TSG System Aspects WG4#34
S4-050200

Lisbon, Portugal, 21-25 February 2005

Source:
Nokia

Title:
Comments on S4-050191

Document for:
Discussion

Agenda Item:
6.5.4.1

1. Introduction

[Comment]: This document presents some comments on the document S4-050191. All the comments are marked with [Comment} and are in italic style. The non-italic text is from the document S4-010191.
This document presents some comments on the document S4-050107.
1.1
Minor Comment

A first comment is that all the simulations of Raptor codes in S4-050107 underestimate Raptor code performance. This is because they assume that below a code overhead of 1% or 2% for streaming and download respectively then the Raptor code fails.
 .This is not true. With smaller overhead, there is still a good chance of success, as shown in S4-0500036. Simulations in this paper correctly take account of the Raptor code failure probabilities.

[Comment]: It was mentioned in S4-040650 that a reception overhead of 2% was used for download simulations. In S4-040649, it was mentioned that a reception overhead of 1% was used for the streaming simulation. The DF contributions do not quantify the ‘good chance of success’ with smaller reception overhead.
2 Streaming

2.1 Streaming complexity

The computational complexity figures provided in S4-050107 for streaming use cases at first appear very low. However, closer examination tells a different story.

Firstly, the figures given assume decoding takes place over an entire protection period. This effectively doubles the tune-in delay. The CPU load figures presented in S4-050066, based on a 206MHz ARM9 show a CPU load of 7% for 1D Reed-Solomon decoding of a 192kbit/s media stream at 30% protection over a 20 second period. We can extrapolate from this that the figures in S4-050107 are based on a platform equivalent to a 350MHz ARM processor (which is within the target clock-speed range of the ARM11 core).
[Comment]: Yes. The figures we presented are based on ARM11 with a 330MHz processor.

.More realistically, the FEC decoding delay should be limited to some small fraction of the protection period. Especially with short protection periods where tune-in delay is presumably important – for example with a 5s protection period it is highly desirably to complete the FEC decoding within one second.
[Comment]: If “Invisible buffering’ as described in S4-050062 were used, then the FEC decoding can be conveniently spread over 5s. Decoding in 1s is not a requirement. As long as the decoding is finished within 5s, real time decoding/playback is ensured. Source block reception, FEC decoding and media decoding can be pipelined. This is an implementation issue.
The CPU load on the platform presented in S4-050107 (which could be considered ‘higher-than-high-end’) is then around 24% - approaching the load of the video decoder itself (Note that this relative comparison would apply to any platform).
[Comment]: Please read the contribution S4-050107, about the applicability of ARM11 platform for >=256kbps streaming services. (The note marked with * in Table 1).

Finally, S4-050107 assumes that the CPU power available on MBMS platforms will be higher than today’s top-end platforms. This is based on two assumptions:

· That the CPU power available on top-end platforms will continue to increase as it has in past years

· The MBMS terminals will all be within this ‘top-end’ category

Both assumptions can be questioned. Whilst clearly, there will shortly be terminals available with the CPU capacity envisioned in S4-050107 it is not clear that all ‘high-end’ terminals will include this kind of CPU power. It cannot be assumed that such processing power will be available just because of the need for video decoding, since hardware assist for video decoding means that the CPU power required can often be reduced dramatically.
[Comment]: This statement is not generally true. We also note that use of the so-called “hardware assist for video decoding ” will free up the CPU resources from video decoding and more CPU resources can be used for FEC decoding.
The assumption that speeds of top-end terminals will continue to rise at current speeds is based on an assumption that other technologies, particularly battery technology, will be able to follow the CPU curves and that users need and are willing to pay for this additional processing power on handheld terminals. Both these assumptions are questionable.

More significantly, many multimedia services are already available on much lower power terminals than the ones tested in S4-050107 or S4-050066. If MBMS is to achieve its objective of offloading the network of popular point-to-point content then it must be available on those terminals as well (or rather future terminals at the same place on the price/performance curve). It is far from clear that processing power in low or mid-range terminals will increase at the same rate as high-end terminals.
[Comment]: This is clear to terminal manufacturers.
Lower CPU load means that MBMS will be able to be supported on a wider range of cheaper terminals, making the service cheaper for operators to offer and increasing the potential market and hence the likelihood of success. The business case for an operator to deploy MBMS as an ‘offload’ technology for popular point-to-point services is strengthened the wider the range of terminals that can support it.
[Comment]: The terminals that support high bit rate video services certainly do require high end processors or h/w accelerators as suggested.
2.1 Streaming Simulations overall critique

[Comment]:
DF Simulations have been questioned in the past two meetings. Please refer to the SA4#33 PSM report S4-040863. They are also noted in PSM Adhoc meeting report S-040757 in relation to S4-AHP144. S4-AHP143, S4-AHP145. At this meeting they have not brought any new simulation results.

A serious criticism is that although S4-050107 suggests (correctly) that the range of interest is when the source block decoding failure probability is in the range 10-2 to 10-4, the figures in S4-050107 do not show this range of interest. By the very metric suggested in S4-050107, between 99% and 99.99% of the shown range in the figures of S4-050107 are completely irrelevant, and it is only the bottom 1% to 0.01% of the figure that is impossible to see that is the range of interest. The bulk of the figures (between 99% and 99.99%) show the range that is of no interest, where the source block decoding failure probabilities are so high that the video would be virtually unwatchable independent of which video media format is used.
[Comment]: The figures do show results for FEC overheads in the range of 2% - 50%. Some of the figures, especially for shorter buffering time, and for some traffic classes, do demonstrate that even with 50% FEC overhead, it is not possible to recover from the burst losses due to cell changes. However, as you increase the buffering time, you can observe that it is possible to achieve the near-zero chance of decoding failure, even with the bursty losses due to cell changes.

Another criticism is that all streaming simulations (except for the 64 Kbps bearer rate) use packet sizes (1000 bytes) that are far from optimal in terms of the protection they provide. This contribution provides additional simulations that use a 400 byte packet payload size that provides a much better quality solution for both Raptor and RS than the 1000 byte packet payload size at the same media and bearer rates and under the same channel conditions. It turns out that the quality gap between Raptor and RS is larger using the better 400 byte packet payloads than the gap for the worse 1000 byte packets.
[Comment]: The choice of packet sizes of 1000 bytes for 128kbps and above, is according to the simulation guidelines S4-040348.
The assertion that small packet sizes, coupled with header compression, can improve the overall performance, is not yet agreed in this meeting. It was observed that there are many unresolved issues related to the use of small packet sizes. For example, the effect of concatenation of small packets at the RLC layer has not been taken into account.
ROHC has not been agreed to be used for MBMS. Still there are discussions in RAN2. The efficiency of the use of very small packets with or without ROHC has still to be proved. The results shown in page 3 and 4 of this document are questionable.
2.2
Streaming simulations

The streaming simulation results in S4-050107 present results in terms of FEC block failure probability (Y axis) shown on a linear scale. This does not allow the difference between codes to be properly understood. As noted in the contribution, the interesting part of these graphs is where the block failure probability is 10-2 or 10-4 but it is not possible to see what is being shown on the graphs at these points. A useful measure for streaming is the mean time between lost FEC blocks, which is proportional to 1/(block loss probability).

The figure below shows the case with a 256kbit/s bearer, 20s protection period and 1000 byte packet payloads in the format used in S4-050107 (with the corrected simulation of the Raptor code):
[image: image1.emf]Streaming example

256kbit/s, 40ms TTI, 1000 byte packets, 10% BLER

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

051015202530354045

% FEC overhead

Probability of decoding failure of a

block

Raptor

RS255

As stated above in the criticisms, between 99% and 99.99% of this figure is not relevant, and it is only the bottom between 1% and 0.01% of the figure that is impossible to see from this figure that is the range of interest. From this figure, one might incorrectly conclude that there is no significant difference between the codes.

It is interesting to note that the 90% of the figures that can be clearly seen in S4-050107, where the source block decoding failure probability is above 0.1, corresponds to Mean Time Between Source Block Decoding Failure of 200s or less – i.e. the portion where both codes are performing miserably and, indeed, the codes are quite close together. However, at these decoding failure rates, the media is unwatchable no matter what media player is used, and thus this range of the figures is irrelevant.

The present contribution shows clearly the range of interest for some of the same simulations shown in S4-050107, using a presentation format that is in the spirit of those suggested in the Simulation Guidelines. These new figures plot the Mean Time Between Source Block Decoding Failure and demonstrate a significant advantage of the Raptor codes over the Reed-Solomon codes in the range of interest:

[image: image2.emf]Streaming example

256kbit/s, 40ms TTI, 1000 byte packets, 10% BLER

0

900

1800

2700

3600

4500

5400

6300

7200

2022242628303234363840

% FEC overhead

Mean time between lost

FEC blocks (s)

Raptor

RS255

Here there is a clear difference between the codes: RS requires over 2% additional FEC redundancy to achieve a mean time between block losses of 3600s or more. This is a small difference, but not insignificant, and much larger than the the difference suggested by looking at the figures shown in S4-050107.
However, more significant in these simulations is the choice of packet size. In practice ROHC will be used at the link layer, so a good packet size, P, is well below 1000 bytes. Based on the simulation guidelines and a rough estimate of average header size after ROHC of 6 bytes, a good packet payload size is approximately 400 bytes.

The following figure shows the results above as well as results for packet payload, P, equal to 400 bytes. In order to properly compare results with different packet size, the X-axis must show the total overhead – FEC overhead plus packet header overhead. For 400 byte payload, about 6% of the overhead is header overhead and the rest is FEC.

[image: image3.emf]Streaming example

256kbit/s, 40ms TTI, 10% BLER

20s protection, ROHC

0

900

1800

2700

3600

4500

5400

6300

7200

20%25%30%35%40%

% Overhead (FEC + packet headers)

Mean time between lost

FEC blocks (s)

Raptor P=1000, ROHC

RS255 P=1000, ROHC

Raptor P=400, ROHC

RS255, P=400, ROHC

This figure shows that operating at P=1000 is far far from the optimum point. There is no reason an operator would choose to operate the system at this point. All the graphs shown in S4-050107 are therefore almost completely irrelevant to real operating conditions.

Furthermore, it can be seen that at this point the difference between Reed-Solomon and Raptor codes is more significant. Reed-Solomon requires 4% more overhead than Raptor.

If we repeat the above simulation with the addition of cell changes – one 2 second cell change on average every minute, with a minimum time of 20s between cell changes – then we obtain the results shown below.

[image: image4.emf]Streaming example

256kbit/s, 40ms TTI, 256 byte packets, ROHC, 10% BLER

20s protection, 1 x 2s cell change per minute

0

900

1800

2700

3600

4500

5400

6300

7200

25%30%35%40%45%50%55%60%

% total overhead (FEC + packet headers)

Mean time between lost

FEC blocks (s)

Raptor P=400

RS255 P=400

RS64 P=400

With the addition of cell changes, the RS255 code requires 4.5% more total overhead than the Raptor code.

 It is not clear that the simulations in S4-050107 take account of the minimum time between cell changes. This is an important point because this minimum time models the hysteresis which is in practice applied to avoid UEs switching rapidly back and forth between cells. This has the effect that there will never be multiple cell changes within a protection period, which limits the losses that the FEC code must recover from. Although such multiple cell changes may be rare in the Nokia simulations, they have a significant impact when looking to achieve the very high rates of FEC block recovery required for a reasonable mean time between decoding failures.
[Comment]: This requirement was not written in the simulation guidelines. If this assumption were correct, the impact of this is equally applicable on both RS and Raptor codes.

In our error patterns, we do not take special care to place the cell changes at least 20s apart. A cell change per minute can occur any second randomly chosen during the minute. If a cell change occurs at the end of one minute, the next cell change may occur at the beginning of the next minute.
Note that in these examples the Reed-Solomon code uses the maximum number of encoding symbols possible, and thus provides the highest quality possible for a given FEC overhead among Reed-Solomon codes. It should also be noted that, as described in S4-050036, the CPU resources needed for decoding is around 10 times less for Raptor than for the Reed-Solomon with 255 encoding symbols and the transmission resource usage is significantly larger than Raptor in these conditions. One can use a more reasonable and less complex Reed-Solomon code, for example a Reed-Solomon code that uses 64 encoding symbols (which still requires more decoding CPU resources than Raptor), and an interleaving scheme as described in S4-050106, but then the FEC transmission overhead is significantly worse as shown in the above figure, i.e., over 25% more FEC transmission overhead. If a Reed-Solomon code of similar decoding complexity as Raptor is used, the transmission resource usage compared to Raptor is very very significantly larger than Raptor.
[Comment]: In S4-050107, we showed that even with high bit rate streaming and long protection periods, when RS255 codes are stretched to use maximum number of encoding symbols, the decoding complexity is well manageable on potential MBMS platforms that can support these bitrates.
Finally, all the above simulations are assuming fixed length packets (or that packet size variation is low, so there is little padding overhead). Whilst certain media encoders can produce packets with low size variation, this is not always true and we should not create dependencies in the system which limit operators freedoms to use the codec they choose.
We believe MBMS optimized content is streamed always on 3GPP networks. This is in the interest of the operators.
2.3 Interleaved Streaming

S4-050107 makes several interesting claims about the interleaved RS proposal, particularly about FEC latency. The total FEC latency for a UE is the sum of the protection period, the decode latency and the mid-block tune-in latency.

FEC latency components:

1. Protection period

2. Decode latency – the time required for decoding a source block

3. Mid-block tune-in latency – the difference in time between the play-out time of the first packet that a UE receives when it joins mid-block and the first packet that the UE is able to actually play-out.

For any interleaving scheme, we need to consider:

· Protection against burst loss (crucial for cell changes)

· Protection against combinations of loss (crucial for all types of channels and conditions)

· Sending order of source packets (out of order sending of source packets is presently not compliant with the FEC streaming architecture).
[Comment]: If the proposal is accepted, the necessary changes to the FEC streaming architecture will be provided.
· Support for both long and short protection periods

· Decode latency

· Mid-block tune-in latency

Since there is only a partial specification of the Reed-Solomon proposal, and little detail provided on how interleaving is to be done, contributions that analyze the effectiveness of various aspects of the Reed-Solomon proposal (such as [7] and S4-050065) are forced to guess the many missing details. Even the document S4-050107 seems confused about the details of the Reed-Solomon proposal. For example, the following is taken from Section 4.1 of S4-050107:

“For longer protection periods, for example 20s protection period, we recommend dividing the large source blocks into small source blocks and use block interleaving over a protection period to protect against bursty cell change losses. For example, we divide the large source block of 20s duration into four small blocks of 5s duration each. The receiver must wait for at least 20s to receive the entire large source block and de-interleave. Then, the FEC decoder can start decoding the first small source block and pass it on to the media decoder immediately. If the decoding of the small source block is spread over the entire duration of 5s, the total delay due to FEC buffering and decoding is only 20 + 5 = 25s. This is not 20 + 20 = 40s as suggested in [7].”
This interleaving approach is shown in the following figure:

[image: image5.emf]20s

5s

Source blocks

Source packets

Source packet interleaving

This aligns with the interleaving specified in S4-050106, although that specification is ambiguous and so admits other approaches as well. Another paragraph from Section 4.1 of S4-050107 states:

“In addition, if the receiver starts reception in the middle of the large source block and manages to receive enough packets belonging to the small source blocks towards the end of the large source block, it can use that part of the data. This is unlikely the case where FEC encoding is applied over the entire large source block; here the receiver may have to discard the entire large source block if it does not receive enough packets to successfully decode it.”

Clearly, a receiver joining the source block depicted above in the middle will not receive enough data to recover any of the smaller source blocks, even if there were no loss for the remainder of the block. So, there appears to be a contradiction in the statements in the document.

In fact, the interleaving approach that we had in mind in [1] and also in S4-050065, does send the packets in order, but constructs the small source blocks from discontiguous sets of packets. The construction of one small source block is depicted below:

[image: image6.emf]20s

Source block

Source packets

Source block for FEC encoding

There are thus (at least) two different ways of organising the interleaving for streaming with Reed-Solomon:

Approach 1: Contiguous source blocks – source packets sent in interleaved fashion

Approach 2: Dis-contiguous source blocks – source packets sent in original order

Approach 1 allows the small blocks to be played out as they are decoded, but does not allow a user to join in the middle of the larger block. On the other hand, Approach 2 means the receiver must wait until the whole block has been decoded before beginning playback, but does allow a user to join in the middle of a stream.

Here is a comparison between the properties of these interleaving approaches:

Approach 1:

· Good protection against burst loss

· Moderate protection against combinations of loss types

· Does not respect original sending order of source packets

· Moderate protection period flexibility

· Moderate decode latency (poor for short source blocks, better for long source blocks consisting of multiple interleaved small blocks)

· Does not allow mid-block tune-in even in no loss channel conditions

Approach 2:

· Good protection against burst loss

· Moderate protection against combinations of loss types

· Does respect sending order of source packets

· Moderate protection period flexibility

· Poor decode latency

· Does allow mid-block tune-in under good channel conditions

These interleaving approaches can be compared with the approach of the Raptor specification (see S4-050033):

· Good protection against burst loss

· Good protection against combinations of loss types

· Does respect sending order of source packets

· Good protection period flexibility

· Good decode latency

· Does allow mid-block tune-in under good channel conditions

[Comment]: Regarding mid-session tune-in delay, DF seems to contradict their own statement, for example the one mentioned in S4-050034 that states “The number of users joining clips in the middle is expected to be a small fraction of users in 3GPP use-cases.” If this were true, then the impact of an increased mid-session tune-in delay will be minimal.
Conclusions:

· There is no clear specification for the Reed-Solomon proposal, and in particular for the Interleaved Reed-Solomon solution.

· There are several possible solutions to the Interleaved Reed-Solomon solutions, all of which have some benefits and significant drawbacks.

· Raptor is a better choice than any of the Interleaved Reed-Solomon solutions.

2.4
Conclusion on Streaming simulations

From the above we conclude the following when considering the range of interest for the block decoding failure probability (10-2 to 10-4) and when using good packet sizes:

· The graphs from S4-050107 do not show the results for stated range of interest, so no conclusion could be drawn from these graphs

· The simulations do not represent an important use-case, since the case simulated is far from optimal anyway due to the large packet size used

· In fact, Raptor codes outperform the Reed-Solomon codes in terms of transmission resources within the range of interest and this performance difference is higher with smaller packet sizes

· The Reed-Solomon code simulated with 255 symbols uses 10 times as much decoding CPU as Raptor.

· A Reed-Solomon code with similar decoding complexity to that of Raptor uses very very significantly more transmission resources than Raptor.

· There is no clear specification for the interleaved Reed-Solomon proposal and there are several possible solutions, all of which have some benefits and significant drawbacks.
· Raptor is a better choice than any of the Interleaved Reed-Solomon solutions

[Comment]: We have given replies in the above part of this document.

3
Download

3.1
Comments

As with the streaming simulations in S4-050107, the download simulations do not correctly simulate the Raptor code, since they assume failure if less than 2% overhead is received.

Furthermore, the six classes simulated represent very optimistic assumptions and do not consider the cases of background file download and lower power operation (see S4-050039 and S4-050040).
[Comment]: Both cases were not considered in the simulation guidelines and not considered relevant at this point in SA4 and RAN2 working groups.
In Section 4.4 of S4-050107 a figure is presented claiming to show the overhead required for ‘error free’ delivery to each of the six classes. It is not defined what ‘error free’ means here. Since it is not possible to guarantee that all users receive the file, it would be more reasonable to show the overhead required to reach some target percentage of users.
[Comment]: Error-free means here that the decoding error probability is less than 10e-3.
Secondly, the 2D RS code used for the 3MB file with N1=N2=90, K1=K2=78 is not large enough to encode the 3MB file using 512 byte packets as claimed. The symbol size is 468 bytes and thus there are 6722 source symbols, whereas 782=6084.
[Comment]: It is true that the headers are not considered in these simulations. Packet size is 512 bytes without header and 556 bytes with header. However, we believe that there is no significant impact of this on the mapping between RLC PDU loss patterns and SDU loss patterns.
Thirdly, the results presented seem very anomylous. For example, in various of the figures there are portions of the 2D RS graph which are horizontal – more FEC overhead is sent but no more users recover the file – this should not happen.
[Comment]: This is a result of the following operations used in the calculation the dimensions of the 2-D RS code.
We use a 2D-RS code with a square 2-D matrix.

K = number of source packets in each row/column
P = number of repair packets in each row/column

OH = FEC overhead %.. It changes from 1 to 50.

 K=floor(sqrt(num_source_sdu));
 P=ceil(OH*K/(100*2)); % When no parity over parity K*P + K*P = K*K*OH/100
There is a ceil operation in the calculation of ‘P’ in the above statement. For small values of K, some consecutive values of OH can produce same P. This is the reason for the horizontal lines or steps in the simulation results for 1MB file.

For example, consider a 1MB file. There are 2048 packets of size 512 bytes each in this file. Thus K = 45.
For OH = 10, P = ceil(10*45/200) = ceil(2.25) = 3.

For OH = 12, P = ceil(12*45/200) = ceil(2.7) = 3.
For OH = 14, P = ceil(14*45/200) = ceil(3.15) = 4.
As you can see, for OH = 10 and OH = 12, we end up using P = 3.

This results in the same performance and hence the horizontal lines in the graphs for 1MB case.

Figure 2 in S4-050107 claims that the FEC overhead required for Raptor codes in Class 1 (with minimal losses of 0.01% BLER) is 4%, whereas the overhead for 2D RS is 2%. Clearly, the Raptor code as simulated should have an overhead of only slightly more than 2%. For example, in our simulation of Class 1, a 2D RS code of this size has an FEC overhead of around 7%, whereas using the actual behaviour of the Raptor code has an overhead of well under 2%.

We present below figures for a target of 99% of users, using an accurate simulation of the Raptor code and a 2D RS code with N1=N2=95, K1=K2=82. It is not clear how the random interleaving scheme proposed for 2D RS is intended to operate. We simulate both no interleaving and random interleaving, where in the latter case all packets, source and repair together, are sent in random order.
Our results show 2D-RS codes with random interleaved transmission order show better performance than the ones shown below. The parameters used N1=N2=90 and K1=K2=78.

[image: image7.emf]MBMS file download, 3MB, 64kbits/s, UTRAN

0%5%10%15%20%25%30%

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

%FEC overhead for 99% target recovery

2D RS (no interleave)

2D RS (random)

Raptor

The random interleaving scheme means that the original source symbols are not sent at the beginning of the transmission – rather they are spread throughout the transmission. If the time taken for a user to receive the file is important, then decoding should take place immediately enough symbols are available – this will have an effect on the 2D RS decoding load, since a ‘worst case’ decode will almost always be required. Furthermore, the average time taken for each user to receive the file will be higher than for a usual systematic code in which all the source symbols are sent first. This is shown in the figure below:
[Comment]: The decoder has to wait to receive the entire MBMS transmission session. The additional time (above the time required to receive the source packets) is a function of FEC overhead. This is a small fraction of the time required to receive all source packets.
[image: image8.emf]MBMS file download, 3MB, 64kbits/s, UTRAN

5678910

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

Average time to receive file (min)

2D RS

Raptor

In all cases, the file is available about 30s earlier with Raptor than with 2D RS with random interleaving.

We also note that the performance of the 2D RS code gets worse as the file size grows. It has been suggested that many files could be bundled together for download, potentially resulting in very large file sizes.
[Comment]: Bundling of many files for download is not a working assumption for SA4. Moreover, the receiver has to wait to receive the entire bundle of 20MB (and more) before it can decode and play a single small file, for example 50KB file. This does not seem to be a good idea.
The file sizes for MBMS download are specified in the simulation guidelines as follows:

8.1
Download Services

· File sizes:
100 kB, 500 kB, and 3 MB
For a 20MB file, the FEC overhead required to reach 99% of users in the above example remains at 22.8% for Raptor codes but increases from 30% to 35% for 2D RS. The 2D RS code required for this file size is some 3.5 times more computationally complex than the code required for the 3MB file, whereas for Raptor codes the complexity remains the same.

Finally, the 2D RS decoding times given in S4-050107 do not take into account the need to move data to and from slow memory when working memory is limited. This is a major issue with 2D RS codes as discussed in S4-050064. It has been agreed in S4-040358 that download simulations should assume a fast memory constraint of 512KB, not 16-128MB as suggested in S4-050107. These large figures are completely new and have not been discussed or agreed by SA4.
[Comment]: This constraint set in the simulation guidelines should be realistic and today it is not realistic anymore considering the capabilities of today’s phones which have fast memories of size up to 384 MB. Future MBMS capable phones may have more fast memory.
3.2
Conclusion for file download

The results provided in S4-050107 for Raptor codes do not accurately reflect the performance of Raptor codes and seem questionable even for the 2% assumed overhead approach used.

Furthermore, the results provided for 2D Reed-Solomon do not seem to be reproducible.

Finally, the random interleaving approach proposed for 2D Reed-Solomon is only useful for the cases where the loss is much lower than the FEC overhead. It also has an impact on the average time taken to download the file which has not been explained. Since many users will be in good conditions, it is important that they should be able to recover the file as soon as possible, both from a user experience viewpoint and from a battery life viewpoint.
[Comment]: If it were true that “many users will be in good conditions”, then the FEC overhead required to satisfy them is not high and hence the additional time required is negligible.
The 2D RS decode times provided do not take account of the agreed working memory constraint of 512KB. The operation of 2D RS in constrained working memory cases is questionable, as shown in S4-050064.
We have given replies above.
References

[1] 3GPP SA4#33, Streaming Simulations of FEC codes for MBMS, (S4-040649), Helsinki, November 2004 (Digital Fountain).
�PAGE \# "'Page: '#'�'" ��

1
11

_1170582264.ppt

20s

5s

Source blocks

Source packets

Source packet interleaving

_1170592141.ppt

20s

Source block

Source packets

Source block for FEC encoding

