3GPP TSG-SA4 by correspondence
Tdoc S4-030866

Malaga, Spain, 23-37 February 2004

Agenda Item: 7, 13.7.1

Source:
Alcatel, France Telecom, Motorola

Title:
Consideration of DSR executable code update to ASR vendors

1. Summary

On 21st November it was reported to SA4 reflector that a minor error had been discovered in the fixed-point implementation of the DSR Extended Advanced front-end (ES 202 212) codec. 6 lines of code were overlooked in the conversion from floating-point to fixed-point in the 16kHz section of the software. It was requested that ASR vendors be sent an updated executable so that their performance evaluation results would correspond exactly to this fixed-point implementation of the DSR codec. (See appendix 1 for copy of the original email)

This was discussed at the TSG SA4#29 meeting in Tampere and the following additional information was requested so that it could be considered for approval by correspondence:

1. What are the 6 lines of floating point software changed?

2. How change impacts on complexity?

3. How change impacts performance?

This document provides the detailed information requested.

2. Details of the software change

6 lines of floating point code that were previously floating point have been modified to be fixed-point by making the appropriate substitutions of the floating point lines with calls to the ETSI basic-ops library.

A printout of the lines of code that have been corrected are shown in Appendix 2 where the module is shown before and after the corrections.

For anyone wanting to understand where this fits within complete software structure then please refer both to the algorithm description and to the floating point ‘C’ code implementation for the ETSI standard ES 202 212 that can be downloaded from the ETSI publications web site [1].

The part of the algorithm corresponding to the code presented in appendix 2 is for the computation of the low log energy level track and described in section 5.5.4 “VAD for noise estimation and spectral subtraction in high-frequency bands” and specifically equation 5.86 [1].

3. Impact on Complexity

Analysis of the code that has been changes shows that the increase in wMOPS is:
0.0001 x (2cy (1) + 2cy (2) + 17cy (5) + 17cy (6)) = 0.0038 wMOPS.

See appendix 2 for the details.
RAM and ROM assessments are not affected by the change.

There is therefore no change to the information presented in S4-030710 [2].

4. Impact on performance

4.1
Recognition performance

The impact on speech recognition performance has been measured by recognition experiments before and after the proposed change to the software. The publicly available HTK recogniser has been used and performance measured on the Italian and Spanish Aurora-3 databases at the 16kHz sampling rate (note that there is no German Aurora-3 data at 16kHz). The HTK configuration is the same as that used for evaluations in ETSI Aurora (also used at the conference special sessions for Eurospeech 2001 and ICSLP 2002). File lists and HTK configuration is as distributed on the Aurora-3 CDs from ELRA. HMM Models were retrained for each experiment.

	Database
	Before change
	After change

	A-3 Italian Well matched
	97.00

	97.00

	A-3 Italian Medium mismatch
	92.77
	92.85

	A-3 Italian High mismatch
	90.66
	90.66

	Aurora-3 Italian Average
	93.48
	93.50

	
	
	

	A-3 Spanish Well matched
	96.20

	96.17

	A-3 Spanish Medium mismatch
	93.31
	93.28

	A-3 Spanish High mismatch
	88.29
	88.29

	Aurora-3 Spanish Average
	92.60
	92.58

Table 2: Speech Recognition performance measured on the Aurora-3 Italian and Spanish databases at 16kHz before and after the software change.

From these results it is observed that the impact of the change on recognition performance is very small. In all cases the difference is less than 0.1% absolute. On two tests there is a small decrease in performance and on one test there is a small improvement. Overall the average difference over all 6 tests is 0.003% absolute.

4.2
Statistics on number of files affected

We compared the feature files before and after the change to measure the number of files that are affected by the change. Table 3 shows these results 98% of the speech files are bit-exact match after the change and only 1.4% of the files are different.

	Database
	Total number of files tested
	Number of files affected by change
	% of files affected by change

	Aurora-3 Italian
	3267
	30
	0.9%

	Aurora-3 Spanish
	3214
	46
	1.4%

Table 3: Statistics on number of files affected by the change.

4.3
Pitch feature

We do not have a public domain tonal language database available to run experiments on but there is no reason to expect that the impact on performance will be any larger than measured on the European languages. The change to the 6 lines of floating point code converting them to fixed point only makes a very small numeric change to the cepstral features. The pitch and voicing class information is not affected by the change.

5. Conclusion

This document has provided the information requested by members at the SA4#29 meeting in Tampere.

The 6 lines of floating point code that were missed when converting to fixed point are listed in appendix 2.

The change only increases the complexity by 0.0038 WMOPs and there is no change to the RAM or ROM. The complexity and memory assessments presented in S4-030710 are therefore unaffected.

For the speech files measured (6481) less than 1.4% are different because of the change and the impact on recognition performance is negligible (maximum deviation on any test is 0.08%).

The ASR vendors have indicated that they are able to produce results with a new executable in time for the SES selection meeting in February.

In the interests of ensuring that the results of the tests by the ASR vendors correspond exactly with the fixed-point implementation of the DSR codec we are willing to provide an updated version of the code to the ASR vendors.

References

[1] ETSI standard ES 202 212 “Distributed Speech Recognition; Extended Advanced Front-end Feature Extraction Algorithm; Compression Algorithm”, Nov 2003
http://pda.etsi.org/PDA/copy_file.asp?Action_type=&Action_Nb=&Profile_id=IugJxMadBBxgVRiTVU7weOO&Wki_id=yPyx-MSKzNpqwrsvVBZ_Z
[2] “Fixed point complexity assessment and justification of having met the SES codec design constraints for the DSR Extended Advanced front-end candidate”, Tdoc S4-030710
Appendix 1

Copy of email distributed on SA4 reflector on 21st November

Dear Colleagues

In the process of reviewing our bit-exact implementation of the DSR Extended Advanced front-end (ES 202 212) we have discovered a minor error. 6 lines of code were overlooked in the conversion from floating point to fixed point in the 16kHz section of the software.

We expect that the consequences of this error on performance will be negligible, but we felt it essential to inform the committee.

In the interests of ensuring that the results of the tests by the ASR vendors correspond exactly with a bit-exact implementation of the DSR codec we would like to ask permission to provide an updated version of the code to the ASR vendors as soon as possible.

We have approached both IBM and Scansoft about this and they have indicated that they would still be able to produce results in time for our February meeting.

Best Regards

David

David Pearce

Motorola

Appendix 2:

Software printouts showing lines of code changed.

Code with floating point lines :

 static float meanEnF=0.0 ;

 int i;

 X_INT32 frameEn32, meanEn32;

 meanEn32 = (int)(meanEnF*1477.32);

 // frame energy calc.

 frameEn32 = 0; move32();

 … // compute FrameEn32

 test(); test();

 if((L_sub(L_sub(frameEn32, meanEn32), (int)(1.2* 1477.32 +0.5))<0) || (sub(nbFrame,10)<0))

 {

 if (sub(nbFrame,10) < 0)

 {

 meanEn32 = L_add(meanEn32, (Mult16x32((32767-lambdaNSE32), L_sub(frameEn32, meanEn32))));

 meanEnF = ((float) meanEn32)/1477.32;

 } else

 {

 test();

 if (L_sub(frameEn32, meanEn32)<0){

 meanEnF += ((float)(Mult16x32(20972, L_sub(frameEn32, meanEn32))))/(32*1477.32);

 } else

 {

 meanEnF += ((float)(Mult16x32(5243, L_sub(frameEn32, meanEn32))))/(32*1477.32);

 }

 }

 }

 meanEn32 = meanEnF * 1477.32 ;

 test();

 if (L_sub(L_sub(frameEn32, meanEn32), (int)(2.2* 1477.32 +0.5)) > 0)

Corrected code :

 // static float meanEnF=0.0 ; see (1)

 int i;

 X_INT32 frameEn32, meanEn32;

 // meanEn32 = (int)(meanEnF*1477.32);

 meanEn32 = *meanEn16k ; move32(); // see (1)
 // frame energy calc.

 frameEn32 = 0; move32();

 … // compute FrameEn32

 frameEn32 = L_shl(FrameEn32,5) // see (2)

 test(); test();

 if((L_sub(L_sub(frameEn32, meanEn32), (int)(1.2*47274.23+0.5))<0) || (sub(nbFrame,10)<0)) //see(3)
 {

 if (sub(nbFrame,10) < 0)

 {

 meanEn32 = L_add(meanEn32, (Mult16x32((32767-lambdaNSE32), L_sub(frameEn32, meanEn32))));

 // meanEnF = ((float) meanEn32)/1477.32; // see (4)

 } else

 {

 test();

 if (L_sub(frameEn32, meanEn32)<0){

 // meanEnF += ((float)(Mult16x32(20972, L_sub(frameEn32, meanEn32))))/(32*1477.32);

 meanEn32 = L_add(meanEn32, L_shr_r(L_add(L_sub(Mult16x32(20972,frameEn32),

 Mult16x32(20972,meanEn32)),16), 5)); // see(5)
 } else

 {

 // meanEnF += ((float)(Mult16x32(5243, L_sub(frameEn32, meanEn32))))/(32*1477.32);

 meanEn32 = L_add(meanEn32, L_shr_r(L_add(L_sub(Mult16x32(20972, frameEn32),

 Mult16x32(20972,meanEn32)),32), 7)); // see(6)

 }

 }

 }

 // meanEn32 = meanEnF * 1477.32 ; // see (7)

 test();

 if (L_sub(L_sub(frameEn32, meanEn32), (int)(2.2* 47274.23 +0.5)) > 0) // see (3)
Comments :

(1) The persistent low log energy level track was stored in a floating point value meanEnF. It is now stored in a 32 bit value *meanEn16k.

(2) To improve accuracy for the computation of meanEn32, a multiply factor of 32 is added. (This factor is only needed to reduce differences with the forgotten floating point code). The relation between meanEn32 and meanEnF is : meanEnF = meanEn32 / 1477.32 / 32 ;

(3) The value of threshold 1477.32 is multiply by 32 to obtain 47274.23.

(4) The conversion to a floating point value is suppressed. With the suppression (7) it must be noticed that in int case nbFrame < 10, the floating point version was equivalent to :
 meanEn32 = (int) (1477.32 * ((float) meanEn32 / 1477.32)) ;

(5) Updating for low log energy level track is now computed with basicops. The extra L_add() of 16 before the right shift, is only added to reduce differences with the forgotten floating point code.
(6) Updating for low log energy level track is now computed with basicops. The value of the forgetting factor 5243 is multiplied by 4 to reduce differences with the forgotten floating point code. Also, the extra L_add() of 32 before the right shift, is only added to reduce differences with the forgotten floating point code.
(7) The conversion to int value is suppressed as all computations are done with basicops.
(8) The theoretical increase in wMOPS is :
0.0001 x (2cy (1) + 2cy (2) + 17cy (5) + 17cy (6)) = 0.0038 wMOPS.

