3GPP TSG-SA4#32
Tdoc S4-040526

August 16 – 20, 2004, Prague, Czech Republic

Source:
Digital Fountain, NEC, Vidiator, Ericsson

Title:
FEC architecture for MBMS streaming services

Document for:
Information and Discussion

Agenda Item:
6

1 Executive Summary

Based on the submissions [1], [2] it may be required to define a way to FEC protect MBMS streams. As documented in [2], there is currently no existing standard that fulfils all the requirements described in [2]. The contribution [3] describes a way of providing FEC protection for streams based on a particular LDPC code that is based on the ideas in [4].

This contribution describes a general FEC framework that can fulfil all the requirements listed in [2] (and repeats a large portion of [2] below). Although the proposed solution does not simply take an existing standard and use it, the proposed solution is based on existing IETF RFCs [5], [6] and follows the general direction recently proposed in the draft [7] to the IETF (with good initial reactions, not yet accepted as an official working group item in the AVT and RMT working groups). Section 2 describes the proposed solution, and Section 3 relists the requirements listed in [2] and describes how the proposed solution meets each requirement.

This contribution does not address the issues of signalling the session in SDP. Perhaps something like what is proposed in [3] or [7] in terms of signalling can be modified for use with the proposed solution. The signalling would indicate for example if the stream is FEC encoded, the payload types for the source and redundant RTP packets, etc.

2 Proposed solution

The overall architecture of the proposed solution works as follows. It is fundamentally based on the FEC building block [5] and sends RTP packets similar to the solution described in [7]. In this proposed solution the FEC sender takes the stream of original source RTP packets and produces and sends a stream of the source RTP packets and the redundant RTP packets generated from the original source RTP packets. Symmetrically, the FEC receiver receives a stream of sent source RTP packets and redundant RTP packets and regenerates the original stream of source RTP packets.

The overall concept is that the source RTP packets are conceptually partitioned into source blocks in real-time as the source RTP packets flow through the FEC sender (which may be coincident with the source of the source RTP packets). The source RTP packets are sent without delay (or little delay) as they flow through the FEC sender. The FEC sender keeps a copy of all the source RTP packets and as soon as a source block is formed then the FEC sender can generate redundant RTP packets containing FEC encoding symbols from the source block. The FEC sender sends the redundant RTP packets for a source block just after all the source RTP packets for the source block have been sent and before sending source RTP packets for the subsequent source block.

	Source block number

(SBN)
	Encoding symbol ID

(ESI)

Figure 1 – FEC Payload ID inserted into source RTP packets by FEC sender

Corresponds to FEC Encoding ID 0

	RTP header

	SBN
	ESI

	Source RTP packet payload

Figure 2 – Format of source RTP packet after FEC Payload ID shown in Figure 1 has been inserted. This is the format of source RTP packets sent by FEC sender.

The source RTP packets are sent in their original form with the following modification. The 4-byte FEC Payload ID corresponding to the Compact No-Code FEC code (corresponds to FEC Encoding ID 0, see Figure 1) defined in [5] is inserted just after the usual 12-byte RTP header (see Figure 2). This FEC Payload ID consists of a 2-byte Source Block Number (SBN) and a 2-byte Encoding Symbol ID (ESI). The SBN is the source block number for the set of source RTP packets that are concatenated together to form the source block, and source blocks are numbered consecutively modulo 2^16. The ESI indicates the starting position of the source RTP packet in the source block. For example, the first source RTP packet of the first source block will contain the FEC Payload ID: SBN=0, ESI=0. If the first source RTP packet is 1000 in length then it has an FEC Payload ID: SBN=0, ESI=1000, and if the second RTP packet is 500 in length then its FEC Payload ID is: SBN=0, ESI=1500, etc. Note that the SBN and ESI are both known to the FEC sender even before the FEC sender has seen all of the source RTP packets that will form the current source block and in particular before the FEC sender even knows the exact length of the source block. As an example the FEC sender may decide when to end a current source block and start a next source block based on total length of the source RTP packets in the current source block, subject to the restriction that source RTP packets don’t split over two source blocks. Thus, the FEC sender can send the source RTP packets immediately after they arrive without knowing the exact length of the source block they are part of.

Once the first source block is finished and the next source block is started, the FEC sender can generate the redundant RTP packets for the first source block and send them as described below. The next source RTP packet will contain SBN=1, ESI=0 as the FEC Payload ID, as this is the first source RTP packet of the next source block, and this is sent immediately after the last redundant RTP packet of the previous source block.

	RTP pkt 1
	RTP pkt 2
	RTP pkt 3
	RTP pkt 4
	RTP pkt 5
	RTP pkt 6

Figure 3 – Example source block consisting of the concatenation of a consecutive sequence of the original source RTP packets. The SBN and ESI is inserted into each source RTP packet before it is sent, where the ESI carried in a source RTP packet is the starting offset in the source block of the source RTP packet. This allows source RTP packets to be variable size.

The redundant RTP packets containing FEC encoding symbols have a different payload type (so that they can be differentiated from the original RTP packets sent in the same stream). Furthermore, the FEC Payload ID for the redundant packets corresponds to FEC Encoding ID 129 defined in [5] (see Figure 5). This FEC Payload ID is similar to the FEC Payload ID for FEC Encoding ID 0, i.e. it has a 4-byte SBN and a 2-byte ESI, but it also includes a 2-byte Source Block Length (SBL). Each redundant RTP packet contains a RTP header followed by the FEC Payload ID consisting of the SBN, the SBL and the ESI, followed by the FEC encoding symbols (see Figure 4). Note that all information necessary to form and send the redundant FEC packets for a given source block is available by the time the last source RTP packet of the source block is sent.

	Source block number

(SBN)

	Source Block Length

(SBL)
	Encoding symbol ID

(ESI)

Figure 4 – FEC Payload ID inserted into redundant RTP packets by FEC sender

Corresponds to FEC Encoding ID 129

	RTP header

	SBN

	SBL
	ESI

	FEC encoding symbols

Figure 5 – Redundant RTP packet format. The RTP header is followed by the FEC Payload ID shown in Figure 4 and then by the FEC encoding symbols in the payload that were generated from the concatenation of the original source RTP packets.

Note that FEC Encoding ID 129 is an under-specified FEC scheme, and thus different FEC codes, including the FEC codes described in [3], [10], [11], can be used with FEC Encoding ID 129.

Within the UE, the FEC receiver MUST be able to identify and distinguish the source RTP packets from the redundant RTP packets, which it can identify based on having an FEC payload type. If the FEC receiver is not equipped with an appropriate FEC decoder then it MUST remove and ignore the FTP Payload ID in the source RTP packets before sending the RTP packets on to the media player, and the FEC receiver MUST discard the redundant RTP packets. If the FEC receiver does have an appropriate FEC decoder then it can identify exactly which source RTP packets belong to which source block based on the SBN in each source RTP packet, and the FEC receiver can identify exactly where each received source RTP packet fits within the original source block based on the ESI received in each source RTP packet (after stripping out the FEC Payload ID inserted into each source RTP packet by the FEC sender when forming the source block). The FEC receiver knows the length of the source block from any redundant RTP packet received for the source block based on the SBL (and if no such redundant RTP packet is received for a source block then the receiver has nothing to use to decode the source block with in any case so the length of the source block is irrelevant). The FEC receiver knows for each received redundant RTP packet from which source block it was generated based on the SBN. The FEC receiver knows how the encoding symbols in the payload of the redundant RTP packet was generated based on the ESI. Based on all of this, the FEC receiver can decode the original source block as long as enough redundant packets are received and send the original stream of recovered source RTP packet to the media player.

The cases to consider are:

(1) No FEC sender – In this case the original source RTP packets are sent unmodified. The session is signalled as normal using for example SDP. The FEC receiver knows that the original source RTP packets are sent unmodified due to this signalling, and simply passes the RTP packets on to the media player unmodified.

(2) There is an FEC sender – The session is signalled to indicate that FEC encoding is used and which FEC code is used, and thus the FEC receiver knows how the stream is FEC encoded.

a. The FEC receiver doesn’t support the FEC code. The FEC receiver strips out the FEC Payload ID from received source RTP packets and passes them on to the media player, and the FEC receiver silently discards the redundant RTP packets.

b. The FEC receiver does support the FEC code. The FEC receiver decodes and reproduces the original source RTP packets (without the inserted FEC Payload ID) and passes them to the media player.

The FEC sender can decide dynamically when one source block ends and another begins, based on source block length or some similar parameter, but ensuring that source RTP packets are not split across source blocks. Variable length source blocks can be easily and naturally handled. Variable length source RTP packets can be handled with no negative performance consequences by this solution, and there is no interdependence between the lengths of the redundant RTP packets for a source block and the length of the source RTP packets in the source block. Furthermore, the solution has the property that all information that needs to be placed into either a source RTP packet or a redundant RTP packet is available when it needs to be sent by the FEC sender, and all information needed to decode is available within the RTP packets at the FEC receiver.

3 Requirements

This section lists requirements in [2] regarded as important, and provides in italics a short justification for why the solution satisfies each requirement.

3.1 Requirement list

1. The overall FEC framework shall not limit the possible FEC codes (e.g. an FEC framework X which supports FEC code A but not B would violate this requirement)

The above solution can work for all of the currently proposed FEC schemes, e.g., those proposed in [3], [10] and [11], and any future FEC scheme that is based on encoding and decoding source blocks.
2. Streaming should reuse the FEC mechanism defined for download

All of the FEC codes proposed in [3], [10] and [11] can be potentially used for either download and streaming. Furthermore, the packet formats described in this proposed solution are very similar in spirit to and based on the same underlying FEC building block as the FLUTE protocol [14].

3. The FEC receiver shall be mandatory at the client while the use of FEC shall remain optional per service

The proposed solution allows the media sender to not use a FEC sender and send the original source RTP packet stream unmodified, and when there is an FEC sender the FEC receiver can strip out the FEC Payload ID inserted by the FEC sender in source RTP packets and silently discard redundant RTP packets if the FEC receiver does not support the FEC decoder to exactly reproduce the original source RTP packets that are passed on to the media player.

4. The FEC configuration (e.g. level of protection, block sizes etc.) shall be configurable

This is completely configurable, i.e., the source block sizes, the source RTP packet sizes, the redundant RTP packet sizes, the amount of redundant RTP packets generated for each source block, etc.)

5. It shall be possible to apply FEC to different media streams of an MBMS session in different configurations with the possibility to not use FEC at all for selected media streams (e.g. FEC is applied to audio but not to video or vice versa)

This just requires that RTP provides a way to differentiate between different streams, and then the FEC can be applied as required to each stream independently.

6. The complexity of the FEC receiver shall allow FEC and media decoding in real-time on 3GPP-Rel6 terminal platforms

Since there is complete flexibility in terms of which FEC code is used, this is satisfied as long as there is any FEC code that can achieve this.

7. After applying FEC to an encoded media stream, the total delay shall remain below a yet to be defined threshold in the order of a few seconds

This just depends on the source block length and the rate of source RTP packets, and is completely configurable. Since the source block length can be decided dynamically, it can be a function of time, i.e., no source block is more than 5 seconds in length can be easily accommodated. Furthermore, since the source RTP packets are sent as soon as possible, the proposed solution minimizes the overall delay introduced for a given amount of protection.

8. After applying FEC to an encoded media stream, it shall be possible for a terminal at any time to start decoding and rendering a media stream within a yet to be defined time limit in the order of a few seconds after the reception of the first media packets of the corresponding media stream.

The proposed solution satisfies this, see above.

9. The FEC scheme shall provide a reasonable trade-off between FEC performance and the requirements 6, 7, and 8

These requirements are flexibly satisfied by the proposed solution.

10. Variable length packets shall have an only limited impact onto the overall performance

Variable length packets are easily handled in a natural way by the proposed solution, with no negative consequences.

3.2 Open issues

· Interface between FEC receiver and media player - FEC receiver outputs RTP packets or new interface between FEC receiver and media player?

Response: The FEC receiver passes the source RTP packets (original source RTP packets, without the inserted FEC payload ID) to the media player.

· Interface between content source and FEC sender – FEC sender takes RTP packets as input or new interface between content source and FEC sender?

Response: The FEC sender takes as input the original source RTP packets and sends them (after inserting the FEC Payload ID) together with the generated redundant RTP packets as described in the proposed solution.

4 Discussion of existing IETF work

4.1 RFC 2733 - An RTP Payload Format for Generic Forward Error Correction,

RFC 2733 ([4], December 1999) describes an RTP payload format for media that is encoded with an exclusive-or (i.e., parity) FEC scheme. Many other, considerably more powerful, FEC schemes exist, however. Therefore RFC 2733 does not fulfil requirement 1.

RFC 2733 uses a solution for dealing with variable length packets, which is based on virtual padding. With increasing variance of packet sizes, this solution becomes less efficient. This drawback was addressed in a previous SA4 contribution from Siemens [9], which proposed to eliminate the padding symbols. However, the proposed solution is currently not supported by RFC 2733. Therefore, RFC 2733 does also not fulfill requirement 10.

The proposed solution overcomes this problem in a natural way, without penalty.

An advantage of RFC 2733 is that it allows to apply FEC to RTP packets in a transparent way, e.g. the FEC sender takes RTP packets as input and the FEC receiver produces RTP packets as output.

The proposed solution provides this benefit.

Note that just recently an Internet Draft was released [8], which is supposed to obsolete RFC 2733. We will discuss this ID later in section 4.6.

4.2 RFC 3452 - Forward Error Correction (FEC) Building Block

Since RFC 2733, the IETF has standardized an "FEC Building Block", which allows an arbitrary FEC scheme to be specified for use within a transport protocol. Therefore it fulfils requirement 1. While this work was originally aimed at reliable transport of bulk data, such as files, it can also be used for packet loss protection in streaming data, including time-sensitive data such as media streams

RFC 3452 [5] is an experimental RFC, which describes how to use FEC to efficiently provide and/or augment reliability for one-to-many reliable data transport using IP multicast. RFC 3452 describes what information is needed to identify a specific FEC code, what information needs to be communicated out-of-band to use the FEC code, and what information is needed in data packets to identify the encoding symbols they carry.

The proposed solution can be viewed as one way of extending the work in RFC 3452 [5] to protect RTP streams, similar in spirit to what is suggested in [7].

4.3 RFC 3453 - The Use of Forward Error Correction (FEC) in Reliable Multicast

RFC 3453 [12] is an informational RFC, which describes the use of FEC to efficiently provide and/or augment reliability for one-to-many reliable data transport using IP multicast.

Section 2.5 of [12] discusses source blocks with variable length. It proposes a solution, which is similar to the solution proposed in the Siemens SA4 contribution [9]. Therefore it addresses requirement 10.

The proposed solution addresses source blocks and source RTP packets of variable length in a natural and direct way, and avoids the appending the lengths of the source RTP packets are part of the source block.

4.4 RFC 3695 - Compact Forward Error Correction (FEC) Schemes

RFC 3695 [6] introduces some Forward Error Correction (FEC) schemes that supplement the FEC schemes described in RFC 3452.

The new FEC schemes are particularly applicable when an object is partitioned into equal-length source blocks. In this case, the source block length common to all source blocks can be communicated out-of-band, thus saving the additional overhead of carrying the source block length within the FEC Payload ID of each packet. The new FEC schemes are similar to the FEC schemes with FEC Encoding ID 128 defined in RFC 3452, except that the FEC Payload ID is half as long. This is the reason that these new FEC schemes are called Compact FEC schemes.

The primary benefits of these additional FEC schemes are that they are designed for reliable bulk delivery of large objects using a more compact FEC Payload ID, and they can be used to sequentially deliver blocks of an object of indeterminate length in an efficient way. Thus, they more flexibly support different delivery models with less packet header overhead.

The proposed solution inserts the FEC Payload ID from FEC Encoding ID 0 described in RFC 3695 [6] into the source RTP packets before sending. Also, FEC Payload ID from FEC Encoding ID 129 is used in the redundant RTP packets.

4.5 Work in Progress - RTP Payload Format for Generic FEC-Encoded Time-Sensitive Media

This Internet Draft [7] adapts the "FEC Building Block" for use within RTP. The parameters - FEC Encoding ID, FEC Instance ID, FEC Payload ID, and FEC Object Transmission Information - that define an instantiation of this building block (i.e., a particular FEC scheme), are mapped directly to RTP.

This RTP payload format is applicable for the streaming of any FEC-encoded time-sensitive media. It is not, however, appropriate for reliable transport of entire objects, such as files. For this, a protocol such as FLUTE [14] should be used instead.

This is a new draft, which cannot be expected to be ready earlier than one year from now.

The proposed solution can be viewed as one way of forwarding the work proposed in [7].
4.6 Work in progress - An RTP Payload Format for Generic FEC

This Internet Draft [8] specifies a payload format for generic Forward Error Correction (FEC) for media data encapsulated in RTP. It is based on the exclusive-or (parity) operation, and it is a generalized algorithms that includes Uneven Level Protection (ULP). The payload format described in this draft allows end systems to apply protection using arbitrary protection lengths and levels, in addition to using arbitrary protection group sizes. It enables complete recovery or partial recovery of the critical payload and RTP header fields depending on the packet loss situation. This scheme is completely backward compatible with non-FEC capable hosts. Those receivers that do not know about FEC can simply ignore the protection data. This specification is supposed to obsolete RFC 2733 and RFC 3009.

Although this Internet Draft solves some of the drawbacks of RFC 2733, it limits the possible FEC codes to XOR codes and therefore violates requirement 1. It also does not solve the problem with variable length packets. The draft is fairly mature and the work is expected to be finished within a few months from now.

The proposed solution does not include unequal error protection. Although conceptually this could be added, it is quite complicated and is probably best left ffs.

4.7 Summarizing the status of IETF work

The review of related IETF work shows that there is currently no IETF specification, which SA4 could easily adopt for protecting streamed media data with application layer FEC.

The proposed solution is built on existing IETF work and suggests a direction that is consistent with the most recent proposals to the IETF [7] for how to provide a solution for providing FEC protection to RTP streams.

5 Proposal

In a first step, SA4 should agree upon a list of well-specified requirements for the streaming FEC framework.

After that, a decision needs to be taken whether

a) SA4 should proceed with designing its own FEC mechanisms for MBMS streaming or

b) Application layer FEC for streaming should be done within the IETF framework based on input from and with support of 3GPP SA4.

Pros and cons of the two alternatives are obvious. a) will probably lead to a solution which could become part of the 3GPP-Rel6 specification until end of this year with the risk of being incompatible with what is going to be developed in IETF. b) will bundle 3GPP and IETF efforts, however, previous experiences showed, that the specification process will take at least one year, which means application layer FEC for streaming will most likely not become part of 3GPP-Rel6.

The proposed solution is in line with a) and is meant to anticipate the direction that is likely for b). It is proposed that the proposed solution outlined in the document be adopted as the practical way to progress the work on protecting MBMS streams with FEC codes.

6 References

1. Siemens, “FEC for MBMS streaming services”, Tdoc S4-040449, 3GPP TSG-SA4#32 meeting, Aug. 16 - 20, 2004, Prague, Czech Republic
2. Ericsson, “FEC for MBMS streaming services”, Tdoc S4-040465, 3GPP TSG-SA4#32 meeting, Aug. 16 - 20, 2004, Prague, Czech Republic
3. NEC, “MBMS Streaming FEC”, Tdoc S4-040489, 3GPP TSG-SA4#32 meeting, Aug. 16 - 20, 2004, Prague, Czech Republic
4. J. Rosenberg, et al., “An RTP Payload Format for Generic Forward Error Correction”, IETF RFC 2733, December 1999.
5. M. Luby, L. Vicisano, J. Gemmell, L. Rizzo, M. Handley, J. Crowcroft, “Forward Error Correction (FEC) Building Block”, RFC 3452, December 2002

6. M. Luby, L. Vicisano, “Compact Forward Error Correction (FEC) Schemes”, RFC 3695, February 2004

7. Michael Luby, Ross Finlayson, Hiroaki Nishimoto, “RTP Payload Format for Generic FEC-Encoded Time-Sensitive Media”, Work in Progress, draft-luby-avt-rtp-generic-fec-00.txt, July 2004

8. Adam Li, “An RTP Payload Format for Generic FEC”, Work in Progress, draft-ietf-avt-ulp-10.txt, July 2004
9. Siemens, Reconstruction of lost variable sized data packets in MBMS streaming services, Tdoc S4-040233, 3GPP TSG-SA4#31, May 2004
10. Nokia, “FEC for MBMS Download and Streaming Services: Reed Solomon Codes – Case Study”, Tdoc S4-040471, 3GPP TSG-SA4#32 meeting, Aug. 16 - 20, 2004, Prague, Czech Republic
11. Digital Fountain, “Raptor encoder specification for MBMS file download”, Tdoc S4-040444, 3GPP TSG-SA4#32 meeting, Aug. 16 - 20, 2004, Prague, Czech Republic
12. Luby, M., Vicisano, L., Gemmell, J., Rizzo, L., Handley, M. and Crowcroft, J., "The Use of Forward Error Correction (FEC) in Reliable Multicast", RFC 3453, December 2002.

13. Siemens, Reconstruction of lost variable sized data packets in MBMS streaming services, Tdoc S4-040233, 3GPP TSG-SA4#31, May 2004
14. Paila, T., Luby, M., Lehtonen, R., Roca, V., Walsh, R., "FLUTE - File Delivery over Unidirectional Transport", Work in Progress, draft-ietf-rmt-flute-08.txt, June 2004.

