3GPP TSG-SA4#32 Meeting
Tdoc S4-040454

16-20 August 2004,Prague, Czech Republic 


Source:
Nokia

Title:
Interworking of PSS rate adaptation and interleaved packetization

Document for:
Discussion

Agenda item:
6, 9

1 Introduction

We identified the problem of reproducing the client buffer status for rate adaptation when interleaved packetization is in use in document S4-040262. The paper also proposed a solution for the interleaved packetization mode of H.264/AVC. It was concluded in SA4#31 that a media-unaware solution to the problem is preferred as some of the audio RTP payloads also allow interleaved packetization. This paper proposes a media-agnostic solution to the problem. Changes to the specification TS 26.234 needed for this solution are provided in the attached document.

2 Overview of the Proposal

The solution proposed herein is a generalization of the proposal we presented in SA4#31 (S4-040262). We propose the RTCP OBSN APP packet to be replaced with a similar packet called RTSP NADU (Next Application Data Unit) APP packet, including SSRC, playout delay, NUN, and NSN fields. The semantics of SSRC and playout delay remain unchanged compared to RTCP OBSN APP. The NUN field indicates the unit number of the next ADU (Application Data Unit) to be decoded (within an RTP packet containing the ADU). The first unit in a packet has a unit number equal to zero. The unit number is incremented by one for each ADU in an RTP packet. ADU is specified for each RTP payload type allowed in PSS. For H.264/AVC, an ADU is a NAL unit, and for audio codecs, an ADU is a coded audio frame. The NSN field indicates the sequence number of the RTP packet that contains the next ADU to be decoded.

We think that the proposed solution brings a number of benefits as summarized below:

· The server can derive the exact buffer status of the receiver regardless of the interleaving pattern in use. 

· The solution meets the design goals as described in section 3.

· Reporting the next unit to be decoded uses the same concept as the reporting of the OBSN that is currently in the TS 26.234 v6.0.0 (if no interleaving is used, the next SN to be decoded is actually the OBSN). This signaling has already been implemented and tested by some companies. Modifying the design by introducing a completely new scheme could lead to some new bugs at the moment the specs are getting frozen.

The next subsections present more details on the proposal and its implications on client and server implementation. Annexes of this contribution provide the proposed specification text modifications for TS 26.234 and TS 26.244.

3 Comparison of RTCP NADU APP and RTCP RBUF APP

This section compares the proposed RTCP NADU APP signaling to the RTCP RBUF APP signaling proposed in document S4-040TODO. We first set a number of design goals we are trying to achieve with the signaling and then analyze how the solutions meet these design goals.

3.1 Design goals of rate adaptation signaling

We think that the solution for rate adaptation should meet at least the following design goals:

Media-unawareness in PSS clients: The rate adaptation signaling from PSS client to server should not require more than parsing the payload headers of packets.

Media-unawareness in RTCP APP signaling: The syntax of the signaling should not be media-specific.

Media-unawareness in PSS servers: Servers should not be forced to parse RTP payloads or media tracks to respond to rate adaptation signaling correctly.

Ability to prevent client buffer underrun (i.e. rebuffering) and overrun: The signaling should be such that it enables servers to react proactively to prevent rebuffering and client buffer overflow but does not cause a switch lower bitrate unless that is necessary.

Interoperation with encrypted content: The solution should be such that it works as well with encrypted content as with non-encrypted content.

Interoperation with thinning and stream switching: The solution should be such that servers can use both thinning (i.e. intelligent decision on which “enhancement layer” data units are sent) and stream switching to control the bitrate of the transmitted stream.

Operation with rebuffering: The solution should handle any rebufferings (pause in playback to increase client buffer occupancy) correctly.

Implementation flexibility: The signaling should be such that it allows different implementation options.

3.2 Summary of the proposals

This subsection summarizes the pros and cons of the proposals based on design goals above. A detailed discussion can be found later in this section. 

	
	RTCP NADU APP
	RTCP RBUF APP

	Media-unawareness in PSS clients
	Requires parsing of RTP payload headers
	Requires parsing of RTP payload headers

	Media-unawareness in RTCP APP signaling
	No media-specific fields
	No media-specific fields

	Media-unawareness in PSS servers
	Server can be implemented without parsing RTP payloads or media data
	Server can be implemented without parsing RTP payloads or media data

	Ability to prevent client buffer underrun and overrun
	Enables exact client buffer reproduction, i.e. provides perfect means to prevent underrun and overrun
	Inaccurate client buffer reproduction, may cause underruns, overruns, and fluctuations of bitrate

	Interoperation with encrypted content
	Yes. Without file format modifications, similar adaptation “accuracy” as for RTCP RBUF APP. With a simple file format addition, exact client buffer reproduction.
	Yes.

	Interoperation with thinning and stream switching
	Allows intelligent thinning and full benefits of transmission order prioritization
	Thinning only as substitute of stream switching

	Operation with rebuffering
	No complications
	Server and client may fall “out of sync”. Detection of rebuffering hard and may cause misplaced rate adaptation.

	Implementation flexibility
	No limitations
	Requires joint buffer space for de-interleaving and “streaming” buffer.

Cannot reflect different post-decoder buffering strategies


3.3 Media-unawareness in PSS clients

Composing RTCP NADU APP packets requires the clients to de-aggregate interleaved payloads to find out the unit number of ADUs. Thus, the RTCP NADU APP approach requires parsing of RTP payload headers.

Composing the playout time in RTCP RBUF APP packets requires that the composition/playout time of each ADU is reproduced. In interleaved packetization, this means that the client must understand the interleaving pattern in use (e.g. AMR-NB, AMR-WB) or be able to parse the relative RTP timestamp information embedded to the RTP payloads (e.g. NALU-time of H.264/AVC).

Therefore RTCP NADU APP and RTCP RBUF APP require similar amount of media-awareness.

3.4 Media-unawareness in RTCP APP signaling

Neither RTCP NADU APP nor RTCP RBUF APP includes media-specific fields in the syntax.

3.5 Media-unawareness in PSS servers

3.5.1 RTCP NADU APP

Each Application Data Unit (ADU) is contained in a constructor of RTPpacket class of ISO base media file format. Thus, a media-agnostic server has a way to map the reported next sequence number (NSN) and next unit number (NUN). 

Furthermore, a media-agnostic server can use the Time to Sample boxes of the media tracks to conclude which samples between highest received SN and NSN occur earlier in decoding time compared to the sample pointed to by NSN + unit number. Therefore, a server can reconstruct the exact status of the receiver buffer without parsing payloads or payload headers.

Thus, the server needs to 

· create a table of decoding times for each sample (once per stream)

· maintain a set of constructors that remain in the client buffer

· for each RTCP NADU APP packet, add those constructors that are in packets sent earlier to or correspond to the reported highest received SN and later than the previous highest received SN (in the previous RTCP NADU APP packet)

· remove those constructors that are part of samples whose decoding time is earlier than the decoding time for the sample pointed to by NSN and NUN

· sum up the sizes of the constructors to get the buffer occupancy level in the client.

3.5.2 RTCP RBUF APP

The server operation is likely to be based on thresholds of free buffer space and playout time. If the playout time is low, the server should switch to a lower rate bitstream. If the playout time is high, the server should switch to a higher rate. If the free buffer space is low, the server should reduce its transmission rate.

3.6 Ability to prevent client buffer underrun and overrun

The RTCP NADU APP solution enables exact reproduction of client buffer status and therefore servers have all means to prevent underrun and overrun.

The RTCP RBUF APP solution suffers from several consequences caused by the inability to reproduce client buffer contents accurately. Some of the consequences are described below.

The server cannot know whether the next packet(s) to send cause any increse in the occupancy of the "streaming" buffer. In other words, next packet(s) to send may be such that they are stored in the deinterleaving buffer and cause no ADUs to be moved from the deinterleaving buffer to the "streaming" buffer. In other words, the server does not know how the data is shared between deinterleaving and streaming buffer and how the next data units to be sent affect the occupancy levels of deinterleaving and streaming buffers. This may cause the deinterleaving buffer to overflow while the reported free buffer space is more than 0, or vice versa.

In general, media time difference does not correspond to decoding time difference, i.e. two coded pictures may have e.g. 1 second difference in RTP timestamps and yet they are consecutive in decoding order. Consequently, if the client reports playout time of 1 second in an RTCP RBUF APP packet, the server may wrongly conclude that there is a lot of coded data in the "streaming" buffer (in terms of bytes).

It is hard to conclude a good value for the TS selection window for H.264/AVC. First of all, there is no hard limit in the H.264/AVC standard for the time a picture can reside in the decoded picture buffer before it is output. Coding schemes in which decoding order differs from output order include the following:

1) For compression efficiency and bitrate scalability: Use of non-reference pictures and sub-sequences as proposed in S4-040048 Annex E and F, in which amount of "reorder" in 15Hz sub-sequence content is 200 msec.

Moreover, it was recently shown in Joint Video Team document JVT-L034 that even 1 second reorder brings significant improvement in compression efficiency.

2) For error resiliency: a coding scheme known as intra picture postponement improves error resiliency while compression efficiency is not hurt. Instead of coding IPPPPPP... after a scene cut or periodic intra picture, it is proposed to code P'P'P'P'IPPPPPP (in output order) = IP'P'P'P'PPPPPP... (in coding/decoding order) in which each P' is a normal inter picture that is predicted from the I picture or earlier P' in decoding order. If a transmission loss hits P', error is propagated only to later P' pictures in decoding order, whereas if a corresponding P in conventional IPPPP coding is hit, the error is propagated until the end of the GOP. In AVC Level 1 and 1.1 you can have 3 and 8 QCIF-sized P' pictures respectively or 7 and 15 sub-QCIF-sized P' pictures. Assuming 15-Hz picture rate, the "decoding vs output reorder" varies from 200 msec to 1 second in the examples above.

Too large value of TS selection window results in an underestimation of the amount of media playout time present in the buffer and may cause a switch to a higher bitrate. (A higher bitrate may then cause free space to approach zero, which causes a switch to a lower bitrate. In other words, there is a danger of frequent changes in the transmitted bitrate.)

Too small value of TS selection window may cause an overestimation of the amount of media playout time present in the buffer (as timestamps within the TS selection window may be considerably larger than average timestamps in the streaming buffer). Consequently, the streaming buffer may underflow.

3.7 Interoperation with encrypted content

In the case of encrypted media, the server would anyway know the sequence number and the timestamps of the packets it is sending. Even if it can't use the NUN value in RTCP NADU APP packets, it can still estimate the buffer duration of the receiver buffer by knowing the timestamp of the highest received sequence number and the timestamp of the reported NSN. Because of the interleaving, this will not be accurate and the server would need to subtract the maximum interleaving duration if it wants a worst-case estimate. This is equivalent to the playout time of the RTCP RBUF APP solution. 

If exact reproduction of client’s buffer status is desired, an additional data structure in the hint track box needs to be specified including information of the boundaries and decoding order of ADUs. The specification text for the proposed data structure is included in an annex of the contribution.

3.8 Interoperation with thinning and stream switching

It was shown in S4-040048 that non-reference pictures and sub-sequences improve compression efficiency while they allow bitrate scalability (stream thinning). One of the primary applications for interleaved packetization in video is to allow more time to retransmit “important” data units in case they are lost or corrupted. “Important” data units in case of a scalable H.264/AVC bitstream consist of reference pictures in sub-sequence layer 0 while non-reference pictures or pictures in sub-sequence layer 1 or above are “non-important” data units. The packet delivery order and schedule can be composed real-time (e.g. using rate-distortion optimization) or can be pre-computed and stored in a hint track. When the transmission order and schedule are stored in a hint track, servers should ensure that “non-important” data units are received early enough to be decoded and played. 

In the RTCP NADU APP solution, the server can reproduce the client buffer status and playout delay exactly and can estimate the end-to-end transmission delay. Based on the B picture flag in a hint track sample or based on the sub-sequence sample grouping, the server can conclude whether an RTP payload is disposable. Furthermore, based on the RTP timestamp and the decoding order of the packet, the server can estimate if the RTP packet would be received early enough to be organized in correct decoding order and early enough to be played.

In the RTCP RBUF APP solution, the server cannot reproduce the contents of the client buffer, it does not know the next sequence number to be decoded or the timestamp to be played. The server cannot therefore conclude if “non-important” data is sent too late for deocoding or playback.

Both RTCP NADU APP and RTCP RBUF APP allow stream switching. 

3.9 Operation with rebuffering

If it happens that the client has to rebuffer (regardless of any rate adaptation done by the server), the rebuffering process is reflected in RTCP NADU APP packets by increased playout delay while NUN and NSN remain unchanged. Based on this behavior, the server can conclude that rebuffering takes place. Anyways, the server can reproduce the client buffer status during and after rebuffering.

In the RTCP RBUF APP solution, the server has no means to detect rebuffering but rather free buffer space monotonically decreases and playout time increases. A server may conclude wrongly that the buffer occupancy level increased dur to a drop in channel bitrate and switches to a lower bitrate. Moreover, the server has no idea which is the next data unit to be played and how its timestamp and actual playout time relate to the next data unit to be sent. As the server cannot conclude the output rate from the buffers, it is impossible for the server to control the buffer occupancy levels accurately.

3.10 Implementation flexibility

A typical PSS client includes the following types of buffers:

· De-jitter buffer (for smoothing out end-to-end delay jitter variation)

· De-interleaving buffer (only for interleaved packetization, to organize data from transmission order to decoding order)

· Pre-decoder buffer (to buffer coded data and smooth out variations in media bitrate when compared to transmission bitrate)

· Post-decoder buffer (to organize decoded data from decoding order to output order and possibly smooth out variations in decoding speed compared to media bitrate)

Post-decoder buffers are media-specific, while other types of buffers can be session-level or media-specific.

In real implementations some of these buffer types may be combined into a single buffer. For example, a de-interleaving buffer and a pre-decoder buffer may be combined. However, it is impractical to specify the exact buffer arrangement in a client implementation, because of the diversity of HW and SW platforms. For example, in a system where codecs run on hardware, pre-decoder buffering is probably controlled by the codec, while de-interleaving buffering may be controlled by a software component taking care of RTP depacketization.

Client implementations may also use different strategies how to move data from one buffer to another. For example, some clients may try to fill in post-decoder buffers as fast as it is possible, while other clients may run the decoder on regular intervals (minimum frame interval).

The rate adaptation signaling should allow different possibilities for client and server implementations.

The RTCP NADU APP signaling makes no assumptions on the buffer arrangement in the client. In particular, the contents of any buffers before decoders is signaled in NUN, NSN, and “Highest Received Sequence Number” (HRSN), and the contents of the post-decoder buffer is signaled with the playout delay field.

The RTCP RBUF APP signaling has the following disadvantages:

· Free buffer space is signaled jointly for de-interleaving and pre-decoder buffer. However, to allow implementations with a separate de-interleaving and pre-decoder buffer, PSS includes constraints for the amount of interleaving. For example, in the H.264/AVC case, the size of a (hypothetical) de-interleaving buffer required to de-interleave the stream is constrained. Servers cannot conclude the occupancy of the de-interleaving buffer and therefore the de-interleaving buffer may overflow even though the reported free buffer space would indicate otherwise.

· The amount of data in post-decoder buffers is not signaled. Therefore the server cannot conclude how much data is already ready to be played. Implementations having a different size of post-decoder buffer or filling post-decoder buffer differently would report free buffer space and buffer playout time differently (even though the stream would be exactly the same).

4 ANNEX

The extra-flag in the RTPPacket class (included in each RTP hint track sample) indicates that there is extra information before the RTP constructors, in the form of type-length-value sets. We propose that a new type is specified to indicate the boundaries of application data units and decoding order. Note that the new type can simplify the server processing in non-encrypted files and makes accurate client buffer reproduction possible for encrypted content. The data structure for the proposed type '3gau' is specified as follows:

When an RTP payload contains more than one application data unit (ADU), '3gau' structure may be included. '3gau' is particularly helpful when a hint track sample contains an encrypted payload containing data from many media samples or sample fragments. '3gau' may then be used to analyze PSS client's buffer status based on RTCP NADU APP messages.

class 3gppApplicationDataUnitInfoTLV extends Box(‘3gau’) {


unsigned int(16)
entrycount;


for(i=0; i<entrycount; i++){



unsigned int(32)
offset;



unsigned int(64)
decorder;


}

}

entrycount indicates the number of application data units in the RTP payload.

offset tells the starting byte position of the i'th application data unit in the RTP payload. Offset byte count starts from 0.

decorder indicates the decoding order of application data units within the RTP hint track. The smaller value of decorder, the earlier the ADU is in decoding order. ADUs having the same value of decorder are decoded virtually simultaneously, i.e. their relative decoding order is undefined.







Page: 1/7


Page: 7/7

