188863436, 2780382310, 2340014831, 1208439576,

 258356309, 3837963200, 2075009450, 3214181212, 3303882142, 880813252, 1355575717, 207231484, 2420803184, 358923368, 1617557768, 3272161958, 1771154147, 2842106362, 1751209208, 1421030790, 658316681, 194065839, 3241510581, 38625260,

 301875395, 4176141739, 297312930, 2137802113, 1502984205, 3669376622, 3728477036, 234652930, 2213589897, 2734638932, 1129721478, 3187422815, 2859178611, 3284308411, 3819792700, 3557526733, 451874476, 1740576081, 3592838701, 1709429513,

 3702918379, 3533351328, 1641660745, 179350258, 2380520112, 3936163904, 3685256204, 3156252216, 1854258901, 2861641019,\ 3176611298, 834787554, 331353807, 517858103, 3010168884, 4012642001, 2217188075, 3756943137, 3077882590, 2054995199,

 3081443129, 3895398812, 1141097543, 2376261053, 2626898255, 2554703076, 401233789, 1460049922, 678083952, 1064990737, 940909784, 1673396780, 528881783, 1712547446, 3629685652, 1358307511
B.7.2. The table V1

 807385413, 2043073223, 3336749796, 1302105833, 2278607931, 541015020, 1684564270, 372709334, 3508252125, 1768346005, 1270451292, 2603029534, 2049387273, 3891424859, 2152948345, 4114760273, 915180310, 3754787998, 700503826, 2131559305,

 1308908630, 224437350, 4065424007, 3638665944, 1679385496, 3431345226, 1779595665, 3068494238, 1424062773, 1033448464, 4050396853, 3302235057, 420600373, 2868446243, 311689386, 259047959, 4057180909, 1575367248, 4151214153, 110249784,

 3006865921, 4293710613, 3501256572, 998007483, 499288295, 1205710710, 2997199489, 640417429, 3044194711, 486690751, 2686640734, 2394526209, 2521660077, 49993987, 3843885867, 4201106668, 415906198, 19296841, 2402488407, 2137119134,

 1744097284, 579965637, 2037662632, 852173610, 2681403713, 1047144830, 2982173936, 910285038, 4187576520, 2589870048, 989448887, 3292758024, 506322719, 176010738, 1865471968, 2619324712, 564829442, 1996870325, 339697593, 4071072948,

 3618966336, 2111320126, 1093955153, 957978696, 892010560, 1854601078, 1873407527, 2498544695, 2694156259, 1927339682, 1650555729, 183933047, 3061444337, 2067387204, 228962564, 3904109414, 1595995433, 1780701372, 2463145963, 307281463,

 3237929991, 3852995239, 2398693510, 3754138664, 522074127, 146352474, 4104915256, 3029415884, 3545667983, 332038910, 976628269, 3123492423, 3041418372, 2258059298, 2139377204, 3243642973, 3226247917, 3674004636, 2698992189, 3453843574,

 1963216666, 3509855005, 2358481858, 747331248, 1957348676, 1097574450, 2435697214, 3870972145, 1888833893, 2914085525, 4161315584, 1273113343, 3269644828, 3681293816, 412536684, 1156034077, 3823026442, 1066971017, 3598330293, 1979273937,

 2079029895, 1195045909, 1071986421, 2712821515, 3377754595, 2184151095, 750918864, 2585729879, 4249895712, 1832579367, 1192240192, 946734366, 31230688, 3174399083, 3549375728, 1642430184, 1904857554, 861877404, 3277825584, 4267074718,

 3122860549, 666423581, 644189126, 226475395, 307789415, 1196105631, 3191691839, 782852669, 1608507813, 1847685900, 4069766876, 3931548641, 2526471011, 766865139, 2115084288, 4259411376, 3323683436, 568512177, 3736601419, 1800276898,

 4012458395, 1823982, 27980198, 2023839966, 869505096, 431161506, 1024804023, 1853869307, 3393537983, 1500703614, 3019471560, 1351086955, 3096933631, 3034634988, 2544598006, 1230942551, 3362230798, 159984793, 491590373, 3993872886,

 3681855622, 903593547, 3535062472, 1799803217, 772984149, 895863112, 1899036275, 4187322100, 101856048, 234650315, 3183125617, 3190039692, 525584357, 1286834489, 455810374, 1869181575, 922673938, 3877430102, 3422391938, 1414347295,

 1971054608, 3061798054, 830555096, 2822905141, 167033190, 1079139428, 4210126723, 3593797804, 429192890, 372093950, 1779187770, 3312189287, 204349348, 452421568, 2800540462, 3733109044, 1235082423, 1765319556, 3174729780, 3762994475,

 3171962488, 442160826, 198349622, 45942637, 1324086311, 2901868599, 678860040, 3812229107, 19936821, 1119590141, 3640121682, 3545931032, 2102949142, 2828208598, 3603378023, 4135048896

Annex <C> (informative):
FEC decoder specification

C.1 General

This section describes an efficient decoding algorithm for the Raptor codes described in this specification. Note that each received encoding symbol can be considered as the value of an equation amongst the intermediate symbols. From these simultaneous equations, and the known pre-coding relationships amongst the intermediate symbols, any algorithm for solving simultaneous equations can successfully decode the intermediate symbols and hence the source symbols. However, the algorithm chosen has a major effect on the computational efficiency of the decoding.
Complete recovery is only possible but not guaranteed, if the number of received encoding symbols is at least as large as the number of source symbols. This section also describes a supplemental algorithm which allows determining the ESIs of the source symbols which represent a minimum subset of all non-received source symbols to successfully recover the entire source block. This latter algorithm should only be invoked if individual symbols can be requested for file repair.
C.2 Decoding a source block

C.2.1 General

It is assumed that the decoder knows the structure of the source block it is to decode, including the symbol size, T, and the number K of symbols in the source block.

From the algorithms described in Sections B.5, the Raptor decoder can calculate the total number L = K+S+H of pre-coding symbols and determine how they were generated from the source block to be decoded. In this description it is assumed that the received encoding symbols for the source block to be decoded are passed to the decoder. Furthermore, for each such encoding symbol it is assumed that the number and set of intermediate symbols whose exclusive-or is equal to the encoding symbol is passed to the decoder. In the case of source symbols, the source symbol triples described in Section B.5.2.2 indicate the number and set of intermediate symbols which sum to give each source symbol.

Let N ≥ K be the number of received encoding symbols for a source block and let M = S+H+N. The following M by L bit matrix A can be derived from the information passed to the decoder for the source block to be decoded. Let C be the column vector of the L intermediate symbols, and let D be the column vector of M symbols with values known to the receiver, where the first S+H of the M symbols are zero-valued symbols that correspond to LDPC and Half symbols (these are check symbols for the LDPC and Half symbols, and not the LDPC and Half symbols themselves), and the remaining N of the M symbols are the received encoding symbols for the source block. Then, A is the bit matrix that satisfies A·C = D, where here · denotes matrix multiplication over GF[2]. In particular, A[i,j] = 1 if the intermediate symbol corresponding to index j is exclusive-ORed into the LDPC, Half or encoding symbol corresponding to index i in the encoding, or if index i corresponds to a LDPC or Half symbol and index j corresponds to the same LDPC or Half symbol. For all other i and j, A[i,j] = 0.

Decoding a source block is equivalent to decoding C from known A and D. It is clear that C can be decoded if and only if the rank of A over GF[2] is L. Once C has been decoded, missing source symbols can be obtained by using the source symbol triples to determine the number and set of intermediate symbols which must be exclusive-ORed to obtain each missing source symbol.

The first step in decoding C is to form a decoding schedule. In this step A is converted, using Gaussian elimination (using row operations and row and column reorderings) and after discarding M – L rows, into the L by L identity matrix. The decoding schedule consists of the sequence of row operations and row and column re-orderings during the Gaussian elimination process, and only depends on A and not on D. The decoding of C from D can take place concurrently with the forming of the decoding schedule, or the decoding can take place afterwards based on the decoding schedule.

 The correspondence between the decoding schedule and the decoding of C is as follows. Let c[0] = 0, c[1] = 1…,c[L-1] = L-1 and d[0] = 0, d[1] = 1…,d[M-1] = M-1 initially.

· Each time row i of A is exclusive-ORed into row i’ in the decoding schedule then in the decoding process symbol D[d[i]] is exclusive-ORed into symbol D[d[i’]] .

· Each time row i is exchanged with row i’ in the decoding schedule then in the decoding process the value of d[i] is exchanged with the value of d[i’].

· Each time column j is exchanged with column j’ in the decoding schedule then in the decoding process the value of c[j] is exchanged with the value of c[j’].

From this correspondence it is clear that the total number of exclusive-ORs of symbols in the decoding of the source block is the number of row operations (not exchanges) in the Gaussian elimination. Since A is the L by L identity matrix after the Gaussian elimination and after discarding the last M – L rows, it is clear at the end of successful decoding that the L symbols D[d[0]], D[d[1]],…, D[d[L-1]] are the values of the L symbols C[c[0]], C[c[1]],…, C[c[L-1]].

The order in which Gaussian elimination is performed to form the decoding schedule has no bearing on whether or not the decoding is successful. However, the speed of the decoding depends heavily on the order in which Gaussian elimination is performed. (Furthermore, maintaining a sparse representation of A is crucial, although this is not described here). The remainder of this section describes an order in which Gaussian elimination could be performed that is relatively efficient.

C.2.2
First Phase

The first phase of the Gaussian elimination the matrix A is conceptually partitioned into submatrices. The submatrix sizes are parameterized by non-negative integers i and u which are initialized to 0. The submatrices of A are:

(1)
The submatrix I defined by the intersection of the first i rows and first i columns. This is the identity matrix at the end of each step in the phase.

(2)
The submatrix defined by the intersection of the first i rows and all but the first i columns and last u columns. All entries of this submatrix are zero.

(3)
The submatrix defined by the intersection of the first i columns and all but the first i rows. All entries of this submatrix are zero.

(4)
The submatrix U defined by the intersection of all the rows and the last u columns.

(5)
The submatrix V formed by the intersection of all but the first i columns and the last u columns and all but the first i rows.

Figure A.2.2-1 illustrates the submatrices of A. At the beginning of the first phase V = A. In each step, a row of A is chosen.

	Identity matrix I
	All zeroes
	U

	All zeroes
	V
	

Figure A.2.2-1 – Submatrices of A in the first phase
The following graph defined by the structure of V is used in determining which row of A is chosen. The columns that intersect V are the nodes in the graph, and the rows that have exactly 2 ones in V are the edges of the graph that connect the two columns (nodes) in the positions of the two ones. A component in this graph is a maximal set of nodes (columns) and edges (rows) such that there is a path between each pair of nodes/edges in the graph. The size of a component is the number of nodes (columns) in the component.

There are at most L steps in the first phase. The phase ends successfully when i + u = L, i.e., when V and the all zeroes submatrix above V have disappeared and A consists of I, the all zeroes submatrix below I, and U. The phase ends unsuccessfully in decoding failure if at some step before V disappears there is no non-zero row in V to choose in that step. In each step, a row of A is chosen as follows:

-
If all entries of V are zero then no row is chosen and decoding fails. The action as specified in Section C.3 might be invoked.
-
Let r be the minimum integer such that at least one row of A has exactly r ones in V.

-
If r ≠ 2 then choose a row with exactly r ones in V with minimum original degree among all such rows.

-
If r = 2 then choose any row with exactly 2 ones in V that is part of a maximum size component in the graph defined by X.

After the row is chosen in this step the first row of A that intersects V is exchanged with the chosen row so that the chosen row is the first row that intersects V. The columns of A among those that intersect V are reordered so that one of the r ones in the chosen row appears in the first column of V and so that the remaining r-1 ones appear in the last columns of V. Then, the chosen row is exclusive-ORed into all the other rows of A below the chosen row that have a one in the first column of V. Finally, i is incremented by 1 and u is incremented by r-1, which completes the step.

C.2.3
Second Phase

The submatrix U is further partitioned into the first i rows, Uupper, and the remaining M – i rows, Ulower. Gaussian elimination is performed in the second phase on Ulower to either determine that its rank is less than u (decoding failure) or to convert it into a matrix where the first u rows is the identity matrix (success of the second phase). Call this u by u identity matrix Iu. The M – L rows of A that intersect Ulower – Iu are discarded. After this phase A has L rows and L columns. In case of a decoding failure, again the action as specified in C.3 might be invoked.
C.2.4
Third Phase

After the second phase the only portion of A which needs to be zeroed out to finish converting A into the L by L identity matrix is Uupper. The number of rows i of the submatrix Uupper is generally much larger than the number of columns u of Uupper. To zero out Uupper efficiently, the following precomputation matrix U’ is computed based on Iu in the third phase and then U’ is used in the fourth phase to zero out Uupper. The u rows of Iu are partitioned into ceil(u/8) groups of 8 rows each. Then, for each group of 8 rows all non-zero combinations of the 8 rows are computed, resulting in 28 - 1 = 255 rows (this can be done with 28-8-1 = 247 exclusive-ors of rows per group, since the combinations of Hamming weight one that appear in Iu do not need to be recomputed). Thus, the resulting precomputation matrix U’ has ceil(u/8) ·255 rows and u columns. Note that U’ is not formally a part of matrix A, but will be used in the fourth phase to zero out Uupper.

C.2.5
Fourth Phase

For each of the first i rows of A, for each group of 8 columns in the Uuppersubmatrix of this row, if the set of 8 column entries in Uupper are not all zero then the row of the precomputation matrix U’ that matches the pattern in the 8 columns is exclusive-ORed into the row, thus zeroing out those 8 columns in the row at the cost of exclusive-oring one row of U’ into the row.

After this phase A is the L by L identity matrix and a complete decoding schedule has been successfully formed. Then, as explained in Section C.2.1, the corresponding decoding consisting of exclusive-ORing known encoding symbols can be executed to recover the intermediate symbols based on the decoding schedule.

The triples associated with all source symbols are computed according to B.5.2.2.The triples for received source symbols are used in the decoding.The triples for missing source symbols are used to determine which intermediate symbols need to be exclusive-ORed to recover the missing source symbols.
C.3 Minimum Set of Repair Symbols
C.3.1 General

In case that the decoding algorithm has failed, it is possible to request only a subset of the missing source symbols for successful recovery. The following algorithm describes a method how to derive a minimum set of source symbols which allows recovering the source block successfully. This method should for example be applied when requesting a set of repair symbols for p-t-p repair.
The algorithm to determine a minimum set of repair symbols is described based on the initial matrix A as constructed in C.2.1. First, a maximum Gaussian elimination as described in Section C.3.3 is performed on A. Then, the matrix is virtually extended by those rows which represent the missing source symbols and again a maximum Gaussian elimination is performed on this new matrix. With appropriate tracking of row and columns labels this process allows finding a minimum set of ESIs for repair of the source block.
Note that the maximum Gaussian elimination basically performs the same operations as the first phase of the decoding algorithm. Therefore, the resulting modified matrix A as well as the modified column vector c which tracks column exchanges might be used in case of a decoding failure after the first or second phase to determine the minimum set of repair symbols. However, we restrict the description as we would operate on the unmodified matrix A
C.3.2 Determination of Minimum Set of Repair Symbols
The following algorithm operating on matrix A is used to determine a minimum set of repair symbols:

1. Assume c to be the column index vector of length L with labels such that column exchanges can be tracked, e.g. for all i=0, …, L-1 c[i]=i.
2. Apply the maximum Gaussian elimination process, as described in C.3.3, to A, with tracking of column labels c. The process returns matrices U and W as well as the modified column label vector c’ of dimension L.

3. Generate an r by L matrix G’, whereby r is equal to the number of non-received source symbols as follows. Consider GLT to be the K by L generator matrix that corresponds to the outer LT encoder of the Raptor code generating the first K encoding symbols according to figure B.5.2.5.2-1. The matrix G’ is constructed from matrix GLT by deleting the rows corresponding to already received encoding symbols and by exchanging the columns according to c’. In addition, the rows in G’ get assigned the corresponding ESIs and these labels are tracked in v’.

4. A new decoding matrix A’ is constructed in the following way:

	U
	W

	G’

Fig. 1: New decoding matrix A’
5. In addition, a row label vector v is generated by the vertical stacking of n and v’, i.e. v=[nT v’T]T whereby n represents a vector containing any rank(U)=dim(U) entries such that any label of n can be distinguished from any label in v’. In the remainder we assume n being an all -1 vector of dimension rank(U).
6. Apply the maximum Gaussian elimination process to A’, as described in section C.3.3, with tracking of row labels v. The process returns the exchanged row labels v*.

7. The ESIs of the encoding symbols forming a minimum set of repair symbols are obtained by the labels in v* which are not -1.
C.3.3 Maximum Gaussian Elimination
Assume that we have given any matrix X as well as possibly a vector of row labels v or possibly a column label vector w or possibly both. A maximum Gaussian elimination is an algorithm similar to standard Gaussian elimination, in which the main diagonal is extended to its maximum limit, i.e., the number of 1s in the main diagonal after this algorithm has been applied, correspond to the rank rank(X) of the input matrix X.

To be more specific assume that matrix X is conceptually divided into 4 parts as shown in Figure X.

	U
	W

	Z
	B

Figure X: Conceptual division of X into 4 blocks

where U is a square-upper-matrix with 1s in the main diagonal, Z is a zero matrix and W and B are any arbitrary matrices with appropriate dimensions. Initially, U, W, and Z can be of dimension 0 by 0 such that B=X.

In the maximum Gaussian elimination process, the matrix X and if present, the row label vector v and column label vector c, are now processed and modified in the following way:

1. Partition the matrix X in U, Z, W, and B as shown in Figure X such that U is a square-upper-matrix with 1s in the main diagonal, Z is a zero matrix and W and B are any arbitrary matrices with appropriate dimensions.
2. If B is the zero matrix, the algorithm stops and returns matrices U and W, if v is present, the first rank(U) components of v in some vector v’, and if c is present, the entire vector c.
3. Otherwise, B is transformed using row/column exchange(s) into a matrix with a 1 the in upper-left corner.
The following operations on B are allowed:

a) row exchange, accompanied by the exchange of row labels in v, if present. If row labels are not present rows are not allowed to be exchanged.
b) column exchange, accompanied by the exchange of column labels in c, if present.
4. by means of row additions, the rows of B (except the first row) are eliminated, i.e. 0s are produced in all rows of the first column of B except for the first row.

5. the process restarts with the updated matrix X in 1.
Annex <D> (informative):
IANA registration

****************************** End of changes *****************************

3GPP

