Error! No text of specified style in document.Error! No text of specified style in document.3GPP TS 26.346 V1.0.1 (2004-09)
5
Error! No text of specified style in document.Error! No text of specified style in document.Release 6

Some instances of change since S4-040736:

“SHOULD” -> “should”, “optional” -> “may be”, “recommended” –> “should be”
“IMG metadata fragment” -> “metadata fragment”, “IMG envelope” -> “metadata envelope”
Issues for a different contribution/CR:
What UE action upon expiry of fragment – is allowing silent discard sufficient?
What 3GPP spec can we reference to give the sender-client time sync?
5.2
User service discovery/announcement
5.2.1
Introduction

User service discovery refers to methods for the UE to obtain a list of available MBMS user services along with information on the user services. Part of the information may be presented to the user to enable service selection.  

User service announcement refers to methods for the MBMS service provider to announce the list of available MBMS user services, along with information on the user service, to the UE.

In order for the user to be able to initiate a particular service, the UE needs certain metadata information. The required metadata information is described in section 5.3.

According to [4], in order for this information to be available to the UE operators/service providers may consider several service discovery mechanisms. User service announcement may be performed over a MBMS bearer or via other means. The download delivery method is used for the user service announcement over a MBMS bearer. The user service announcement mechanism based on the download delivery method is described in section 5.2.2. Other user service announcement and discovery mechanisms by other means than the download delivery method are out of scope of the present specification.

 [Editor's Note: Examples of other possible discovery/announcement mechanisms descriptions could be added in the MBMS TR and referenced in that section]
5.2.2 User service announcement over a MBMS bearer

5.2.2.1
Introduction

MBMS Service Announcements are needed in order to advertise MBMS Streaming and MBMS Download User Services in advance of, and potentially during, the User Service sessions described. The User Services are described by metadata (objects/files) delivered using the download delivery method as defined in section 6.1.

Service Announcement involves the delivery of fragments of metadata to many receivers in a suitable manner. The metadata itself describes details of services. A metadata fragment is a single uniquely identifiable block of metadata. An obvious example of a metadata fragment would be a single SDP file [14].

The metadata consists of:

· a metadata envelope object(s) allowing the identification, versioning, update and temporal validity of a metadata fragment;

· a metadata fragment object(s) describing details of MBMS user services.

Both the metadata envelope and metadata fragment objects are transported as file objects in the same download session (either as separate referencing files or as a single embedding file – see section 5.2.2.7). A single metadata envelope shall describe a single metadata fragment, and thus instances of the two are paired. An service announcement sender shall make a metadata envelope instance available for each metadata fragment instance.  The creation and use of both an embedded envelope instance and a referenced envelope instance for a particular fragment instance is not recommended.
This clause covers both metadata transport and metadata fragmentation aspects of Service Announcement. Service Announcement over MBMS bearers is specified.

To receive a Service Announcement User Service the client shall obtain the session parameters for the related MBMS download session transport. This may be using a separate Service Announcement session. 
[Editor's note:” it shall be possible to support multiple metadata fragment syntaxes” i.e. the metadata envelope enables this]
5.2.2.2


Supported Metadata Syntaxes
 The MBMS metadata syntax shall support the following set of features:

· Support of carriage of SDP descriptions, and SDP is expected to sufficiently describe at least: MBMS Streaming sessions and, MBMS download sessions;

· Support for multiple metadata syntaxes, such that the delivery and use of more than one metadata syntax is possible;

· Consistency control of metadata versions, between senders and receivers, independent of the transport and bearer use for delivery;

· Metadata fragments are identified, versioned and time-limited (expiry described) in a metadata fragment syntax-independent manner (which is a consequence of the previous two features).

5.2.2.3


Consistency control and Syntax Independence
The Metadata Envelope shall provide information to identify, version and expire metadata fragments. This shall be specified to be independent of metadata fragments syntax and of transport method (thus enabling the use of more than one syntaxes and enable delivery over more than a single transport and bearer).

A metadata envelope may update the time validity of its metadata fragment without changing version if the metadata fragment itself has not changed. A newer version (higher version number) of a metadata envelope shall automatically expire the earlier version. If the content type (metadata fragment syntax) is recognised and valid, the UE shall use the new metadata fragment description. However, if the content type is not recognised or valid, the UE may maintain the expired version data until the newer version is correctly received.
Service announcement senders shall increment the version by one for each subsequent transported version of a metadata fragment. However, a UE shall also accept versions with an increment greater than one (so that they do not fail in the case that an intermediate version was not successfully transported).
5.2.2.4
Metadata Envelope Definition

The essential attributes for a meaningful metadata envelope and their description is as follows. These attributes shall be supported:

· metadataURI: A URI providing a unique identifier for the metadata fragment.
· version: The version number of the associated instance of the metadata fragment.  The version number should be initialised to one.  The version number shall be increased by one whenever the metadata fragment is updated.
· validFrom: The date and time from which the metadata fragment file is valid. May be used. If not used, the UEshould assume the metadata fragment version is effective immediately.
· validUntil: The date and time when the metadata fragment file expires. Should be used. If not used the UE should assume the associated metadata fragment is effective for all time, or until it receives a newer metadata envelope for the same metadata fragment describing a validUntil value.
· contentType: The MIME type of the metadata fragment which shall be used as defined for "Content-Type" in [HTTP RFC 2616 REFERENCE]. For embedding metadata envelopes this attribute is mandatory.  For referencing metadata envelopes this field is optional.
The metadata envelope is instantiated using an XML structure. This XML contains a URI referencing the associated metadata fragment. The formal schema for the metadata envelope is defined as an XML Schema as follows.

   <?xml version="1.0" encoding="UTF-8"?>

   <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

     elementFormDefault="qualified"

     attributeFormDefault="unqualified">

     <xs:element name="metadataEnvelope">

       <xs:complexType>

         <xs:sequence>

           <xs:element name="metadataFragment"

                       type="xs:string"

                       minOccurs="0"

                       maxOccurs="1">

           </xs:element>

         </xs:sequence>

         <xs:attribute name="metadataURI"

                       type="xs:anyURI"

                       use="required"/>

         <xs:attribute name="version"

                       type="xs:positiveInteger"

                       use="required"/>

         <xs:attribute name="validFrom"

                       type="xs:dateTime"

                       use="optional"/>

         <xs:attribute name="validUntil"

                       type="xs:dateTime"

                       use="optional"/>

         <xs:attribute name="contentType"

                       type="xs:string"

                       use="optional"/>

         <xs:anyAttribute processContents="skip"/>

       </xs:complexType>

     </xs:element>

   </xs:schema>


























The element "metadataFragment" shall be encapsulated in the metadata envelope for embedded metadata fragments, and shall not be encapsulated where the metadata fragment is not embedded. In the embedded case, "metadataFragment" shall contain an embedded metadata fragment as specified by the metadata envelope syntax.

An embedded metadata fragment shall be escaped. Generally, an embedded metadata fragment should be escaped by placing inside a CDATA section [REF: Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E., Yergeau, F. and J. Cowan, "Extensible Markup Language (XML) 1.1"", W3C Recommendation, February 2004]. Everything starting after "<![CDATA[" string and ending at the "]]>" string would be ignored by the XML envelope parser (quotes not included).  Thus, the embedded parts would appear as "<![CDATA[" + metadata_fragment + "]]>". In this case, the complete metadata envelope with embedded metadata fragment shall not violate the rules of CDATA section sage [REF: same “Bray, T. et al.” as previous].

In the case of an metadata fragment including the XML for a CDATA section, the embedded metadata fragment may be escaped by replacing illegal characters with their ampersand-escaped equivalents [REF: same “Bray, T. et al.” as previous] (instead of encapsulating the whole fragment in a CDATA section).  For instance "<" is an illegal character that would be replaced by "&lt;".  This method is useful to avoid nesting CDATA sections (which is not allowed).

An metadata fragment which does not adhere to either of these two methods shall not be embedded in a metadata envelope, thus it may only be referenced from an referencing metadata envelope.

5.2.2.5    
Delivery of the Metadata Envelope

An instance of metadata envelope shall be associated with an instance of an metadata fragment by one of two methods:

· Embedded: The metadata fragment is embedded within the metadata envelope

· Referenced: The metadata fragment is referenced from the metadata envelope

In the embedded case, the envelope and fragment are, by definition, transported together and in-band of one another.  In the referenced case, the envelope and fragment shall be transported together in-band of the same transport session. 
MBMS Service Announcement transports shall support delivery of the metadata envelope as a discrete object (XML file) for the referenced case. In the referenced case, the MIME type of the metadata fragment should be provided by the transport protocol (e.g.  as a Content-Type text string). In both cases, the MIME type of the metadata envelope should be provided by the transport protocol.
The Metadata Envelope includes a reference (metadataURI) to the associated metadata fragment using the same URI as the fragment file is identified by in the Service Announcement. Thus, Metadata Envelope can be mapped to its associated metadata fragment. 

5.2.2.6
Metadata Envelope Transport

When FLUTE is used as the Service Announcement transport, the metadata envelope object is transported as a file object in the same MBMS service announcement download session as its metadata fragment file object (i.e., in-band with the metadata fragment session).

5.2.2.7
Metadata Envelope and Metadata Fragment Association with FLUTE

The FLUTE service announcement session FDT Instances provide URIs for each transported object. The metadata envelope metadataURI field shall use the same URI for the metadata fragment as is used in the FDT Instances for that metadata fragment file. Thus, the fragment can be mapped to its associated envelope in-band of a single MBMS download session. 
In the referencing case, each metadata envelope and corresponding metadata fragment shall be grouped together by the FDT using the grouping mechanism described by clause 6.1.2.5. This reduces the complexity of requesting both fragment and envelope for each pair, thus it is recommended that only the metadata fragment (fileURI) be requested from the download client (which will result in both fragment and envelope being received using the grouping mechanism).

***************************************** NEXT AMENDMENT **********************************
6.1.2

FLUTE usage for MBMS download

The purpose of download is to deliver content in files. In the context of MBMS download, a file contains any type of MBMS data (e.g. 3GPP file (Audio/Video), Binary data, Still images, Text, Service Announcement metadata).

In this specification the term "file" is used for all objects carried by FLUTE (with the exception of the FDT Instances). 

· UE applications for MBMS user services built upon the download delivery method have three general approaches to getting files from the FLUTE receiver for a joined session:

· Promiscuous: Instruct FLUTE to promiscuously receive all files available. Promiscuous reception can be suitable for single purpose sessions (generally with limited number and/or size of files) although uncertainty over the quality and content of files makes this approach generally undesirable.

· One-copy: Instruct FLUTE to receive a copy of one or more specific files (identified by the fileURI) – and potentially leaving the session following reception of one copy of all the specified files. Specifying the download file ensures that the UE has an upper bound to the quantity of files downloaded. One-copy reception requires prior knowledge of the file identifiers (fileURIs).

· Keep-updated: Instruct FLUTE to receive one or more specific files and continue to receive any updates to those files. As with one-copy, the keep-updated approach bounds the quantity of files downloaded and requires prior knowledge of the file identifiers.

NOTE: This specification does not prevent or endorse changing download reception approach, and any related file list, during the life of the download session. Discovery of session content lists (including file lists) out-of-band of the delivery method sessions is beyond the scope of this specification.

MBMS clients and servers supporting MBMS download shall implement the FLUTE specification [9], as well as ALC [10] and LCT [11] features that FLUTE inherits. In addition, several optional and extended aspects of FLUTE ,as described in the following clauses, shall be supported. 
6.1.2.1
Fragmentation of Files

Fragmentation of files shall be provided by a blocking algorithm (which calculates source blocks from source files) and a symbol encoding algorithm (which calculates encoding symbols from source blocks).

Exactly one encoding symbol shall be carried in the payload of one FLUTE packet. 

[Editor’s note: The limitation of FLUTE packet payload length is still under discussion]
6.1.2.2
Symbol Encoding Algorithm

The "Compact No-Code FEC scheme" [12] (FEC Encoding ID 0, also known as "Null-FEC") shall be supported. 

[Editor’s note: the support of any other symbol encoding scheme is still under discussion]
6.1.2.3
Blocking Algorithm

The "Algorithm for Computing Source Block Structure" described within the FLUTE specification [9] shall be used.

6.1.2.4
Congestion Control

For simplicity of congestion control, FLUTE channelisation shall be provided by a single FLUTE channel with single rate transport.
6.1.2.5
Transport File Grouping

Files downloaded as part of a multiple-file delivery are generally related to one another. Examples includes web pages, software packages, and the referencing metadata envelopes and their metadata fragments. FLUTE clients analyse the XML-encoded FDT Instances as they are received identify each requested file, associate it with FLUTE packets (using the TOI) and discover the relevant in-band download configuration parameters of each file.

An additional “group” field in the FLUTE FDT instance and file elements enables logical grouping of related files.A FLUTE receiver should download all the files belonging all groups where one or more of the files of those groups have been requested. (A UE is permitted to instruct its FLUTE receiver to ignore grouping to deal with special circumstances, such as low storage availability).

The group names are allocated by the FLUTE sender and each specific group name shall group the corresponding files together as one group, including files describes in the same and other FDT Instances, for a session.

Group field usage in FDT Instances is shown in the FDT XML schema (clause 6.1.2.9). Each file element of an FDT Instance may be labelled with zero, one or more group names. Each FDT Instance element may be labelled with zero, one or more group names which are inherited by all files described in that FDT Instance.
6.1.2.6
Signalling of Parameters with Basic ALC/FLUTE Headers 

FLUTE and ALC mandatory header fields shall be as specified in [9, 10] with the following additional specializations:

· The length of the CCI (Congestion Control Identifier) field shall be 32 bits and it is assigned a value of zero (C=0).

· The Transmission Session Identifier (TSI) field shall be of length 16 bits (S=0, H=1, 16 bits).

· The Transport Object Identifier (TOI) field should be of length 16 bits (O=0, H=1).  

· Only Transport Object Identifier (TOI) 0 (zero) shall be used for FDT Instances.

· The following features may be used for signalling the end of session and end of object transmission to the receiver: 

-
The Close Session flag (A) for indicating the end of a session. 

-
The Close Object flag (B) for indicating the end of an object.

In FLUTE the following applies:

· The T flag shall indicate the use of the optional “Sender Current Time (SCT)” field (when T=1). 

· The R flag shall indicate the use of the optional “Expected Residual Time (ERT)” field (when R=1). 

· The LCT header length (HDR_LEN) shall be set to the total length of the LCT header in units of 32-bit words.

· For "Compact No-Code FEC scheme" [12], the payload ID shall be set according to [13] such that a 16 bit SBN (Source Block Number) and then the 16 bit ESI (Encoding Symbol ID) are given. 

[Editor’s note: This section is still under discussion]
6.1.2.7
Signalling of Parameters with FLUTE Extension Headers

FLUTE extension header fields EXT_FDT, EXT_FTI , EXT_CENC [9] shall be used as follows:

· EXT_FTI shall be included in every FLUTE packet carrying symbols belonging to any FDT Instance. 

· FLUTE packets carrying symbols of files (not FDT Instances) shall not include an EXT_FTI.

· FDT Instances shall not be content encoded and therefore EXT_CENC shall not be used.

In FLUTE the following applies:

· EXT_FDT is in every FLUTE packet carrying symbols belonging to any FDT Instance.

· FLUTE packets carrying symbols of files (not FDT instances) do not include the EXT_FDT.

[Editor’s note: This section is still under discussion]
6.1.2.8
Signalling of Parameters with FDT Instances

The FLUTE FDT Instance schema [9] shall be used. In addition, the following applies to both the session level information and all files of a FLUTE session.

The inclusion of these FDT Instance data elements is mandatory according to the FLUTE specification: 

· Content-Location (URI of a file);

· TOI (Transport Object Identifier of a file instance);

· Expires (expiry data for the FDT Instance).

Additionally, the inclusion of these FDT Instance data elements is mandatory:

· Content-Length (source file length in bytes);

· Content-Type (content MIME type);

· FEC-OTI-Maximum-Source-Block-Length;

· FEC-OTI-Encoding-Symbol-Length;

· FEC-OTI-Max-Number-of-Encoding-Symbols;

NOTE: FLUTE [9] describes which part or parts of an FDT Instance may be used to provide these data elements.

These optional FDT Instance data elements may or may not be included for FLUTE in MBMS:

· Complete (the signalling that an FDT Instance provides a complete, and subsequently unmodifiable, set of file parameters for a FLUTE session may or may not be performed according to this method).

· FEC-OTI-FEC-Instance-ID.

NOTE: the values for each of the above data elements are calculated or discovered by the FLUTE sender.
6.1.2.9
FDT Schema

The following XML Schema shall be use for the FDT Instance:
  <?xml version="1.0" encoding="UTF-8"?>

  <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

       xmlns:fl="http://www.example.com/flute"

       elementFormDefault:xs="qualified"

       targetNamespace:xs="http://www.example.com/flute">

    <xs:element name="FDT-Instance">

      <xs:complexType>

        <xs:sequence>

          <xs:element name="File" maxOccurs="unbounded">

            <xs:complexType>

              <xs:sequence>
                <xs:element name="Group" type="xs:string" minOccurs=”0” maxOccurs="unbounded"/>

              </xs:sequence>

              <xs:any processContents="skip" minOccurs="0" maxOccurs="unbounded"/>

              <xs:attribute name="Content-Location" type="xs:anyURI" use="required"/>

              <xs:attribute name="TOI" type="xs:positiveInteger" use="required"/>

              <xs:attribute name="Content-Length" type="xs:unsignedLong" use="optional"/>

              <xs:attribute name="Transfer-Length" type="xs:unsignedLong" use="optional"/>

              <xs:attribute name="Content-Type" type="xs:string" use="optional"/>

              <xs:attribute name="Content-Encoding" type="xs:string" use="optional"/>

              <xs:attribute name="Content-MD5" type="xs:base64Binary" use="optional"/>

              <xs:attribute name="FEC-OTI-FEC-Encoding-ID" type="xs:unsignedLong" use="optional"/>

              <xs:attribute name="FEC-OTI-FEC-Instance-ID" type="xs:unsignedLong" use="optional"/>

              <xs:attribute name="FEC-OTI-Maximum-Source-Block-Length" type="xs:unsignedLong" use="optional"/>

              <xs:attribute name="FEC-OTI-Encoding-Symbol-Length" type="xs:unsignedLong" use="optional"/>

              <xs:attribute name="FEC-OTI-Max-Number-of-Encoding-Symbols" type="xs:unsignedLong"
                  use="optional"/>

              <xs:anyAttribute processContents="skip"/>

            </xs:complexType>

          </xs:element>

        </xs:sequence>
        <xs:sequence>
          <xs:element name="Group" type="xs:string" minOccurs=”0” maxOccurs="unbounded"/>

        </xs:sequence>
        <xs:any processContents="skip" minOccurs="0" maxOccurs="unbounded"/>

        <xs:attribute name="Expires" type="xs:string" use="required"/>

        <xs:attribute name="Complete" type="xs:boolean" use="optional"/>

        <xs:attribute name="Content-Type" type="xs:string" use="optional"/>

        <xs:attribute name="Content-Encoding" type="xs:string" use="optional"/>

        <xs:attribute name="FEC-OTI-FEC-Encoding-ID" type="xs:unsignedLong" use="optional"/>

        <xs:attribute name="FEC-OTI-FEC-Instance-ID" type="xs:unsignedLong" use="optional"/>

        <xs:attribute name="FEC-OTI-Maximum-Source-Block-Length" type="xs:unsignedLong" use="optional"/>

        <xs:attribute name="FEC-OTI-Encoding-Symbol-Length" type="xs:unsignedLong" use="optional"/>

        <xs:attribute name="FEC-OTI-Max-Number-of-Encoding-Symbols" type="xs:unsignedLong" use="optional"/>

        <xs:anyAttribute processContents="skip"/>
      </xs:complexType>

    </xs:element>

  </xs:schema>






3GPP


