3GPP TSG-SA WG4 Meeting #34

Tdoc S4 (05) 0060
Lisbonne, Portugal, 21-25 February 2005
Agenda item 6.5.4.1

Source:
Streamezzo

Title:
Simple Aggregation Format (SAF) for MBMS

Document for:
Discussion and decision

Abstract

This is a proposal to use the Simple Aggregation Format (SAF) [1] which is a general container format that can be used for all multimedia presentations. The idea is to provide one format that

· is simple and convenient (only one file to transport and play),

· optimised for short delay/progressive download (all media is interleaved),

· can be used with all media defined in 3GPP, any XML or binary format,

· can be used with RTP/RTSP through RFC 3640, which defines a standard mapping from SAF to RTP,
· can be made forward-compatible with 3GP file format players
· can host OMA DRM v2 information as a stream.
We propose that MBMS services shall support SAF for any presentations in Release 6.

SAF is part of ISO/IEC 14496-20.
1 New interest in a container format
Presentations involving a scene description are handled as a set of files, and there is no way to package this set in a single file in 3GPP.

A SAF file can carry all types of media ranging from complex presentations to small SMIL presentations containing just a few elements. Media in all of these files can be interleaved and thus optimized for progressive download. Possible media types include discrete media (image, static scene…) or streamable media.

With the emergence of MBMS and new download services we believe that there is more interest today in introducing a file format for convenient handling and delivery of general multimedia presentations [2], [3].

The diversity of player capabilities is driving the interest in transcoding and adapting multimedia. With a unified container format, video presentations can for instance be transcoded into slide shows and still be contained within one SAF file.

2 SAF
SAF is a light-weight, byte-aligned packaging mechanism:

· for download, http streaming and rtp streaming (RFC3640)

· mix static data (scenes, images, fonts, A/V clips) and streams (scenes, text, audio, video)

· provides unified infrastructure for frame-accurate synchronization

· can host text (such as CSS or ECMA-Script), XML, XML.gz and binary (such as encoded media)

· can be made forward-compatible with 3GP file format players by adding a moov atom referring to SAF packaged data,
· can host OMA DRM information as a stream.
SAF spec is only 5 pages, a token of its simplicity (see Annex), to be compared with the significant complexity of the 3GP file format.

SAF defines 6 packet types: stream header, access unit, end of stream signal, end of session signal, cache unit (for stream preload), remote stream header (to interface external streams).

A further “start of session” packet is under study to signal a different timebase, media profiles, specific identification header, etc. Each packet has an 11 bytes header containing packet sequence number, packet type, time stamp and everything that makes SAF streams streamable with RFC3640.

The payload of a SAF packet can be anything byte-aligned, XML or binary.
The overhead of SAF is extremely small: 33 bytes per stream/component. This is to be compared with the 3GP file format overhead of 500 bytes per 3GP file, plus 400 bytes per stream/component.

OMA DRM v2 information can be hosted as a stream for the common part, and can be hosted in the SAF stream headers for the stream-specific parts.
3 PSS and MBMS presentations carried by SAF files

The main use cases for a SAF container file include

· progressive download of PSS presentations,

· distribution (download) of multimedia presentations in MBMS,
· streaming of presentations over RTP/RTSP with RFC 3640,

· support for incremental updates of multimedia scenes.

[image: image1.emf]Audio

Video

StreamedText

StreamedScene

SMILJPEGGIF

StaticSceneSVG

SAF

Any self-contained 3GP file or set of files building up a presentation can be packaged as a SAF file and downloaded, progressively downloaded or streamed.
Streaming of SAF files reuses the payload format defined in RFC 3640 to map to RTP/RTSP. SAF being compatible with a very simple configuration of MPEG-4 Systems Sync Layer, the mapping defined in RFC 3640 applies.
With its extremely small overhead, SAF is the perfect complement to dynamic updates of the multimedia scene, allowing the incremental construction of the scene on the terminal, thus making it possible to use size-limited delivery mechanisms such as cell broadcast with non-trivial scenes.
4 Addressing scheme

All components in the SAF file are tagged with a numeric streamID, whether the component is a stream or consists of only one packet. Hence, all references to another component are a number when the referring component is binary, and “saf:[streamID]” (where [streamID] is replaced by the textual representation of the streamID number) when the referring component is textual.

Example 1: The following SVG file gives an example of a presentation that includes one image and one audio track with AMR. The first sample is before packaging with SAF, the second is the SVG component in the SAF file.
Before packaging:

<svg...>

 ...

 <image xlink:href=”foo.jpg” .../>

 <audio xlink:href="audio.amr" .../>

 ...

</svg>

Packaged with foo.jpg packaged as stream 2, audio.amr as stream 3:

<svg...>

 ...

 <image xlink:href=”saf:2” .../>

 <audio xlink:href="saf:3" .../>

 ...

</svg>

5 Proposal
We propose that the Release 6 mandates the support of SAF packaging for static and streamable multimedia presentations.
6 References
[1] ISO/IEC 14496-20, Lightweight Application ScenE Representation and Simple Aggregation Format (LASeR and SAF)
[2] S4-040699: "3GP container files for PSS and MBMS” by Ericsson.

[3] S4-040234: "DCF Format as a Container Format for Multimedia Presentations" by Nokia.

7 Annex: Simple Aggregation Format (SAF)
7.1 Overview
The Simple Aggregation Format (SAF) defines the binary representation of a compound data stream composed of different data elementary streams (ES) such as LASeR scene description, video, audio, image, font, metadata streams. Data from these various data elementary streams results in one SAF stream by multiplexing them for simple, efficient and synchronous delivery.
To efficiently carry elementary data streams synchronously as one logical SAF stream, a basic entity to be carried is defined as a SAF Access Unit (SAF AU), encapsulated into a basic entity for synchronization defined as a SAF Synchronization Layer Packet, (SAF SL packet).
An XML syntax providing a readable representation of the SAF Binary Syntax (normative) is defined with the namespace “urn:mpeg:mpeg4:SAF:2004”. Elements and attributes belonging to this namespace are identified in this document using the saf prefix.

7.2 Time and terminal model specification

The timing model relies on clock references and time stamps to synchronize audio-visual data conveyed by SAF streams. The concept of a clock is used to convey the notion of time to a receiving terminal. Time stamps are used to indicate the precise time instants at which the receiving terminal decodes the SAFPacket and renders the decoded data.

Each SAF Packet has an associated nominal composition time, the time at which it must be available for composition. The decoded data contained in a SAF Packet is not guaranteed to be available for composition before this time. Some SAF Packets may not have time information; in that case the SAF Packet is decoded and executed as soon as it is received. Otherwise the SAF Packets are decoded and executed at their nominal composition time and in the receiving order. When a SAF Packet is received “late” according to the scene time, the SAF Packet is processed as soon as possible.

7.3 SAF SL Packet
The SAF SL Packet consists of a SAF SL packet header and a SAF SL packet payload. The SAF SL packet header provides means for continuity checking in case of data loss and carries the coded representation of the time stamps and associated information.

7.3.1 Syntax

class SAF_SL_Packet {

SAF_SL_PacketHeader slPacketHeader;

byte[slPacketHeader.accessUnitLength] slPacketPayload;

}

7.3.2 Semantics

slPacketHeader – a SAF_SL_PacketHeader element as specified in 7.4.
slPacketPayload – a payload that contains an opaque payload at this level of the specification.

7.4 SAF SL Packet Header
7.4.1 Syntax

class SAF_SL_PacketHeader {

bit(1) accessUnitStartFlag;

bit(1) accessUnitEndFlag;

bit(14) packetSequenceNumber;

const bit(1) reserved=1;

bit(4) degradationPriority;

bit(1) randomAccessPointFlag;

const bit(1) reserved=0;

const bit(1) reserved=1;

bit(32) compositionTimeStamp;

uint(16) accessUnitLength;

}

7.4.2 Semantics

accessUnitStartFlag – when set to one indicates that the first byte of the payload of this SL packet is the start of a SAF access unit.

accessUnitEndFlag – when set to one indicates that the last byte of the SL packet payload is the last byte of the current SAF access unit.

packetSequenceNumber –it shall be continuously incremented for each SL packet as a modulo counter. A discontinuity at the decoder corresponds to one or more missing SL packets. In that case, an error shall be signaled to the entity consuming the SL Packet.
degradationPriority – indicates the relative importance of the object conveyed in the payload of this SL packet. This indication shall be used for computational graceful degradation by the decoder of this object. When the decoder does not have enough computational power to decode all objects in the scene, the amount of degradation for each object is determined based on the value of this field. The relative amount of complexity degradation among SL packets of different object increases as the value of this field decreases.

randomAccessPointFlag – when set to one indicates that random access to the content of this elementary stream is possible here.

compositionTimeStamp – is a composition time stamp. The composition time tc of the first composition unit resulting from this access unit is reconstructed from this composition time stamp according to the formula:
tc = (compositionTimeStamp/1000 + k * 232/1000)
where k is the number of times that the compositionTimeStamp counter has wrapped around. The value of this field from two different SL packets may be same, if streamID of them are different. When the SL packet conveys a cacheObject, the value of safAU.accessUnitType carried by this SL packet is one of 0x0C, 0x0D, 0x0E or 0x0F, this field specifies the validity period in second as defined in 7.8.
accessUnitLength – is the length of the SAF access unit conveyed in the SAF packet in bytes. When the SAF access unit is fragmented into number of SL packets, this field shall convey the size of a fragment of SAF packet. Therefore the total length of complete SAF access unit is implicitly known by adding all values of accessUnitLength field carrying the fragments of certain SAF access unit.
7.5 SAF Access Unit

A SAF Access Unit consists of a two-byte header (SAF Header) and a payload (SAF Payload). The first byte of the SAF header signals the type of payload and the second byte signals the ID of the stream the packet belongs to.
7.5.1 Syntax

class safAU {

 bit(4) accessUnitType;

 bit(12) streamID;

 byte(8)[slPacketHeader.accessUnitLength-2] payload;

}
7.5.2 Semantics

accessUnitType – an indication about the type of the payload. Detailed values of accessUnitType and the data corresponding to each type are defined in the Table 1
Table 1 —accessUnitType values and corresponding data in the payload
	Value
	Type of access unit payload
	Data in payload

	0x00
	Reserved
	-

	0x01
	SimpleDecoderConfigDescriptor
	A SimpleDecoderSpecificInfo

	0x02
	SimpleDecoderConfigDescriptor (permanenta)
	A SimpleDecoderSpecificInfo

	0x03
	EndofStream
	(no data)

	0x04
	ES Access Unit
	An ES Access Unit

	0x05
	EndOfSAFSession
	(no data)

	0x06
	Cache Unit
	A cache object

	0x07
	RemoteStreamHeader
	A url and a SimpleDecoderSpecificInfo

	0x08 ~ 0x0F
	Reserved
	-

	a “permanent” indicates that the payload of the SAF access unit shall be stored beyond the life of the current scene.

streamID – the reference of the media stream this AU belongs to
payload – the data part of the access unit. The size of the payload is signalled by the accessUnitLength field in the SL packet header as specified in 7.4. The type of data in this field is varied by accessUnitType as defined in the Table 1.

For values of safAU.accessUnitType that refer to sceneHeader, mediaHeader, or fontHeader the payload shall convey a SimpleDecoderConfigDescriptor whose syntax and semantics is specified in 7.6.

For values of safAU.accessUnitType that refer to LASeR scene unit or cache unit, the payload shall convey a scene unit or cache unit which syntax and semantics are specified in 7.8.

For values of safAU.accessUnitType that refer to mediaUnit, imageUnit or fontUnit, the payload shall convey an access unit for specific media whose syntax and semantics is opaque to this standard.

7.6 SimpleDecoderConfigDescriptor

7.6.1 Syntax

class SimpleDecoderConfigDescriptor {

bit(8) objectTypeIndication;

bit(8) streamType;

bit(16) bufferSizeDB;

SimpleDecoderSpecificInfo decSpecificInfo[0 .. 1];

}

7.6.2 Semantics

The SimpleDecoderConfigDescriptor appears as payload of all SAF Access Units whose safAU.accessUnitType value is 0x01 or 0x02. The SimpleDecoderConfigDescriptor provides information about the decoder type and the required decoder resources needed for the associated media stream. This is needed at the receiving terminal to determine whether it is able to decode the media stream. A stream type identifies the category of the stream while the optional decoder specific information descriptor contains stream specific information for the set up of the decoder in a stream specific format that is opaque to this layer.

objectTypeIndication – an indication of the object or scene description type that needs to be supported by the decoder for this elementary stream as per the table on objectTypeIndication of ISO/IEC 14496-1.
streamType – conveys the type of this elementary stream as per the streamType table of ISO/IEC 14496-1.
bufferSizeDB – is the size of the decoding buffer for this media stream in byte.

decSpecificInfo[] – an array of zero or one decoder specific information classes as specified in 7.7.
7.7 SimpleDecoderSpecificInfo

7.7.1 Semantics

The decoder specific information constitutes an opaque container with information for a specific media decoder. The existence and semantics of decoder specific information depends on the values of DecoderConfigDescriptor.streamType and DecoderConfigDescriptor.objectTypeIndication.

For values of DecoderConfigDescriptor.objectTypeIndication that refer to streams complying with media standard the syntax and semantics of decoder specific information is defined in each standard.

For values of DecoderConfigDescriptor.objectTypeIndication that refer to streams complying with LASeR scene description, the decoder specific information shall carry a LASeR header as defined in Erreur ! Source du renvoi introuvable..
7.8 RemoteStreamHeader

7.8.1 Syntax

class RemoteStreamHeader {

bit(8) objectTypeIndication;

bit(8) streamType;

bit(16) bufferSizeDB;

bit(16) urlLength;

byte url[urlLength];

SimpleDecoderSpecificInfo decSpecificInfo[0 .. 1];

}

7.8.2 Semantics

The RemoteStreamHeader appears as payload of all SAF Access Units whose safAU.accessUnitType value is 0x07. The RemoteStreamHeader is a simple extension of the SimpleDecoderConfigDescriptor, with the addition of an url
objectTypeIndication – an indication of the object or scene description type that needs to be supported by the decoder for this elementary stream as per the table on objectTypeIndication of ISO/IEC 14496-1.
streamType – conveys the type of this elementary stream as per the streamType table of ISO/IEC 14496-1.
bufferSizeDB – is the size of the decoding buffer for this media stream in byte.

urlLength – is the size of the url in byte.

url – is a UTF-8 string carrying the url of the media access units.

decSpecificInfo[] – an array of zero or one decoder specific information classes as specified in 7.7.
7.9 Cache Unit

A cache unit is the payload of a CacheObject packet and conveys a url and data. If a terminal requests a url, and a cache unit matching the requested url is already present in the terminal, then the terminal may directly load the corresponding data, without requesting the data referred to by this url from the server. A cache unit can be permanent and stored in memory as soon as it is retrieved. A cache object is not expired during the period defined by its receiving time and its receiving time plus the time specified in the compositionTimeStamp field of SL packet header expressed in seconds. After the end time, the cache object is expired and its SAF content cannot be executed.

7.9.1 Syntax

class cacheUnit {
 bit(1) replace;

 bit(1) permanent;

 bit(6) reserved = 0;

 unit(16) urlLength;

 byte(urlLength) url;

 byte[SL_PacketHeader.accessUnitLength-urlLength-5] payload;

}
7.9.2 Semantics

replace – if true, this cacheUnit replaces any previous cacheUnit for the same url; if false, this cacheUnit is appended to any previous cacheUnit with the same url.

permanent – if true, the cacheUnit shall be kept, if the terminal has enough resources, after the end of the application for a duration stored in the compositionTimeStamp of this SAF Packet.

urlLength – an unsigned integer indicating the size of url in bytes.

url – the url of the presentation conveyed in a payload.
payload – the data, in a format opaque to this specification. The size of this field is signaled by the accessUnitLength field in SL packet header. The payload data shall replace the stored presentation referenced by the url of this cache unit when the safAU.accessUnitType is 0x0C or 0x0D. Otherwise, the payload data shall be appended to the existing presentation.

� Gaëlle Martin-Cocher et Jean-Claude Dufourd, Streamezzo SA, France.

8

_1170002078.ppt

Audio

Video

Streamed Text

Streamed Scene

SMIL

JPEG

GIF

Static Scene

SVG

SAF

