3GPP SA4 PSM Ad-Hoc #32
Tdoc S4-040445

Prague, Czechia, August 16-20 2004
Agenda Item: 6.5.4.1

Source:
Digital Fountain
Title:
Raptor decoder specification for MBMS file download
Document For:
Discussion and Approval
1. Introduction

This document describes the Raptor decoder that corresponds to the Raptor encoder described in [5]. The overall description of the Raptor code, the terminology, variable names, conventions and references of [5] are assumed in this document. Only the additional elements needed to describe the decoder are included in this document.

2. Decoding a source block

The decoder knows the length of the file in bytes (received out of band in the FDT of the FLUTE session) and the maximum source block length (which is presumed to be 256 KB, as described in [5]). Based on this information the decoder can determine the source block structure of the file, and the mapping between keys and the corresponding encoding symbols for each of the source blocks carried in each received packet, as described in [5]. In particular, the decoder can determine the length of the encoding symbols, the number of source symbols K in each source block, and the total number L = K+S+H of pre-coding symbols for each source block. From each received packet, the decoder can determine which encoding symbols within the packet correspond to which source block and from the key which source symbols are exclusive-ored together to generate each encoding symbol.

Let N ≥ K be the number of received encoding symbols for a source block and let M = S+H+N. The following M by L bit matrix A can be logically derived for each source block from information received in the FDT of a FLUTE session and from keys in received packets. Let C be the column vector of the L pre-coding symbols, and let D be the column vector of M symbols with values known to the receiver, where the first S+H of the M symbols are zero-valued symbols that correspond to static and half symbols (these are check symbols for the static and half symbols, and not the static and half symbols themselves), and the remaining N of the M symbols are the received encoding symbols for the source block. Then, A is the bit matrix that satisfies A·C = D, where here · denotes matrix multiplication over GF[2]. In particular, A[i,j] = 1 if the pre-coding symbol corresponding to index j is exclusive-ored into the static, half or encoding symbol corresponding to index i in the encoding, or if index i corresponds to a static or half symbol and index j corresponds to the same static or half symbol. For all other i and j, A[i,j] = 0.

Decoding a source block is logically equivalent to decoding C from known A and D. (This is logically equivalent to recovering the K source symbols since if they can be recovered then the other L-K pre-coding symbols can be recomputed.) It is clear that C can be decoded if and only if the rank of A over GF[2] is L.

The first logical step in decoding C is to form a decoding schedule. In this step A is converted, using Gaussian elimination (using row operations and row and column reorderings) and after discarding M – L rows, into the L by L identity matrix. The decoding schedule logically consists of the sequence of row operations and row and column reorderings during the Gaussian elimination process, and only depends on A and not on D. The decoding of C from D can take place concurrently with the forming of the decoding schedule, or the decoding can take place afterwards based on the decoding schedule.

 The correspondence between the decoding schedule and the decoding of C is as follows. Let c[0] = 0, c[1] = 1…,c[L-1] = L-1 and d[0] = 0, d[1] = 1…,d[M-1] = M-1 initially.

· Each time row i of A is exclusive-ored into row i’ in the decoding schedule then logically in the decoding process symbol D[d[i]] is exclusive-ored into symbol D[d[i’]] .

· Each time row i is exchanged with row i’ in the decoding schedule then logically in the decoding process the value of d[i] is exchanged with the value of d[i’].

· Each time column j is exchanged with column j’ in the decoding schedule then logically in the decoding process the value of c[j] is exchanged with the value of c[j’].

From this correspondence it is clear that the total number of exclusive-ors of symbols in the decoding of the source block is the number of row operations (not exchanges) in the Gaussian elimination. Since A is the L by L identity matrix after the Gaussian elimination and after discarding the last M – L rows, it is clear at the end of successful decoding that the L symbols D[d[0]], D[d[1]], …, D[d[L-1]] are the values of the L symbols C[c[0]], C[c[1]], …, C[c[L-1]].

The order in which Gaussian elimination is performed to form the decoding schedule has no bearing on whether or not the decoding is successful. However, the speed of the decoding depends heavily on the order in which Gaussian elimination is performed. (Furthermore, maintaining a sparse representation of A is crucial, although this document does not describe the details of how this is done). The remainder of this section focuses on the order in which Gaussian elimination should be performed.

2.1. First Phase

The first phase of the Gaussian elimination the matrix A is conceptually partitioned into submatrices. The submatrix sizes are parameterized by non-negative integers i and u which are initialized to 0. The submatrices of A are:

(1) The submatrix I defined by the intersection of the first i rows and first i columns. This is the identity matrix at the end of each step in the phase.

(2) The submatrix defined by the intersection of the first i rows and all but the first i columns and last u columns. All entries of this submatrix are zero.

(3) The submatrix defined by the intersection of the first i columns and all but the first i rows. All entries of this submatrix are zero.

(4) The submatrix U defined by the intersection of all the rows and the last u columns.

(5) The submatrix X formed by the intersection of all but the first i columns and the last u columns and all but the first i rows.

Figure 1 illustrates the submatrices of A. At the beginning of the first phase X = A. In each step, a row of A is chosen. The following graph defined by the structure of X is used in determining which row of A is chosen. The columns that intersect X are the nodes in the graph, and the rows that have exactly 2 ones in X are the edges of the graph that connect the two columns (nodes) in the positions of the two ones. A component in this graph is a maximal set of nodes (columns) and edges (rows) such that there is a path between each pair of nodes/edges in the graph. The size of a component is the number of nodes (columns) in the component.

	Identity matrix I
	All zeroes
	U

	All zeroes
	X
	

Figure 1 – Submatrices of A in the first phase
There are at most L steps in the first phase. The phase ends successfully when i + u = L, i.e. when X and the all zeroes submatrix above X have disappeared and A consists of I, the all zeroes submatrix below I, and U. The phase ends unsuccessfully in decoding failure if at some step before X disappears there is no non-zero row in X to choose in that step. In each step, a row of A is chosen as follows:

Row Choice

· If all entries of X are zero then no row is chosen and decoding fails.

· Let r be the minimum integer such that at least one row of A has exactly r ones in X.

· If r ≠ 2 then choose a row with exactly r ones in X with minimum original degree among all such rows.

· If r = 2 then let CC be the subset of rows in X with exactly 2 ones in X (these are edges in the graph defined by X) of a maximum size component in the graph defined by X.

· Choose a row of CC with minimum original degree among all the rows in CC.

After the row is chosen in the step the first row of A that intersects X is exchanged with the chosen row so that the chosen row is the first row that intersects X. The columns of A among those that intersect X are reordered so that one of the r ones in the chosen row appears in the first column of X and so that the remaining r-1 ones appear in the last columns of X. Then, the chosen row is exclusive-ored into all the other rows of A below the chosen row that have a one in the first column of X. Finally, i is incremented by 1 and u is incremented by r-1, which completes the step.

2.2. Second Phase

The submatrix U is further partitioned into the first i rows, UU, and the remaining M – i rows, UL. Gaussian elimination is performed in the second phase on UL to either determine that its rank is less than u (decoding failure) or to convert it into a matrix where the first u rows is the identity matrix (success of the second phase). Call this u by u identity matrix UI. The M – L rows of A that intersect UL – UI are discarded. After this phase A has L rows and L columns.

2.3. Third Phase

After the second phase the only portion of A which needs to be zeroed out to finish converting A into the L by L identity matrix is UU. The number of rows i of the submatrix UU is generally much larger than the number of columns u of UU. To zero out UU efficiently, the following precomputation matrix UE is computed based on UI in the third phase and then UE is used in the fourth phase to zero out UU. The u rows of UI are partitioned into ceil(u/7) groups of 7 rows each. Then, for each group of 7 rows all non-zero combinations of the 7 rows are computed, resulting in pow(2,7)- 1 = 127 rows (this can be done with pow(2,7)-7-1 = 120 exclusive-ors of rows per group, since the combinations of Hamming weight one that appear in UI do not need to be recomputed). Thus, the resulting precomputation matrix UE has ceil(u/7) ·127 rows and u columns. Note that UE is not formally a part of matrix A, but will be used in the fourth phase to zero out UU.

2.4. Fourth Phase

For each of the first i rows of A, for each group of 7 columns in the UU submatrix of this row, if the set of 7 column entries in UU are not all zero then the row of the precomputation matrix UE that matches the pattern in the 7 columns is exclusive-ored into the row, thus zeroing out those 7 columns in the row at the cost of exclusive-oring one row of UE into the row.

After this phase A is the L by L identity matrix and a complete decoding schedule has been successfully formed. Then, as explained in Section 2, the corresponding decoding consisting of exclusive-oring known encoding symbols can be executed to recover the source block based on the decoding schedule.

Only rows corresponding to recovering a source symbol need be considered in this phase if only the source symbols and not all the pre-coding symbols are to be decoded. However, for the systematic Raptor codes described in [6] all of the pre-coding symbols need be recovered.

3. Decoding a source file

Just like for encoding, there are two cases of how to decide how to recover the source file, depending on whether the source file size F is smaller or larger than working memory W. When F ≤ W then the source file is decoded as a single source block. Each received encoding packet contains a key and one or more encoding symbols. The key is used to reconstruct how each encoding symbol contained in the encoding packet was generated, and then when enough encoding packets have arrived the source file is decoded.

When F > W then the multiple source blocks are decoded in a coordinated way. As each encoding packet arrives, the key is stored, and each encoding symbol corresponding to a source block is stored in a temporary location dedicated to that source block. Then, based on the received keys the decoding schedule can be formed, and then that decoding schedule is applied to the encoding symbols for each source block in sequence, decoding each source block within the limits of the working memory resources.

The decoding memory requirements for Raptor are slightly more than the source block length for the file. For example, a 100 KB source file that is encoded and decoded as a single source block takes slightly more than 100 KB of working memory for the decoding, whereas for the 3 MB file is partitioned into 16 source blocks of 192 KB each, and thus the working memory needed to decode is slightly more than 192 KB. Decoding can be performed in place, i.e., the same memory that is used to store received encoding symbols for a source block and be used in place to recover the source block within the same memory.
4. Decoding work per file

The decoding work per file depends slightly on the reception overhead, i.e., the more packets received for a file the less the total work it takes to decode the file. The average and maximum decoding workload per file can be seen in Table 2 for various sizes F of files and values ε of reception overhead, where the decoding workload is the decoding work divided by the number of bytes in the file, and thus the decoding workload is the number of bytes that are exclusive-ored on average to decode each byte of the file. Note that the decoding workload is largely independent of file size.

Since the symbols that are exclusive-ored in the decoding generally are many bytes in length (symbol sizes ranging from 16 bytes to 512 bytes depending on the file size), and since a CPU can generally exclusive-or together several bytes in a single operation, the exclusive-oring can be pipelined in such a way that decoding is very efficient.

These results were obtained by running the decoder on different sequences of received packets for each file size and reception overhead value. The decoding work per file is independent of the amount of packet loss and packet loss patterns.

	F
	Reception overhead ε

	
	0.01
	0.02
	0.03
	0.05
	0.15
	0.30
	1.00

	
	Avg
	Max
	Avg
	Max
	Avg
	Max
	Avg
	Max
	Avg
	Max
	Avg
	Max
	Avg
	Max

	10 KB
	--
	--
	--
	--
	--
	--
	8.3
	16.8
	4.4
	6.9
	3.1
	3.6
	1.6
	2.6

	50 KB
	11.6
	17.2
	10.0
	14.7
	8.8
	13.5
	6.8
	11.4
	3.8
	6.1
	2.8
	4.4
	1.5
	2.6

	130 KB
	12.1
	17.5
	9.8
	16.5
	9.0
	13.7
	7.3
	11.6
	4.0
	5.9
	2.9
	4.6
	1.5
	2.7

	400 KB
	11.6
	17.2
	10.0
	14.7
	8.8
	13.5
	6.8
	11.4
	3.8
	6.1
	2.8
	4.4
	1.5
	2.6

	3 MB
	12.8
	22.5
	10.3
	17.6
	8.4
	14.1
	5.8
	13.0
	3.7
	5.1
	2.8
	4.1
	1.4
	2.5

Table 2 – Average and maximum decoding workload
5. Decoding failure probability

The source file packet length is defined to be ceil(F/P) = ceil(F/512). For source files up to 10 KB the decoding succeeds with overwhelming probability from the reception of one more encoding packet than source file packet length, e.g., if the source file is 10 KB in length then the source file packet length is 20 and the reception of 21 encoding packets virtually guarantees successful decoding of the source file with decoding failure around 2e-7.

Table 3 provides the reception overhead/decoding failure probability for some relevant source file sizes. These results were obtained by running the decoder many times on different packet sequences until several decoding failures were observed and then reporting the average number of times decoding failed. In some cases this required running the decoder tens of millions of times. The decoding failure probability δ for a given reception overhead ε is the probability the decoding process fails to recover the source block when the number of received encoding symbols is (1+ ε) ·K. For example, for a 10 KB source file, when ε = 0.05 (which corresponds to the reception of one additional encoding packet beyond the number of source file packets) then δ = 2e-7.

Because each encoding packet is generated at random independently of all other encoding packets, the received encoding packets are random for any loss pattern of encoding packets that does not depend on their values. Since packet loss is independent of packet content, the value of δ is independent of packet loss patterns. Thus, Table 3 is valid for any pattern of packet loss.

The coordinated way encoding symbols from all source blocks of the source file are placed into encoding packets ensures that the reception overhead/failure probability tradeoff for a source file is the same as the reception overhead/failure probability tradeoff for each source block of the source file.

For all file sizes, as ε increases the value of δ decreases very quickly. For example, even though decoding is not successful with probability 4e-4 from 0.01 reception overhead for a 400 KB source file, by just receiving a few more encoding packets until the reception overhead is 0.02 the decoding failure probability drops to 1.5e-6. Thus, if the decoder cannot decode from received encoding packets in aggregate slightly more than the length of the source file, with overwhelming probability the source file can be decoded after just a few more encoding packets arrive. The entries with “--“ values are irrelevant because they represent a fractional packet of reception overhead. The entries indicated by “*” are not estimated because the decoding failure probability was too small to enable running enough trials to obtain a reasonable confidence estimate.

	F
	Reception overhead ε

	
	0.01
	0.02
	0.03
	0.05

	10 KB
	--
	--
	--
	2e-7

	50 KB
	3e-4
	5e-7
	*
	1e-7

	130 KB
	2e-3
	1.5e-6
	5e-7
	1e-7

	400 KB
	4e-4
	5e-7
	*
	*

	3 MB
	7e-7
	*
	*
	*

Table 3 – Decoding failure probability for various file sizes and reception overheads
6. Receiving encoding packets from different senders

One reason why it is easy to architect a variety of supplemental services using Raptor codes is that a UE can combine received encoding symbols from multiple senders to reconstruct a source file without coordination among the senders. The only requirement is that the senders use different keys to generate the encoding symbols that they send in encoding packets to the UE. Ways to achieve this include designating different ranges of the key space to be used by each such sender, or generating keys randomly at each sender.

As an example of the use of this property, consider providing a supplemental service to the MBMS file download service that allows UEs that did not receive enough encoding packets to reconstruct a source file from the MBMS file download session to request additional encoding packets to be sent from a make-up sender, e.g., via a HTTP session. The make-up sender generates encoding symbols from the source file and sends them for example using HTTP, and all these encoding symbols can be combined with those received from the MBMS file download session by the UE to recover the source file. Using this approach allows different senders to provide incremental source file delivery services without coordination between the senders, and ensuring that each individual UE need receive only the minimal number of encoding packets to recover each source file.

7. Conclusions

A description of the Raptor code has been provided that minimizes, under all packet loss and UE availability conditions, the transmission time needed to reliably deliver files to UEs. Furthermore, under all packet loss and UE availability conditions, the number of SDUs that each individual UE needs to receive to fully recover files is minimal. Because Raptor codes are fountain codes that are designed to work well in all conditions and provide unprecedented flexibility, testing the properties of Raptor codes under a wide variety of simulation conditions will only prove the superior performance of Raptor codes versus any other type of reliable file delivery mechanism.

8. Other considerations

The Raptor code as described in this document is not a systematic code, i.e., all of the original source symbols of a source block are not necessarily among the encoding symbols that are sent. However, the companion document [6] describes how to modify the Raptor code described in this document to design a systematic Raptor code, albeit at the cost of slightly more complex encoding and decoding and slightly higher encoding and decoding workloads.
9. References

[1] M. Luby. “LT Codes”, Proceedings of The 43rd Annual IEEE Symposium on Foundations of Computer Science, November 16-19 2002, pp. 271-282.
[2] A. Shokrollahi, “Raptor Codes”, Digital Fountain Technical Report, DF2003-06-001

[3] J. Byers, M. Luby, M. Mitzenmacher, “A Digital Fountain Approach to Asynchronous Reliable Multicast”, IEEE J. on Selected Areas in Communications, Special Issue on Network Support for Multicast Communication, Vol. 20, No. 8, October 2002, pp. 1528 – 1540

[4] T. Paila, M. Luby, R. Lehtonen, V. Roca, R. Walsh, “FLUTE - File Delivery over Unidirectional Transport”, IETF RMT working group, draft-ietf-rmt-flute-08.txt, June 5, 2004

[5] “Raptor encoder specification for MBMS file download”, Digital Fountain, 3GPP SA4 PSM Ad-Hoc #32, Prague, Czechia, Agenda item 6.5.4.1,Tdoc S4-040444, August 16-20, 2004

[6] “Systematic Raptor specification for MBMS file download”, Digital Fountain, 3GPP SA4 PSM Ad-Hoc #32, Prague, Czechia, Agenda item 6.5.4.1,Tdoc S4-040446, August 16-20, 2004
