- 1 -


	INTERNATIONAL TELECOMMUNICATION UNION
	STUDY GROUP 16

	TELECOMMUNICATION
STANDARDIZATION SECTOR

STUDY PERIOD 2001-2004
	TD 11 (WP 3/16)

	
	English only

Original: English

	Question(s):
	10/16
	Geneva, 20-30 January 2004

	TEMPORARY DOCUMENT

	Source:
	Q10/16 Rapporteur

	Title:
	Modification Proposal of ITU DSP Basic Operation Library


Summary

This document describes the ITU-T basic operator library enhancement proposals on which an agreement seems to have been reached following the documents / email exchanges listed below. This is a status as of January 14th 2003.

· ITU / Redwan Salami proposal in COM16-D418 document (February 2000):
so-called proposal A in this discussion thread.

· ITU / Conexant proposal at Geneva, May 2003 meeting in COM16-D297:
so-called proposal B in this discussion thread.

· 3GPP2 feed-back (email sent by Hideo Okinaka):
3GPP2 Adopted Proposal B for SMV codec.

· TI 1st feed-back (email sent on Oct 15th 2003):
so-called proposal C in this discussion thread.

· STM 1st feed-back (email sent on Nov 21st 2003):
so-called proposal D in this discussion thread.

· TI 2nd feed-back (email sent on Dec 17th 2003):
so-called proposal E in this discussion thread.
· HSS 1st feed-back (email sent on Dec 22nd 2003)
& TI comments (email sent on Jan 05th 2004)
· HSS 2nd feed-back (email sent on Jan 7th 2004).
& TI comments (email sent on Jan 09th 2004)
· France Telecom feed-back (phone call on Jan 14th 2004).
The proposal described in this document will be called proposal F in this discussion thread.
TABLE OF CONTENTS

1Summary


31
Figure and Table References


31.1
Table References


42
Data Processing Basic Operations


42.1
Arithmetic Basic Operations (Multiplication Excluded)


62.2
Multiplication Basic Operations


72.2.1
Word32 by Word32 Multiplications / Word16 by Word32 Multiplications


82.3
Logical Basic Operations


112.4
Data Type Conversion Basic Operations


123
Program Flow Control Basic Operations


123.1
Introduction


163.2
When to Use IF() Instead of if() ?


163.3
When to Use ELSE Instead of else ?


163.4
When to Use SWITCH() Instead of switch() ?


173.5
When to Use GOTO Instead of goto ?


173.6
When to Use BREAK Instead of break ?


173.7
When to Use CONTINUE Instead of continue ?


173.8
When to Use FOR() and WHILE() Macros ?


183.9
When to Use DO and WHILE() Macros ?


183.10
Testing an Expression Equality


183.10.1
if(expression) {…} and while(expression) {…} C statements.


193.10.2
(condition) ? (statement1) : (statement2)


193.10.3
for( expresion1; expression2; expression3)




1 Figure and Table References

1.1 Table References

4Table 1: Word16 Arithmetic Basic Operations (Multiplication excluded) New operators are to be added in a package called enh1632.c / enh1632.h


4Table 2: Word32 Arithmetic Basic Operations (Multiplication excluded) New operators are to be added in a package called enh1632.c / enh1632.h


5Table 3: Word40 Arithmetic Basic Operations (Multiplication excluded) New operators are to be added in a package called enh40.c / enh40.h


6Table 4: Word16 Fractional Multiplication Basic Operations New operators are to be added in a package called enh40.c / enh40.h


7Table 5: Word40 Fractional Multiplication Basic Operations New operators are to be added in a package called enh40.c / enh40.h


8Table 6: Word32 by Word32 multiplications – Word32 by Word16 multiplications New operators are to be added in a package called enh40.c / enh40.h


8Table 7: Word16 Logical Basic Operations New operators are to be added in a package called enh1632.c / enh1632.h


9Table 8: Word32 Logical Basic Operations New operators are to be added in a package called enh1632.c / enh1632.h


10Table 9: Word40 Logical Basic Operations New operators are to be added in a package called enh40.c / enh40h


11Table 10: Data Type Conversion Basic Operations (conversion to Word16 data type) New operators are to be added in a package called enh40.c / enh40.h


11Table 11: Data Type Conversion Basic Operations (conversion to Word32 data type) New operators are to be added in a package called enh40.c / enh40.h


11Table 12: Data Type Conversion Basic Operations (conversion to Word40 data type) New operators are to be added in a package called enh40.c / enh40.h


15Table 13: Program Flow Control Basic Operations New operators are to be added in a package called control.h




2 Data Processing Basic Operations

2.1 Arithmetic Basic Operations (Multiplication Excluded)


Table 1
 (respectively Table 2 and Table 3) briefly describes the list of Word16 (respectively Word32 and Word40) arithmetic operations that are:

· Either proposed to be added to the ITU DSP basic Operator STL. 

· Or existing basic operators which complexity weights have been reduced to reflect the evolution of processor capabilities.

Table 1: Word16 Arithmetic Basic Operations (Multiplication excluded)
New operators are to be added in a package called enh1632.c / enh1632.h

	Complexity Weight
	Basic Operation Prototype
	Description

	Old
	New
	
	

	NA
	1
	Word16 s_max (Word16 var1, Word16 var2);
	Compares var1 and var2 and returns the maximum value.

	NA
	1
	Word16 s_min (Word16 var1, Word16 var2);
	Compares var1 and var2 and returns the minimum value.

	15
	1
	Word16 norm_s (Word16 var1); 
	Computes the number of left shifts needed to normalize var1 in such a way that only one sign bit will remain when the programmer performs:

var1 = shl(var1, norm_s(var1));

	2
	3
	Word16 shl_r (Word16 var1, Word16 var2);

In ITU STL UG 2000, this operator is called shift_r()
	Arithmetically shifts left var1 by var2 positions and rounds the result.

It is equivalent to shl(var1, var2) except if var2 is negative. In this case, it does the same as shr_r(var1, (-var2)).

	NA: Not Available (the corresponding basic operation is a new ITU-T Basic Operation).


Table 2: Word32 Arithmetic Basic Operations (Multiplication excluded)
New operators are to be added in a package called enh1632.c / enh1632.h

	Complexity Weight
	Basic Operation Prototype
	Description

	Old
	New
	
	

	30
	1
	Word16 norm_l (Word32 L_var1); 
	Computes the number of left shifts needed to normalize L_var1 in such a way that only one sign bit will remain when the programmer performs:

L_var1 = L_shl(L_var1, norm_l(L_var1));

	2
	1
	Word32 L_abs (Word32 L_var1); 
	Returns the absolute value of L_var1 with saturation control on 32-bit.

	2
	1
	Word32 L_add (Word32 L_var1, Word32 L_var2);
	Adds L_var1 and L_var2 with saturation control on 32-bit.

	NA
	1
	Word32 L_max (Word32 L_var1, Word32 L_var2);
	Compares L_var1 and L_var2 and returns the maximum value.

	NA
	1
	Word32 L_min (Word32 L_var1, Word32 L_var2);
	Compares L_var1 and L_var2 and returns the minimum value.

	2
	1
	Word32 L_negate (Word32 L_var1);
	Negates L_var1 with saturation control on 32-bit.

	2
	1
	Word32 L_shl (Word32 L_var1, Word16 var2);
	Arithmetically shifts left L_var1 by var2 positions:

· if var2 is negative, L_var1 is shifted to the LSBits by (-var2) positions with extension of the sign bit.

· if var2 is positive, L_var1 is shifted to the MSBits by (var2) positions with saturation control on 32-bit.

	2
	1
	Word32 L_shr (Word32 L_var1, Word16 var2);
	Arithmetically shifts right L_var1 by var2 positions:

· if var2 is positive, L_var1 is shifted to the LSBits by (var2) positions with extension of the sign bit.

· if var2 is negative, L_var1 is shifted to the MSBits by (-var2) positions with saturation control on 32-bit.

	3
	3
	Word32 L_shl_r (Word32 L_var1, Word16 var2);

In ITU STL UG 2000, this operator is called L_shift_r()
	Arithmetically shifts left L_var1 by var2 positions and rounds the result.

It is equivalent to L_shl(L_var1, var2) except if var2 is negative. In this case, it does the same as L_shr_r(var1, (-var2)).

	2
	1
	Word32 L_sub (Word32 L_var1, Word32 L_var2);
	Subtracts L_var2 from L_var1 with saturation control on 32-bit.

	NA: Not Available (the corresponding basic operation is a new ITU-T Basic Operation).


Table 3: Word40 Arithmetic Basic Operations (Multiplication excluded)
New operators are to be added in a package called enh40.c / enh40.h

	Complexity Weight
	Basic Operation Prototype
	Description

	Old
	New
	
	

	NA
	1
	Word40 L40_abs (Word40 L40_var1);
	Returns the absolute value of L40_var1 without saturation control on 40-bit. Any detected overflow on 40-bit will exit execution.

	NA
	1
	Word40 L40_add (Word40 L40_var1, Word40 L40_var2);
	Adds L40_var1 and L40_var2 without saturation control on 40-bit. Any detected overflow on 40-bit will exit execution.

	NA
	1
	Word40 L40_max (Word40 L40_var1, Word40 L40_var2);
	Compares L40_var1 and L40_var2 and returns the maximum value.

	NA
	1
	Word40 L40_min (Word40 L40_var1, Word40 L40_var2);
	Compares L40_var1 and L40_var2 and returns the minimum value.

	NA
	1
	Word40 L40_negate (Word40 L40_var1);
	Negates L40_var1 without saturation control on 40-bit. Any detected overflow on 40-bit will exit execution.

	NA
	1
	Word40 L40_shl (Word40 L40_var1, Word16 var2);
	Arithmetically shifts left L40_var1 by var2 positions:

· if var2 is negative, L40_var1 is shifted to the LSBits by (-var2) positions with extension of the sign bit.

· if var2 is positive, L40_var1 is shifted to the MSBits by (var2) positions without saturation control on 40-bit. Any detected overflow on 40-bit will exit execution.

	NA
	1
	Word40 L40_shr (Word40 L40_var1, Word16 var2);
	Arithmetically shifts right L40_var1 by var2 positions:

· if var2 is positive, L40_var1 is shifted to the LSBits by (var2) positions with extension of the sign bit.

· if var2 is negative, L40_var1 is shifted to the MSBits by (-var2) positions without saturation control on 40-bit. Any detected overflow on 40-bit will exit execution.

	NA
	3
	Word40 L40_shl_r (Word40 L40_var1, Word16 var2);


	Arithmetically shifts left L40_var1 by var2 positions and rounds the result.

It is equivalent to L40_shl( L40_var1, var2) except if var2 is negative. In this case, it does the same as L40_shr_r( L40_var1, (-var2)).

	NA
	3
	Word40 L40_shr_r (Word32 L40_var1, Word16 var2)


	Arithmetically shifts right L40_var1 by var2 positions and rounds the result.

It is equivalent to L40_shr( L40_var1, var2) except that if the last bit shifted out to the LSBit is 1, then the shifted result is increment by 1 without saturation control on 40-bit. Any detected overflow on 40-bit will exit execution.

	NA
	1
	Word40 L40_sub (Word40 L40_var1, Word40 L40_var2);
	Subtracts L40_var2 from L40_var1 without saturation control on 40-bit. Any detected overflow on 40-bit will exit execution.

	NA
	1
	Word16 norm_L40(Word40 L40_var1);


	Produces the number of left shifts needed to normalize in 32-bit format the 40-bit variable L40_var1.

	NA: Not Available (the corresponding basic operation is a new ITU-T Basic Operation).


2.2 Multiplication Basic Operations

Table 4 (respectively Table 5) briefly describes the list of Word16 (respectively Word40) multiply, multiply and accumulate and multiply and subtract operations that are:

· Either proposed to be added to the ITU DSP basic Operator STL.

· Or existing basic operators which complexity weights have been reduced to reflect the evolution of processor capabilities.

Table 4: Word16 Fractional Multiplication Basic Operations
New operators are to be added in a package called enh40.c / enh40.h

	Complexity Weight
	Basic Operation Prototype
	Description

	Old
	New
	
	

	2
	1
	Word16
mac_r (Word32 L_var1, Word16 var2, Word16 var3);
	Equivalent to:

round( L_mac( L_var1, var2, var3))



	NA
	2
	Word16
mac_r40 (Word40 L40_var1, Word16 var2, Word16 var3);
	Equivalent to:

round40( L40_mac( L40_var1, var2, var3))

	2
	1
	Word16
msu_r (Word32 L_var1, Word16 var2, Word16 var3);
	Equivalent to:

round( L_msu( L_var1, var2, var3))



	NA
	2
	Word16
msu_r40 (Word40 L40_var1, Word16 var2, Word16 var3);
	Equivalent to:

round40( L40_msu( L40_var1, var2, var3))

	2
	1
	Word16 mult_r (Word16 var1, Word16 var2);
	Equivalent to:

round( L_mult( var1, var2))



	NA: Not Available (the corresponding basic operation is a new ITU-T Basic Operation).


Table 5: Word40 Fractional Multiplication Basic Operations
New operators are to be added in a package called enh40.c / enh40.h

	Complexity Weight
	Basic Operation Prototype
	Description

	Old
	New
	
	

	NA
	1
	Word40
L40_mac (Word40 L40_var1, Word16 var2, Word16 var3);
	Equivalent to:

L40_add( L40_var1, L40_mult( var2, var3))

	NA
	1
	Word40
L40_msu (Word40 L40_var1, Word16 var2, Word16 var3);
	Equivalent to:

L40_sub( L40_var1, L40_mult( var2, var3))

	NA
	1
	Word40 L40_mult (Word16 var1, Word16 var2);
	Multiplies the 2 signed values var1 and var2 without saturation control on 40-bit. Any detected overflow on 40-bit will exit execution.

The operation is performed in fractional mode:

· var1 and var2 are supposed to be in 1Q15 format.

· The result is produced in 9Q31 format.

	NA: Not Available (the corresponding basic operation is a new ITU-T Basic Operation).


2.2.1 Word32 by Word32 Multiplications / Word16 by Word32 Multiplications

The 2 Basic Operations defined in Table 6, enable to compute with the maximum accuracy:

· For Mpy_32_32():
the result of the multiplication of two Word32 fractional numbers in 1Q31 format.

· For Mpy_32_16_ss():
the result of the multiplication of one Word16 fractional number in 1Q15 format with one Word32 fractional number in 1Q31 format.

These 2 functions are particularly suitable for programmers wishing to make temporary arithmetic with extended precision since the respectively 2 and 4 steps operations are performed on intermediate Word40 variables.

Table 6: Word32 by Word32 multiplications – Word32 by Word16 multiplications
New operators are to be added in a package called enh40.c / enh40.h

	Complexity Weight
	Basic Operation Prototype
	Description

	Old
	New
	
	

	NA
	2
	void Mpy_32_16_ss(Word32 L_var1, Word16 var2, Word32 *L_varout_h, Uword16 *varout_l);
	Multiplies the 2 signed values L_var1 and var2 with saturation control on 48-bit

The operation is performed in fractional mode:

· L_var1 is supposed to be in 1Q31 format.

· var2 is supposed to be in 1Q15 format.

· The result is produced in 1Q47 format: L_varout_h bears the 32 MSBits while varout_l bears the 16 LSBits.



	NA
	4
	void Mpy_32_32_ss(Word32 L_var1, Word32 L_var2, Word32 *L_varout_h, Uword32 *L_varout_l);
	Multiplies the 2 signed values L_var1 and L_var2 with saturation control on 64-bit

The operation is performed in fractional mode:

· L_var1 and L_var2 are supposed to be in 1Q31 format.

· The result is produced in 1Q63 format: L_varout_h bears the 32 MSBits while L_varout_l bears the 32 LSBits.



	NA: Not Available (the corresponding basic operation is a new ITU-T Basic Operation).


2.3 Logical Basic Operations

Table 7 (respectively Table 8 and Table 9) briefly describes the list of Word16 (respectively Word32 and Word40) logical operations that are:

· Either proposed to be added to the ITU DSP basic Operator STL.

· Or existing basic operators which complexity weights have been reduced to reflect the evolution of processor capabilities.

Table 7: Word16 Logical Basic Operations
New operators are to be added in a package called enh1632.c / enh1632.h

	Complexity Weight
	Basic Operation Prototype
	Description

	Old
	New
	
	

	NA
	1
	Word16 s_and(Word16 var1, Word16 var2);
	Performs a 16-bit bit wise AND between var1 and var2.

	NA
	1
	Word16 lshl(Word16 var1, Word16 var2);
	Logically shifts left var1 by var2 positions:

· if var2 is negative, var1 is shifted to the LSBits by (-var2) positions with insertion of 0 at the MSBit.

· if var2 is positive, var1 is shifted to the MSBits by (var2) positions without saturation control.



	NA
	1
	Word16 lshr(Word16 var1, Word16 var2);
	Logically shifts right var1 by var2 positions:

· if var2 is positive, var1 is shifted to the LSBits by (var2) positions with insertion of 0 at the MSBit.

· if var2 is negative, var1 is shifted to the MSBits by (-var2) positions without saturation control.



	NA
	1
	Word16 s_or(Word16 var1, Word16 var2);
	Performs a 16-bit bit wise OR between var1 and var2.

	NA
	1
	Word16 s_xor(Word16 var1, Word16 var2);
	Performs a 16-bit bit wise XOR between var1 and var2.

	NA
	3
	Word16 rotl (Word16 var1, Word16 var2, Word16 * var3);


	Rotates left var1 by 1 bit. The LSBit is set to var2 bit 0 value. The MSBit of var1 is kept in the bit 0 of var3 variable.

	NA
	3
	Word16 rotr (Word16 var1, Word16 var2, Word16 * var3);


	Rotates right var1 by 1 bit. The MSBit is set to var2 bit 0 value. The LSBit of var1 is kept in the bit 0 of var3 variable.

	NA: Not Available (the corresponding basic operation is a new ITU-T Basic Operation).


Table 8: Word32 Logical Basic Operations
New operators are to be added in a package called enh1632.c / enh1632.h

	Complexity Weight
	Basic Operation Prototype
	Description

	Old
	New
	
	

	NA
	1
	Word32 L_and(Word32 L_var1, Word32 L_var2);
	Performs a 32-bit bit wise AND between L_var1 and L_var2.

	NA
	1
	Word32 L_lshl(Word32 L_var1, Word16 var2);
	Logically shifts left L_var1 by var2 positions:

· if var2 is negative, L_var1 is shifted to the LSBits by (-var2) positions with insertion of 0 at the MSBit.

· if var2 is positive, L_var1 is shifted to the MSBits by (var2) positions without saturation control.



	NA
	1
	Word32 L_lshr(Word32 L_var1, Word16 var2);
	Logically shifts right L_var1 by var2 positions:

· if var2 is positive, L_var1 is shifted to the LSBits by (var2) positions with insertion of 0 at the MSBit.

· if var2 is negative, L_var1 is shifted to the MSBits by (-var2) positions without saturation control.

	NA
	1
	Word32 L_or(Word32 L_var1, Word32 L_var2);
	Performs a 32-bit bit wise OR between L_var1 and L_var2.

	NA
	1
	Word32 L_xor(Word32 L_var1, Word32 L_var2);
	Performs a 32-bit bit wise XOR between L_var1 and L_var2.

	NA
	3
	Word32
L_rotl (Word32 L_var1, Word16 var2, Word16 *var3);
	Rotates left L_var1 by 1 bit. The LSBit is set to var2 bit 0 value. The MSBit of L_var1 is kept in the bit 0 of var3 variable.

	NA
	3
	Word32
L_rotr (Word32 L_var1, Word16 var2, Word16 *var3);
	Rotates right L_var1 by 1 bit. The MSBit is set to var2 bit 0 value. The LSBit of L_var1 is kept in the bit 0 of var3 variable.

	NA: Not Available (the corresponding basic operation is a new ITU-T Basic Operation).


Table 9: Word40 Logical Basic Operations
New operators are to be added in a package called enh40.c / enh40h

	Complexity Weight
	Basic Operation Prototype
	Description

	Old
	New
	
	

	NA
	1
	Word40 L40_lshl(Word40 L40_var1, Word16 var2);
	Logically shifts left L40_var1 by var2 positions:

· if var2 is negative, L40_var1 is shifted to the LSBits by (-var2) positions with insertion of 0 at the MSBit.

· if var2 is positive, L40_var1 is shifted to the MSBits by (var2) positions without saturation control.



	NA
	1
	Word40 L40_lshr(Word40 L40_var1, Word16 var2);
	Logically shifts right L40_var1 by var2 positions:

· if var2 is positive, L40_var1 is shifted to the LSBits by (var2) positions with insertion of 0 at the MSBit.

· if var2 is negative, L40_var1 is shifted to the MSBits by (-var2) positions without saturation control.



	NA: Not Available (the corresponding basic operation is a new ITU-T Basic Operation).


2.4 Data Type Conversion Basic Operations

Table 10  (respectively Table 11 and Table 12) briefly describes the list of data type conversion basic operations to Word16 (respectively Word32 and Word40) that are:

· Either proposed to be added to the ITU DSP basic Operator STL.

· Or existing basic operators which complexity weights have been reduced to reflect the evolution of processor capabilities.

Table 10: Data Type Conversion Basic Operations (conversion to Word16 data type)
New operators are to be added in a package called enh40.c / enh40.h

	Complexity Weight
	Basic Operation Prototype
	Description

	Old
	New
	
	

	NA
	1
	Word16 Extract40_H (Word40 L40_var1);
	Returns the bits [31..16] of L40_var1.

	NA
	1
	Word16 Extract40_L (Word40 L40_var1);
	Returns the bits [15..00] of L40_var1.

	NA
	1
	Word16 round40(Word40 L40_var1);
	Equivalent to:

extract_h( L_saturate40( L40_round(L40_var1)))

	NA: Not Available (the corresponding basic operation is a new ITU-T Basic Operation).


Table 11: Data Type Conversion Basic Operations (conversion to Word32 data type)
New operators are to be added in a package called enh40.c / enh40.h

	Complexity Weight
	Basic Operation Prototype
	Description

	Old
	New
	
	

	NA
	1
	Word32 L_Extract40 (Word40 L40_var1);
	Returns the bits [31..00] of L40_var1.

	2
	1
	Word32 L_deposit_h (Word16 var1);
	Deposits var1 in the bits [31..16] of the return value: the return value bits [15..0] are set to 0.

	2
	1
	Word32 L_deposit_l (Word16 var1);
	Deposits var1 in the bits [15..0] of the return value: the return value bits [31..16] sign extend var1 sign bit.

	NA
	1
	Word32 L_saturate40 (Word40 L40_var1);
	If L40_var1 is greater than MAX_32,

· returns MAX_32.

If L40_var1 is lower than MIN_32,

· returns MIN_32.

If not,

· Equivalent to:
L_Extract40( L40_var1).

	NA: Not Available (the corresponding basic operation is a new ITU-T Basic Operation).


Table 12: Data Type Conversion Basic Operations (conversion to Word40 data type)
New operators are to be added in a package called enh40.c / enh40.h

	Complexity Weight
	Basic Operation Prototype
	Description

	Old
	New
	
	

	NA
	1
	Word40 L40_deposit_h (Word16 var1);
	Deposits var1 in the bits [31..16] of the return value: the return value bits [15..0] are set to 0 and the bits [39..32] sign extend var1 sign bit.

	NA
	1
	Word40 L40_deposit_l (Word16 var1);
	Deposits var1 in the bits [15..0] of the return value: the return value bits [39..16] sign extend var1 sign bit.

	NA
	1
	Word40 L40_deposit32 (Word32 L_var1);
	Deposits L_var1 in the bits [31..0] of the return value: the return value bits [39..32] sign extend L_var1 sign bit.

	NA
	1
	Word40 L40_round(Word40 L40_var1);
	Performs a rounding to the infinite on L40_var1.

0x0000008000 is added to L40_var1 without saturation control on 40-bit. Any detected overflow on 40-bit will exit execution.

The end-result 16 LSBits are cleared to 0.

	NA: Not Available (the corresponding basic operation is a new ITU-T Basic Operation).


3 Program Flow Control Basic Operations

3.1 Introduction

9 macros can be defined in order to enable the s/w programmer to evaluate the cycle cost associated to control instructions that are frequently used in C. A limited set of coding guidelines must be followed in order to avoid algorithm COMPLEXITY miss-evaluation. This chapter describes a proposal for these guidelines.

· The IF(expression) and ELSE macros enable to evaluate the cycle cost of the C statement:
if(expression) {…}[[ else if(expression2){…}] else {…}]
· The SWITCH(expression) macro enables to evaluate the cycle cost of the C statement:
switch(expression){…}
· The WHILE(expression) macro enables to evaluate the cycle cost of the C statement:
while(expression) {…}
· The FOR(expr1; expr2; expr3) macro enables to evaluate the cycle cost of the C statement:
for( expr1; expr2; expr3) {…}
· The DO and WHILE(expression) macros enable to evaluate the cycle cost of the C statement:
do {…} while(expression)
· The CONTINUE macro enables to evaluate the cycle cost of the C statement:
while(expression) {
  …
  continue;
  …
}
or
for( expr1; expr2; expr3) {
  …
  continue;
  …
}

· The BREAK macro enables to evaluate the cycle cost of the C statement:
while(expression) {
  …
  break;
  …
}
or
for( expr1; expr2; expr3) {
  …
  break;
  …
}
or
switch(…) {
  …
  break;
  …
}
· The GOTO macro enables to evaluate the cycle cost of the C statement:
goto label;
1st of all let’s see with the example of if(…) else {…} C statement, why it can be relevant to have a fine evaluation of the cost of control instructions.

· The essential idea is that most processor now have the ability to qualify an instruction by a condition. Then the conditional if() {} clause has barely no cost. Indeed writing below code would be executed in 1 cycle on these processors:
if(a ==0) x =add(x, y); // this is one cycle.

· But, if one need to do a function call in the sub-clause, or if there is more than one basic operation to do in the sub-clause, or if there is an alternative sub-clause, then an optimal assembly language implementation would necessarily spend some time jumping over the non-relevant instructions ...

For example:
if(a ==0) decode(x, y);
            // This conditional call is not a one cycle instruction on
            // most processors since they break the instruction fetch
            // and possibly execution pipeline.

if(a ==0) { // This most likely require a jump over 2 instructions and
            // therefore will cost cycles on most processors.
   x =add(x, y);
   x =add(x, z);
}

if(a ==0) { // This most likely require a jump over 2 instructions and
            // therefore will cost cycles on most processors.
   x =add(x, y);
   x =add(x, z);
} else {    // This will require another jump over 2 instructions and 
            // therefore will cost cycles on most processors.
   x =sub(x, z);
   x =add(x, a);
}

· The IF() and ELSE macros intend to enable a finer granularity in the counting of COMPLEXITY. The assigned complexities were done based on the average performance of a processor with an instruction fetch pipeline depth of around 4 cycles. Although this is not perfect, it will drive the algorithm designers to try to minimize as much as possible the if() else() structures.

Table 13 summarizes the program flow control basic operations that are to be added to the DSP basic operator STL.

Follows, how these macros can be defined in a separate module (say called “control.h”). The functions incrXXX() are functions enabling to increment dedicated counters for each of the control flow operations. 

#ifndef _control_h

#define _control_h

#include "count.h"

#if (WMOPS)

extern BASIC_OP multiCounter[MAXCOUNTERS];

extern int currCounter;

  /* Technical note:

   * The following 2 variables are only used for correct complexity evaluation of the

   * "IF{...} ELSE IF {...} ELSE IF {...} ... ELSE structure.

   */

  static int funcId_where_last_call_to_else_occured;

  static long funcid_total_wmops_at_last_call_to_else;

#endif

#ifdef WMOPS

  #define IF(a)     if(incrIf(),a)                     /* Complexity Weight of 4 */

  #define ELSE      else if(incrElse(), 1)             /* Complexity Weight of 4 */

  #define SWITCH(a) switch(incrSwitch(),a)             /* Complexity Weight of 8 */

  #define FOR(a)    if(incrFor(),0); else for(a)       /* Complexity Weight of 3 */

  #define WHILE(a)  while(incrWhile(),a)               /* Complexity Weight of 4 */

  #define DO        do             /* Complexity Weight counted by WHILE() macro */

  #define CONTINUE  if(incrContinue(),0); else continue /* Complexity Weight of 4 */

  #define BREAK     if(incrBreak(),0); else break       /* Complexity Weight of 4 */

  #define GOTO      if(incrGoto(),0); else goto         /* Complexity Weight of 4 */

#else

  #define IF(a)     if(a)

  #define ELSE      else

  #define SWITCH(a) switch(a)

  #define FOR(a)    for(a)

  #define WHILE(a)  while(a)

  #define DO        do

  #define CONTINUE  continue

  #define BREAK     break

  #define GOTO      goto

#endif

__inline void incrIf (void) {

#if WMOPS

  /* Technical note:

   * If the "IF" instruction comes just after an "ELSE", its counter

   * must not be incremented.

   */

  if( (currCounter != funcId_where_last_call_to_else_occured)

    ||(TotalWeightedOperation() != funcid_total_wmops_at_last_call_to_else))

      multiCounter[currCounter].If++;

#endif

}

__inline void incrSwitch (void) {

#if WMOPS

    multiCounter[currCounter].Switch++;

#endif

}

__inline void incrFor (void) {

#if WMOPS

    multiCounter[currCounter].For++;

#endif

}

__inline void incrWhile (void) {

#if WMOPS

    multiCounter[currCounter].While++;

#endif

}

__inline void incrElse (void) {

#if WMOPS

  multiCounter[currCounter].If++;

  /* We keep track of the funcId of the last function

   * which used ELSE {...} structure.

   */

  funcId_where_last_call_to_else_occured = currCounter;

  /* We keep track of the number of WMOPS of this funcId

   * when the ELSE macro was called.

   */

    funcid_total_wmops_at_last_call_to_else = TotalWeightedOperation();

#endif

}

__inline void incrContinue (void) {

#if WMOPS

    multiCounter[currCounter].Continue++;

#endif

}

__inline void incrGoto (void) {

#if WMOPS

    multiCounter[currCounter].Goto++;

#endif

}

__inline void incrBreak (void) {

#if WMOPS

    multiCounter[currCounter].Break++;

#endif

}

#endif /* _control_h */

Table 13: Program Flow Control Basic Operations
New operators are to be added in a package called control.h

	Complexity Weight
	Basic Operation Prototype
	Description

	Old
	New
	
	

	NA
	0
	DO{…} while(expression)
	The macro DO should be used instead of the ‘do’ C statement.

	NA
	3
	FOR(expr1; expr2; expr3) {…}
	The macro FOR should be used instead of the ‘for’ C statement.

The complexity is independent of the number of loop iterations that are performed.

	NA
	0
	if(expression) one_and_only_one_DSP_Basic_operation
	The macro IF  should not be used when the ‘if’ structure does not have any ‘else if’ nor ‘else’ statement and it conditions only one DSP basic operations.

	NA
	4
	IF(expression) {…}
	The macro IF should be used instead of the ‘if’ C statement in every other case: when there is an ‘else’ or ‘else if’ statement, or when the ‘if’ conditions several DSP basic operations, or when the ‘if’ conditions a function call.

	NA
	4
	if(expression) {…} [[
ELSE if(expression2){…}]
ELSE {…}]
	The macro ELSE should be used instead of the ‘else’ C statement.

	NA
	8
	SWITCH(expression) {…}
	The macro SWITCH should be used instead of the ‘switch’ C statement.

	NA
	4
	WHILE(expression) {…}
	The macro WHILE should be used instead of the ‘while’ C statement.

The complexity is proportional to the number of loop iterations that are performed.

	NA
	4
	while(expression) {… CONTINUE; …}
or
for(expr1; expr2; expr3) {… CONTINUE; …}
	The macro CONTINUE should be used instead of the ‘continue’ C statement.

	NA
	4
	while(expression) {… BREAK; …}

or

for(expr1; expr2; expr3) {… BREAK; …}

or

switch(var) {… BREAK; …}
	The macro BREAK should be used instead of the ‘break’ C statement.

	NA
	4
	GOTO
	The macro GOTO should be used instead of the ‘goto’ C statement.

	NA: Not Available (the corresponding basic operation is a new ITU-T Basic Operation).


3.2 When to Use IF() Instead of if() ?

The IF() macro should be used instead of the classical C statement if(), wherever:

· There is strictly more than one DSP basic operation to condition,

· There is at least a function call to be conditioned.

Below example …


if( x == 0)



z = add(z, sub(y, x));


if( z == 0)



Decode();


something();

... should then be written:


IF( x == 0)



z = add(z, sub(y, x));


IF( z == 0)



Decode();


something();

While below code can stay untouched since only one DSP basic operation is conditioned.


if( x == 0)



z = add(z, x);


something();

To sum up:

· One should always use the IF() macro, except in the case where there is only one ETSI basic operation to condition.

3.3 When to Use ELSE Instead of else ?

The ELSE macro should always be used instead of the ‘else’ C statement.

3.4 When to Use SWITCH() Instead of switch() ?

The SWITCH() macro should always be used instead of the ‘switch()’ C statement.

3.5 When to Use GOTO Instead of goto ?

The GOTO macro should always be used instead of the ‘goto’ C statement.

3.6 When to Use BREAK Instead of break ?

The BREAK macro should always be used instead of the ‘break’ C statement.

3.7 When to Use CONTINUE Instead of continue ?

The CONTINUE macro should always be used instead of the ‘continue’ C statement.

3.8 When to Use FOR() and WHILE() Macros ?

The FOR() and WHILE() macros can be used to differentiate what loops can be handled by a simple h/w loop controller (that most processor can handle efficiently) from more complex loops (that need to be controlled by additional s/w lines).

· Follows an example of a simple h/w loop that must be designed with the FOR() macro for an accurate complexity measurement.
It will iterate C-statement E0 to E20 a number of times known at loop entry (and at least once). For such loops, most processors do not consume cycles for the end of loop conditional branch back operation:
    /* var1 > 0 is ensured  */
    FOR( n = 0; n < var1; n++) {
       E0;
       /* never do anything that impacts var1 nor n value */
       E20;
    }

· Follows an example of a complex s/w loop that must be designed with the WHILE() macro for an accurate complexity measurement.
It will iterate C-statement E0 to E20 a number of times undefined at loop entry (eventually 0). Indeed, the end of loop conditional branch back operation can very often not be managed by a h/w controller since depending on processing done within the elapsed iteration.
    /* do not need to ensure n < var1 at loop entry */
    WHILE(n < var1) {
       E0;
       /* can do anything that impacts var1 or n value */
       E20;
    }


It is true that ANSI-C defines ‘for()’ structures with ‘while()’ structures, but by making FOR() vs. WHILE() structure distinction, the programmer can evaluate better the cost of the loop controlling. Indeed, the FOR() and WHILE() macros have a complexity weight difference in order to invite the user to prefer the FOR() structure instead of the WHILE() structure (when possible).

· A loop defined with FOR() macro:

· Only counts the initial set-up of the h/w loop controller with a marginal complexity weight compared to the possibly large number of iteration of the loop.


· Must iterate at least once.


· Has a complexity weight  independent of the number of iterations that are performed and equal to 3.

· A Loop defined with WHILE() macro:

· Counts the complexity associated to the conditional branch back for every single iteration which are executed. 

· Can be executed 0 times.
· Has a complexity weight  proportional to the number of iterations that are performed by a factor equal to 4.

3.9 When to Use DO and WHILE() Macros ?

It is important to modify below C code:


do {



x = sub(x, y)


} while( x < 0);

... into following one:


DO {



x = sub(x, y)


} WHILE( x < 0);

The following code is also possible but, although the associated COMPLEXITY computation will be identical, it may generate parsing errors by some source code editors which perform on-the-fly syntax checking.


do {



x = sub(x, y)


} WHILE( x < 0);

3.10 Testing an Expression Equality

3.10.1 if(expression) {…} and while(expression) {…} C statements.

It is recommended to only test an expression versus zero whenever an expression is tested. Indeed most processors can only test (not) equality, (not) greater than or (not) lower than zero without additional cycle penalty.

For example, below examples will lead to an under evaluation of the COMPLEXITY:
if( a > 3 ) {}

while( a != 5) {}

…

While, below examples will lead to a correct evaluation of the COMPLEXITY:

if( sub(a,3) > 0) {}

while( sub( a, 5) != 0) {}

…

If multiple condition need to be evaluated and merged one can use the test() operator for each additional test to be done. 

· Example 1:

Following code …

if ( (a > b) && (c > d)) {}

… should be modified to:

test();

if ( (sub( a, b) > 0) && (sub( c, d) > 0)) {}

· Example 2:

Following code …

if ( (a > b) && (c > d) || (e > f)) {}

… should be modified to:

test();

test();

if (  (sub( a, b) > 0) && ( sub( c, d) > 0) || (sub( e, f) > 0)) {}

3.10.2 (condition) ? (statement1) : (statement2)

The operator ?: must not be used. Since it does not enable to evaluate the associated COMPLEXITY. Therefore, instead of writing:

(condition) ? (statement1) : (statement2)

One should write:


IF(condition)



{statement1};


ELSE



{statement2};

It is even better to write, whenever it is possible to avoid the else clause:


{statement2};


IF(condition)



{statement1};

It is even much better to write, whenever statement1 is one and only one DSP basic operation as mentioned in section 3.2:


{statement2};


if(condition)



{one_and_only_one_ETSI_basic_operation};

3.10.3 for( expresion1; expression2; expression3)

A "For" C statement must be limited to initializing, testing and incrementing the loop counter. Therefore below example shows an incorrect usage of the for C statement.

for(i=0, j=0; i<N & w>0 ; i++, j+=3)

It should be replaced by:

j=0;
for(i=0; i<N ; i++) {
  j = add(j,3);
  if(w > 0)
    break;
}

Actually, in order to respect the other recommendations given in this document, It should be replaced by:

j=0;
FOR(i=0; sub(i,N)<0 ; i++) {
  j = add(j,3);
  IF(w > 0) {
    BREAK;
  }
}

                               














































































































































	Contact:
	Lamblin Claude

France Telecom

France
	Tel: +33 2 96 05 13 03

Fax: +33 2 96 05 3530

Email: claude.lamblin@rd.francetelecom.com

	Contact:
	Djafarian Karim 

Texas Instruments 

France 
	Tel: +33.4.9322.1548

Fax: +33.4.9322.2516

Email: k-djafarian@ti.com

	Attention: This is not a publication made available to the public, but an internal ITU-T Document intended only for use by the Member States of the ITU, by ITU-T Sector Members and Associates, and their respective staff and collaborators in their ITU related work. It shall not be made available to, and used by, any other persons or entities without the prior written consent of the ITU-T.



