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1. Introduction

According to the SES verification plan in [1], STMicroelectronics and IBM have conducted the verification of the SES codec selection. The codecs under consideration are the fixed-point implementations of the AFE/X-AFE codec (Advanced DSR front-end and its extension, cf. [3] and [4]).

The verification is split in different tasks:

· bitexactness verification

· WMOPS verification

· Memory verification

2. Verification of bit-exactness

2.1 Motivation

The motivation is to check that the executable used by the ASR vendors corresponds to the executable built from the source code of the selected candidate. The test of "bit-exactness" is used to verify the match of the output bitstreams of the compiled version of the source code of the selected candidate vs. the executables provided to the two test laboratories for selection testing. Output files from both versions are compared with respect to the bit-exactness.

2.2 Definition

The verification laboratories have used:

1. Executables used for selection testing

2. Executables obtained by compiling the source code of the candidate

3. A subset of the samples used for the selection phase.

During the evaluation phase of the AFE/X-AFE algorithm conducted by the testing laboratories, two sampling rates were used, one for the narrowband case (T8) and one for the wideband case (T16). The binaries were delivered for two different platforms: I386/linux RH7.3 (resp. T8_linux and T16_linux) and AIX (resp. T8_AIX and T16_AIX). Furthermore, two binaries were delivered, respectively for the AFE algorithm (T8 and T16) and the X-AFE algorithm (XT8 and XT16) corresponding to AFE plus its extensions.

The source codes have been compiled on an I386/linux RH7.3 platform with the GNU C compiler, gcc. The executables compiled from the source code are referenced as the “ref” executables (e.g. T8_ref, T16_ref, XT8_ref and XT16_ref) whereas the executables binaries delivered to the testing laboratories are referenced with the suffix name of the laboratory (e.g. T8_ibm, T8_sw, XT8_ibm and XT16_ibm).

The bit-exactness verification is made on a subset of the samples used for the selection phase:

	Acronym
	Description
	Duration
	#Files
	Bandwidth
	Owner

	A3I8
	Aurora 3 Italian
	14h16’
	4260
	8kHz
	Alcatel

	sA3I8
	Subset Aurora 3 Italian
	23’
	124
	8kHz
	Alcatel

	A3I16
	Aurora 3 Italian
	14h16’
	4260
	16kHz
	Alcatel

	MND8
	Mandarin name dialling
	17h35’
	10241
	8kHz
	Nokia


Table 1: Databases used for the bit-exactness verification
Bit exactness is checked with the VAD flag off since ASR vendors did not use VAD in their evaluations (cf. section 2.3 of [5]). 

The sources of the scripts used for the batches are available in attachment of this document.

2.3 Task

The bitexactness verification is split in 16 batch processing, respectively:

	Batch name
	Binary name
	Database
	Laboratory

	T8_linux_ref_A3I8
	T8_linux_ref
	A3I8
	ST

	T8_linux_sw_A3I8
	T8_linux_sw
	A3I8
	ST

	T8_linux_ibm_sA3I8
	T8_linux_ibm
	sA3I8
	IBM

	T8_AIX_ibm_sA3I8
	T8_AIX_ibm
	sA3I8
	IBM

	T16_linux_ref_A3I16
	T16_linux_ref
	A3I16
	ST

	T16_linux_sw_A3I16
	T16_linux_ibm
	A3I16
	ST

	XT8_linux_ref_A3I8
	XT8_linux_ref
	A3I8
	ST

	XT8_linux_ibm_A3I8
	XT8_linux_ibm
	A3I8
	ST

	XT8_linux_ibm_sA3I8
	XT8_linux_ref
	sA3I8
	IBM

	XT8_AIX_ibm_sA3I8
	XT8_AIX_ibm
	sA3I8
	IBM

	XT16_linux_ref_A3I16
	XT16_linux_ref
	A3I16
	ST

	XT16_linux_sw_A3I16
	XT16_linux_ibm
	A3I16
	ST

	T8_linux_ref_MND8
	T8_linux_ref
	MND8
	ST

	T8_linux_sw_MND8
	T8_linux_sw
	MND8
	ST

	XT8_linux_ref_MND8
	XT8_linux_ref
	MND8
	ST

	XT8_linux_ibm_MND8
	XT8_linux_ibm
	MND8
	ST


Table 2: Batch used for the bit-exactness verification

2.4 Results

The verification laboratory has checked that the binary executables T16_linux_ibm and T16_linux_sw were identical. The bitstreams generated by the batches are compared with the GNU "diff -x '*.log' --binary -Nqr" instruction.
	Batch name A
	Batch name B
	Laboratory
	Diff

	T8_linux_sw_A3I8
	T8_linux_ref_A3I8
	ST
	none

	T8_AIX_ibm_sA3I8
	T8_linux_ibm_sA3I8
	IBM
	none

	T16_linux_sw_A3I16
	T16_linux_ref_A3I16
	ST
	none

	XT8_linux_ibm_A3I8
	XT8_linux_ref_A3I8
	ST
	none

	XT8_AIX_ibm_sA3I8
	XT8_linux_ibm_sA3I8
	ST
	none

	XT16_linux_sw_A3I16
	XT16_linux_ref_A3I16
	IBM
	none

	T8_linux_sw_MND8
	T8_linux_ref_MND8
	ST
	none

	XT8_linux_ibm_MND8
	XT8_linux_ref_MND8
	ST
	none


Table 3: Bit-exactness results
The binary executables, the source code and the databases were provided in time. Based on the processed databases, the executables compiled by the verification laboratory from the source code gives a bit-exact output with the binary executables delivered to the testing laboratories.

The images of the processed databases will be archived on CD-ROM until TSG-SA#24.

3. WMOPS Complexity verification

3.1 Introduction

According to the verification plan, the verification laboratory has compiled the C-code with the extension (X-AFE) on one of the supported platforms (gcc on Sun Solaris 8). The compilation builds an executable to be run at the different sampling rates (resp. XA8 for the narrowband and XA16 for the wideband).

3.2 Source-code verification

The verification laboratory has checked that the C-code correctly implements the basic operators and the source code instrumentation. The verification laboratory has sent to the X-AFE supporting companies a feedback report collecting the minor issues that could be cleaned from the original source code (XA8_orig and XA16_orig). The supporting companies have provided to the verification laboratory a cleaned version of the source code (XA8_cln and XA16_cln). 

The modifications that occurred in the version XA8_cln and XA16_cln include:
· minor issues regarding instrumentation over-estimating or under-estimating the WMOPs. As an example, the function qsort_be() was modified, as suggested in the intermediary report that was sent on the 11th of March, over the SA4 reflector, so that the qsort algorithm operates now directly on Word16 elements.

· A cleaning of the source code: French comments in the code are translated, some ROM arrays have been re-cast with the const keywords, and duplicated tables are deleted. 
The verification laboratory has verified that the modifications that occurred in XA8_cln and XA16_cln do not impact the output bitstream. In order to do so, the verification laboratory has compared the output bitstream generated by both XA8_orig and XA8_cln (resp. XA16_orig and XA16_cln). This bit-exactness verification is split in 6 batch processing, respectively:

	Batch name
	Binary name
	Database

	XA8_orig_A3I8
	XA8_orig
	A3I8

	XA8_orig_MND8
	XA8_orig
	MND8

	XA16_orig_A3I16
	XA16_orig
	A3I16

	XA8_cln_A3I8
	XA8_cln
	A3I8

	XA8_cln_MND8
	XA8_cln
	MND8

	XA16_cln_A3I16
	XA16_cln
	A3I16


Table 4: Batch used for the verifying the cleaning process
The bitstreams generated by those 6 batches are compared with the GNU instruction "diff -x '*.log' –x '*.wmops' --binary -Nqr".
	Batch name A
	Batch name B
	Diff

	XA8_orig_A3I8
	XA8_cln_A3I8
	none

	XA8_orig_MND8
	XA8_cln_MND8
	none

	XA16_orig_A3I16
	XA16_cln_A3I16
	none


Table 5: Bit-exactness results of the cleaning process

Based on the processed databases, XA8_orig and XA8_cln (resp. XA16_orig and XA16_cln) both give an identical (i.e. bit-exact) bitstream.

3.3 Complexity results

The cleaned code provided by the candidates is instrumented in such a way that one line of log is generated for each frame, logging the current observed WMOPS score and the maximum observed WMOPS score. All the files from the selected databases (i.e. A3I8, MND8 or A3I16) were processed. The maximum observed WMOPS score is evaluated by selecting the maximum WMOPS score from every sample file.

	Executable
	Database
	Observed
	Design constraint

	X-AFE + X-VQ 8kHz
	A3I8
	(24.259 WMOPS (1)
	(25 WMOPS

	X-AFE + X-VQ 8kHz
	MND8
	(24.216 WMOPS (2)
	(25 WMOPS

	X-AFE + X-VQ 16kHz
	A3I16
	(30.948 WMOPS (3)
	(39 WMOPS


Table 6: WMOPs results
(1) was obtained with low_speed_rough_road/climcontrol/ch0/v10631c5.it0.08
(2) was obtained with Male/taohb/taohb3/wang2jian4.o.a
(3) was obtained with low_speed_rough_road/climcontrol/ch0/v10631c5.it0.16
The complexity is evaluated for both source codes (i.e. XA8_orig and XA8_cln; resp. XA16_orig and XA16_cln). The results are not significantly different.

4. ROM Complexity verification

4.1 Results

The ROM table is verified. Only constant tables and constant arrays are accounted. Constant variables are not counted. The amount of ROM necessary to implement the algorithm is summed up in the following tables:

	Executable
	ROM
	design constraint 

	X-AFE 8kHz
	3150 words
	

	X-VQ  8kHz
	1668 words
	

	X-AFE + X-VQ 8kHz
	4818 words
	(20 kwords

	X-AFE 16kHz
	3531 words
	

	X-VQ  16kHz
	1668 words
	

	X-AFE + X-VQ 16kHz
	5199 words
	(34 kwords


Table 7: ROM usage of the X-AFE + X-VQ algorithm

Note 1: The table ROM_astFrac is defined with 312 values but only 308 values are initialized.

4.2 Supplementary information

It is noted that the tables used in X-AFE 8kHz are re-used in X-AFE 16kHz. The following table details the ROM usage when X-AFE is implemented with the support for both sampling rates:

	Executable
	ROM

	X-AFE 8/16kHz
	3275 words

	X-VQ  8/16kHz
	2884 words

	X-AFE + X-VQ 8/16kHz
	6159 words


Table 8: ROM usage of the X-AFE+X-VQ algorithm at both sampling rates
5. RAM Complexity verification

5.1 Definition

The RAM usage was verified. The RAM usage in X-AFE is split in 3 forms:

· Static RAM

· Heap

· Stack

In order to evaluate the RAM usage of X-AFE, different databases were built. The database describes the memory usage for each function and also the calling tree structure. The format of the database is described in Annex C. A database was built for each of the algorithms, i.e. X-AFE 16kHz, X-AFE 8kHz, X-VQ 16kHz and X-VQ 8kHz. See respectively Annex D and Annex E for the special cases of qsort_be() and X-VQ. The four databases used for assessing the memory usage (RAM and ROM) from the SES DSR codec are available as an attachment from this document.

5.2 On the usage of structures 

Some buffers allocated in the RAM, either from the heap or from the stack (i.e. in local buffers) are used for intermediate storing of complex structures. Those structures include sub-structures, contain pointers or mix relevant variables with function pointers or file handlers used only for interfacing the algorithm with the UNIX i/o or with unused options. 

The verification laboratory notes that the size of the buffers allocated for storing such data must be modified on 32-bit platform such as the Unix or Windows platform compared to what is needed for a DSP platform using a 16-bit memory model:

· Variables that are wider than 16 bits are systematically aligned on a 32-bit boundary in 32-bit platforms. This causes a significant loss of memory when Word16 variables are mixed with other structure types inside a structure. 

· Pointers are 32-bit wide on 32-bit platform.

In such condition, the memory model generated by the compiler does not match with the memory model used for a DSP; the buffers’ size used in the reference C-code for 32-bit platforms must be adapted in order to match the 16-bit memory model of the DSP.

The verification laboratory has taken those adaptations into account in order to estimate the amount of RAM necessary for supporting the SES-DSR algorithm.

5.3 Static RAM

The static RAM corresponds to variables, tables or arrays that have a lifetime equivalent to the lifetime of the application. Those arrays are defined outside of the scope of a function block, or alternatively with the keyword static.

According to section 5.2, the size of the table scratchDoPitch[] is adapted from 1632 Words to 1090 Words (resp. scratchAdvProcess[], from 1100 Words to 825 Words).

5.4 Heap

Memory from the heap is allocated during the initialization of the AFE/X-AFE. During the processing, the memory allocated in the heap is used like a static RAM memory. The functions malloc/calloc/free are never called during the frame processing.

The heap usage was determined by instrumenting the C-code and by tracing the malloc/calloc/free usage. Since the memory from the Heap is allocated during the initialization, it is independant from the processed file and can be determined alternatively at the compilation time.

The heap usage is accounted as static RAM. 

As mentioned in section 5.2, the run-time analysis provides a value on 32-bit platform that over-estimates the amount of RAM memory necessary for DSP 16-bit platforms. See Annex F for the detail of the differences.

	Executable
	Run-time
	Diff
	Total

	X-AFE 8kHz
	3961
	126
	3835

	X-AFE 16kHz
	5304
	139
	5165


Table 9: Total heap usage
5.5 Calling tree

The calling tree was verified in order to be able to evaluate the stack usage. The table 1, 2 and 3 gives the calling tree of the application. In 6, we produce the updated calling tree with some corrections (typo errors), the addition of the functions from MathFunc (Pow_2, Log_2, Sqrt_2, Sqtr16_2) or miscellaneous functions (UpDateDecal, ApplyDecal).

5.6 Stack

The stack depth can be analyzed from the calling tree. Variables and values that can be determined at the compilation time (for instance FFTLength) are not taken into account. Variables that are duplication from already existing variables are not accounted in the stack if they are not used in the block as left-values (i.e. in write mode). According to the verification plan, the functions' arguments are accounted in the stack. The verification laboratory takes into account the sharing of the stack or the overlay of variables when the source code explicitly shows sub-blocks with local definition of variables.

At 8kHz and 16kHz the critical path for the stack usage is described in Table 10.

	Calling tree
	stack depth (8kHz)
	stack depth (16kHz)

	+ main
	16
	16

	
+ DoAdvProcess_B
	849
	850

	

+ DoPitchExtract_B
	1973
	1974

	


+ RVC_MeasurePitch_be
	2038
	2039

	



+ FindPitchCandidates_be
	2052
	2053

	




+ CalcUtilityFunction_be
	2074
	2075

	





+ qsort_be
	2172
	2173

	






+ swap
	2181
	2182


Table 10: Stack worst path
5.7 Conclusion

The Table 11 details the RAM usage for both X-AFE + X-VQ at 8kHz and at 16kHz.

	Executable
	static RAM
	stack RAM
	heap RAM
	total RAM
	Design constraint

	X-AFE 8kHz
	446
	2181
	3835
	6462
	

	X-VQ 8kHz
	7
	38
	0
	45
	

	X-AFE + X-VQ 8kHz
	453
	2181
	3835
	6469
	(7000 words

	X-AFE 16kHz
	446
	2182
	5165
	7793
	

	X-VQ 16kHz
	7
	38
	0
	45
	

	X-AFE + X-VQ 16kHz
	453
	2182
	5165
	7800
	(8000 words


Table 11: Total RAM usage
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Annex A. Updated Calling Tree

A.1 XAFE 8kHz calling tree

main


AdvProcessInit_B



DoNoiseSupInit_B



DoWaveProcInit_B



DoCompCepsInit_B



DoPostProcInit_B



DoVADInit_F



BufIn32Alloc


AdvProcessAlloc_B




DoNoiseSupAlloc_B



DoWaveProcAlloc_B



DoCompCepsAlloc_B



DoPostProcAlloc_B



DoVADAlloc_F


FlushAdvProcess_B



DoVADFlush_F



CvFeatInt2Float


AdvProcessDelete_B



DoNoiseSupDelete_B



DoWaveProcDelete_B



DoCompCepsDelete_B



DoPostProcDelete_B



DoVADDelete_F



BufIn32Free







DoAdvProcess_B



BufIn32ShiftToPut



DoNoiseSup_B




VAD_F





Log_2








DoSigWindowing16_F1




DoSigWindowing16_F2




ff4NRFix32_B





GetL15









GetH15









Mult16x32








Add_Mult16x16_16








Sub_Mult16x16_16








Permut








FFTtoPSD_F





Square24d2_B








Square24d2_B








Square24_B








PSDMean_F




NoiseEstimation_F1





Sqrt_2









Sqrt16_2








ADJUST_SHFT







NoiseEstimation_F2





Sqrt_2









Sqrt16_2








ADJUST_SHFT







FilterCalc_F




SpeechQVar




FilterBank16




SpeechQSpec




SpeechQMel




DoGainFact_F1





Log_2








DoGainFact_F2





Log_2








DoMelIDCT_F16




ApplyWF




UpDateDecal




ApplyDecal




DCOffsetFil_F



DoPitchExtract_B




FilterBank




IsLowBandNoise




RVC_MeasurePitch_be





CalculateDoubleWindowDft_be





ClearPitch_be





DirichletInterpolation_be





Finalize_be






IsContinuousPitch_be







Mpy_lw_sw





FindPitchCandidates_be






CalcUtilityFunction_be







AddSortedArrayOfPoints_be








LinkArrayOfPoints_be







Compare_ARRAY_OF_XPOINTS_be







ConvertLinkedListOfDiffPointsToUtilFunc_be







CreatePieceWiseConstantFunction_be








 L_Extract








 Mpy_32_16







LinkArrayOfPoints_be







qsort_be*








swap






ComparePitchFreqAscending_be






FindDominantLocalMaximaInUtilityFunction_be







Mpy_lw_sw






NormalizeAmplitudes_be






SelectTopPitchCandidates_be







Mpy_lw_sw






UtilityFunctionAtGivenPitchFreq_be






compute_pcorr_be







Mpy_lw_sw







accumulate_be







find_most_energetic_window2_be







find_most_energetic_window_be







interpolate_be








Mpy_lw_lw








Mpy_lw_sw








sqrt_l_fix






qsort_be*







 swap





IsLowLevelInput_be





Mpy_lw_sw





PrepareSpectralPeaks_be






CalcSpectrum_be







Mpy_lw_sw







Mpy_lw_sw_Add






qsort_be*






        swap






CompareIpointAmp_be






Final_ScaleDownAmpsOfHighFreqPeaks_be






FindPeaks_be






Prelim_ScaleDownAmpsOfHighFreqPeaks_be






RefineSpectralPeaks_be







sqrt_l_fix






Mpy_lw_sw





SelectFinalPitch_be






BETTER_be






CLOSELY_LOCATED_be







Mpy_lw_sw






ClearPitch_be






qsort_be*







swap






ComparePitchFreqDescending_be






GOOD_ENOUGH_be






IsContinuousPitch_be







Mpy_lw_sw

 




ClearPitch_be




classify_frame




dsr_afe_vad





get_vm






fnLog2




get_zcm




pre_process





iir_d





iir_s



BufIn32GetLast








DoWaveProc_B




TeagerEng




GetTeagerFilter





GetMaximaPositions



DoCompCeps_B




CepsCompute





Log_2










PreEmphHamm





ff4NR16_B






Permut








FilterBank





CosInv







DoPostProc_B



DoVADProc_F




focalpoint



CvFeatInt2Float







RVC_ConstructPitchMeter_be



Allocate_InterpolatedDft_be



RVC_ResetPitchMeter_be


RVC_ConstructPitchRom_be


RVC_DestructPitchMeter_be



Deallocate_InterpolatedDft_be


RVC_DestructPitchRom_be

A.2 XAFE 16kHz calling tree

main


AdvProcessInit_B



DoNoiseSupInit_B



DoWaveProcInit_B



DoCompCepsInit_B



DoPostProcInit_B



DoVADInit_F



Do16kProcInit_B




QMF_FIR_Init_B





fir_initialization_B





DP_HP_filters_B



BufIn32Alloc


AdvProcessAlloc_B




DoNoiseSupAlloc_B



DoWaveProcAlloc_B



DoCompCepsAlloc_B



DoPostProcAlloc_B



DoVADAlloc_F



Do16kProcAlloc_B


FlushAdvProcess_B



DoVADFlush_F



CvFeatInt2Float


AdvProcessDelete_B



DoNoiseSupDelete_B



DoWaveProcDelete_B



DoCompCepsDelete_B



DoPostProcDelete_B



DoVADDelete_F



BufIn32Free







DoAdvProcess_B



BufIn32ShiftToPut



Do16kProcessing_B








DoNoiseSup_B




Get16k_p_bufferData16k_B




Get16k_bufData16kSize_B




Get16k_p_BandsForCoding16k_B




Get16k_p_CodeForBands16k_B




VAD_F





Log_2








DoSigWindowing16_F1




DoSigWindowing16_F2




ff4NRFix32_B





GetL15









GetH15









Mult16x32








Add_Mult16x16_16








Sub_Mult16x16_16








Permut








FFTtoPSD_F





Square24d2_B








Square24d2_B








Square24_B








Get16k_BFC_dec_B








GetBandsForCoding16k_B








Log_2










PSDMean_F




NoiseEstimation_F1





Sqrt_2









Sqrt16_2








ADJUST_SHFT







NoiseEstimation_F2





Sqrt_2









Sqrt16_2








ADJUST_SHFT







FilterCalc_F




SpeechQVar




FilterBank16




SpeechQSpec




SpeechQMel




DoGainFact_F1





Log_2








DoGainFact_F2





Log_2








DoMelIDCT_F16




ApplyWF




Get16k_dec1




Get16k_dec2




Get16k_dec3




DoSigWindowing16_F3




DoMelFB_B




CodeBands16k_B




DoSpecSub16k_B





Log_2








UpDateDecal




ApplyDecal




DCOffsetFil_F




Get16k_hpBandsSize_B




Get16k_p_hpBands_B




Get16k_p_bufferCodeForBands16k_B




Get16k_p_CodeForBands16k_B




Get16k_p_bufferCodeWeights_B




Get16k_p_codeWeights_B




Set16k_hpBands_dec_B



DoPitchExtract_B




FilterBank




IsLowBandNoise




RVC_MeasurePitch_be





CalculateDoubleWindowDft_be





ClearPitch_be





DirichletInterpolation_be





Finalize_be






IsContinuousPitch_be







Mpy_lw_sw





FindPitchCandidates_be






CalcUtilityFunction_be







AddSortedArrayOfPoints_be








LinkArrayOfPoints_be







Compare_ARRAY_OF_XPOINTS_be







ConvertLinkedListOfDiffPointsToUtilFunc_be







CreatePieceWiseConstantFunction_be








 L_Extract








 Mpy_32_16







LinkArrayOfPoints_be







qsort_be*








swap






ComparePitchFreqAscending_be






FindDominantLocalMaximaInUtilityFunction_be







Mpy_lw_sw






NormalizeAmplitudes_be






SelectTopPitchCandidates_be







Mpy_lw_sw






UtilityFunctionAtGivenPitchFreq_be






compute_pcorr_be







Mpy_lw_sw







accumulate_be







find_most_energetic_window2_be







find_most_energetic_window_be







interpolate_be








Mpy_lw_lw








Mpy_lw_sw








sqrt_l_fix






qsort_be*







 swap





IsLowLevelInput_be





Mpy_lw_sw





PrepareSpectralPeaks_be






CalcSpectrum_be







Mpy_lw_sw







Mpy_lw_sw_Add






qsort_be*






        swap






CompareIpointAmp_be






Final_ScaleDownAmpsOfHighFreqPeaks_be






FindPeaks_be






Prelim_ScaleDownAmpsOfHighFreqPeaks_be






RefineSpectralPeaks_be







sqrt_l_fix






Mpy_lw_sw





SelectFinalPitch_be






BETTER_be






CLOSELY_LOCATED_be







Mpy_lw_sw






ClearPitch_be






qsort_be*







swap






ComparePitchFreqDescending_be






GOOD_ENOUGH_be






IsContinuousPitch_be







Mpy_lw_sw

 




ClearPitch_be




classify_frame




dsr_afe_vad





get_vm






fnLog2




get_zcm




pre_process





iir_d





iir_s



BufIn32GetLast








DoWaveProc_B




TeagerEng




GetTeagerFilter





GetMaximaPositions



DoCompCeps_B




CepsCompute





Get16k_p_bufferCodeWeights_B







Get16k_p_bufferCodeForBands16k_B






Log_2










PreEmphHamm





ff4NR16_B






Permut








GetBandsForDecoding16k_B







DecodeBands16k_B








FilterBank





Get16k_hpBands_dec_B








Get16k_p_hpBands_B








MergeSSandCoded_B








CorrectEnergy_B










Pow2









CosInv16Khz







DoPostProc_B



DoVADProc_F




focalpoint



CvFeatInt2Float







RVC_ConstructPitchMeter_be



Allocate_InterpolatedDft_be



RVC_ResetPitchMeter_be


RVC_ConstructPitchRom_be


RVC_DestructPitchMeter_be



Deallocate_InterpolatedDft_be


RVC_DestructPitchRom_be

Annex B. Differences T8 vs. A8, XT16 vs. XA16
B.1 XT16 vs. XA16
B.1.1 Summary

STMicroelectronics has verified the differences between XT16 (the extended front-end C-code delivered to the testing laboratories) and XA16 (actually XA16_orig, the extended front-end code, cf. section 3.2).

Two files were modified:

· ParmInterface_B.c

· 16kHzProcessing_B.c

B.1.2 16kHzProcessing_B.c
The values from the ROM table LambdaNSEx2[] were stored initially in XT16 under the format 2*(X_INT16)((0x8000 - x)/2); in XA16, the same values are stored as x. In XA16, the values of this table are used through:

LambdaNSE32 = LambdaNSEx2[nbFrame];

  whereas in XT16, they are used through:  

LambdaNSE32 = (X_INT16)((1<<15)-LambdaNSEx2[nbFrame]);

It is the understanding of STMicroelectronics that at least one additional significant bit is lost in the computing of LambdaNSE32 in the version from XT16.

Furthermore, in the fixed-point evaluation of frameEn32 and meanEn32, the scaling is different. From the two versions, XT16 is the version that brings the poorest accuracy. The version of XA16 is aligned with the correction presented in [6].

As a conclusion, it is the understanding of STMicroelectronics that the version of XT16 uses a poorer precision than the version of XA16 for the computing of lambdaNSE32, frameEn32 and meanEn32.

B.1.3 ParmInterface_B.c
In the file ParmInterface_B.c, at the lines 328, 333, 338 and 343, the following block is present in XA16 and A16 whereas it is missing from XT16.

test();

if (curShft<0) {

  curShft = add(32,curShft);

}
B.2 T16 vs. A16
B.2.1 16kHzProcessing_B.c
The file 16kHzProcessing_B.c is modified precisely as described in [6].

It is the understanding of STMicroelectronics that T16 is using the floating-point unit for computing lambdaNSE32 whereas A16 uses the fixed-point arithmetic for computing lambdaNSE32. The modification is made according to [6]. In [6], it is shown that the performances are not impacted by the loss of precision.

Annex C. Database format

The memory usage was evaluated with the help of a database, which describes simultaneously the calling tree, the stack memory usage, the static RAM usage and the ROM usage.

The tools use two different interchange formats. Both are based on XML. The native format of the database is the FCT_LIST format. In this format, each block of instruction and each function define a unique entry with a name, the description of its memory usage (static RAM, stack and ROM) and finally the list of its sub-functions (if any).

The alternative format of the database is the FCT_TREE format. In this format, the structure of the calling tree is explicit. Each node in the tree corresponds to a node from the calling tree. The depth of the stack is available at each node. Other forms of memory (static RAM and ROM) are also available in this format but the detail of its usage.

The two formats are equivalent: it is possible to transform the database from the FCT_LIST format into the FCT_TREE format or from the FCT_TREE format into the FCT_LIST format. The native format of the database is FCT_LIST.

Different tools are available for manipulating the database, for instance (and not only):

· computing the critical path for the stack usage,

· evaluating the static RAM usage,

· evaluating the ROM usage.

As an example, here is the section describing the pre_process() function in the file preProc_B.c.

<?xml version="1.0"?>

<fct_list> 

[...]

<fct name="pre_process" file="preProc_B.c">

  <mem argin="6"/>

  <ref_list>

    <ref id="#iir_d"/>

    <ref id="#iir_s"/>

  </ref_list>

</fct>

<fct name="iir_d" file="preProc_B.c">

  <mem argin="7" stack="6"/>

</fct>

<fct name="iir_s" file="preProc_B.c">

  <mem argin="7" stack="6"/>

</fct>

</fct_list>

   Code 1: Example of description in FCT_LIST format

Annex D. Memory assessment for qsort_be()
The function qsort_be(), in the current implementation is a recursive implementation of the quick sort algorithm. The deepest recursion depth of the call is 31. The verification laboratory has found that 3 Words must be duplicated in the stack for each step of the algorithm, in addition to the stack usage from the original call. Therefore, the supplementary cost due to the recursion is 90 Words in the stack.

Annex E. X-VQ

The SES DSR algorithm has been split in two separate binary executables that perform respectively the Mels-Frequency Cepstrum Coefficient (MFCC) computation and the Quantisation of the MFCC. Both algorithms operate on the same frame windows and share only a limited amount of data:

· 13 MFCC Coefficient
(Word16)

· Pitch Information
(Word32)

· Class Information
(Word8)

· VAD
(Boolean).

The interface of the two executable was kept compatible with the former floating point version available from the ETSI/Aurora group. The verification laboratory has checked that the floating-point values used in the file interface between X-AFE and X-VQ are used only for conveying the fixed-point values. 

A IEEE floating point format is made from a 24-bit mantissa. A Word16 value can be stored entirely in the mantissa without loss or corruption of bits.

In theory, the transfer of a Word32 through the mantissa of a IEEE float value implies that only the 24 most significant bits are kept (the remaining bits are rounded). In the present situation, it was checked that the Pitch Information, stored in the algorithm in Word32 has a dynamic limited to a Word16 and that the transfer of data between X-AFE and X-VQ does not imply loss of precision.

In the source code provided by the candidate, X-VQ includes supplementary processing past the quantization process in order to store the quantized bitstream in an ETSI compatible format. The verification laboratory has limited the investigation and the memory assessment to the quantization process and has not taken into account the ETSI compatible bitstream generation.

The verification laboratory has also considered that the two algorithms (X-AFE and X-VQ) were both executed in sequence frame per frame. Therefore, the stack of the two binaries can be shared. The critical path being located in the X-AFE, the X-VQ can reuse at each frame all the stack freed by X-AFE after the frame processing and it is not necessary to add the stack usage of X-VQ in the total RAM usage.

Annex F. Heap analysis

Due to structure alignment on 32-bit boundaries, pointers usages, function pointer usage, "int" type usage, the heap usage report available from run-time analysis must be adapted (cf. 5.2). The table below summarizes the differences.

	Table
	Run-time
	Diff
	Total
	File

	FEParamsX_F
	112
	93
	19
	ParamInterface_B.c

	DoVADInit_F (OutBuffer)
	14
	7
	7
	VAD_F.c

	NoiseSupStructX_F
	
	7
	
	ExtNoiseSup_B.c

	CompCepsStructX_F
	6
	1
	5
	CompCeps_B.c

	RVC_PITCH_ROM_be
	18
	5
	13
	rvc_pitch_init_B.c

	RVC_PITCH_METER_be
	40
	13
	27
	rvc_pitch_init_B.c

	DataFor16kProc_B
	
	10
	
	16kHzProcessing_B.c

	QMF_FIR
	10
	3
	7
	16kHzProcessing_B.c

	Total (8kHz)
	
	126
	
	

	Total (16kHz)
	
	139
	
	


Table 12: Detailed usage of the Heap

Note that (FEParamsX_F *) from ParamInterface_B.c is allocated from the heap. This structure mixes buffers and variables necessary for the algorithm, with function pointers and file handlers, which should not be taken into account in the memory assessment, and also with pointers and "int" types, which are 32-bit wide on the platform used. Only 19 Words are used from the 112 allocated by the system. Therefore, the run-time analysis provides values that are over-estimated: 93 Words should not be taken into account.

In DoVADInit_F, the memory allocated for OutBuffer is doubled because pointers are accounted for 32-bit data instead of 16-bits data. This is causing the waste of 7 words. The structure NoiseSupStructX_F wastes 7 Word16 in 32-bit alignment. The structure RVC_PITCH_ROM_be and RVC_PITCH_METER_be waste respectively 5 and 13 Words in 32-bit alignment. The structure DataFor16kProc_B, used at 16kHz, wastes also 10 Words due to the 32-bit alignment of data and pointers.
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