TODO TSG-SA4#29 meeting
Tdoc S4 (03)0781

November 24-28, 2003

Source:
Nokia

Title:
Proposal to support GZIP as a compression format for SVG in Rel-6

Document for:
Discussion and Approval

Agenda Item:
6.5.1 Packet Switched Streaming Rel-6

1 Introduction

3GPP Release 5 mandates SVG 1.1 Tiny as vector graphics format. For different mobile services (maps, cartoon animation, daily news) the compression of SVG content can allow a more efficient usage of network bandwidth. W3C, the governing body for SVG standardization, recommends to use GZIP in order to deliver SVG files in a compressed form. W3C defines a file extension (.svgz) to identify compressed SVG files.

We propose that the 3GPP recommends GZIP as delivery format for compressed SVG content. GZIP is an IETF standard [4] and provides good compression for SVG files. For the tested cases the compressed files size was 2-6 times smaller than the original SVG file size.

In addition to the good compression capabilities and wide availability of GZIP, we hereby propose a simple and backward compatible extension that satisfies also the requirement of progressive downloading.

2 Compression and progressive downloading of SVG using GZIP

Recently, the issue has been raised that the compression and the progressive downloading of SVG files is very desirable. By progressive downloading we mean possibility of playing the content even before the entire file is delivered as well as possibility of discarding content, which will not be further used. Both properties can increase end user experience by minimizing delay and limit client’s memory requirements.
In the following sections, we shall discuss how to create SVG content that is suitable for progressive downloading. Then, by inserting additional information placed in an "extra field" of the GZIP format- we can enable progressive downloading of compressed SVG content, thus satisfying these two requirements.
2.1 How to create SVG content suitable for progressive downloading
[image: image1.emf]<svg>

<g>

<!--graphics here are always visible -group #1 >

</g>

<g>

<!--graphics for page 1 go here –group #2 >

</g>

<g>

<!--graphics for page 2 go here –group #3 >

</g>

<g>

<!--graphics for page 3 go here –group #4 >

</g>

</svg>

SVG File

Header

Compressed data

GzipFile

<svg>

<g>

<!--graphics here are always visible -group #1 >

</g>

<g>

<!--graphics for page 1 go here –group #2 >

</g>

<g>

<!--graphics for page 2 go here –group #3 >

</g>

<g>

<!--graphics for page 3 go here –group #4 >

</g>

</svg>

SVG File

Header

Compressed data

Header

Compressed data

GzipFile

SVG 1.1 Tiny [2] content can be arranged in groups in such a manner that each of these groups can be processed independently from the following groups (groups delivered later in time) and provide meaningful content, e.g., part of the animation (Figure 1) or definition of objects used in the following animation scenes. In practice, the progressive downloading should be taken into consideration already when the content is being created or alternatively post-processing tools have to be utilized. Future versions of SVG [3] are going to provide even more explicit means of achieving this goal and create truly progressive SVG animations.

Figure 1: Creating SVG content suitable for progressive downloading

2.2 How the GZIP extension mechanism can be used to achieve progressive downloading of compressed SVG content

In the previous section, we explained how SVG content can be organized into time ordered groups, where each group consists of SVG elements, which are rendered and animated in the same time interval.

We then propose to insert information about the groups in an extension of the GZIP header, which can be used by SVG viewer to perform rendering and animation of each group in a progressive way.

It is important to observe that while GZIP allows optional header extensions, these will be safely ignored by a non-aware GZIP decompresser. Hence, the propose method is fully backward compatible with all the GZIP decoders available in the hundreds of millions. Our files will be open and decompressed by them, naturally without progressivity.

2.3 Summary of the GZIP extension mechanism

We can provide information enabling progressive downloading by utilizing "extra field" in the GZIP file. If the FLG.FEXTRA bit is set, an "extra field" is present in the header, with total length XLEN bytes. It consists of a series of subfields, each of the form given in Figure 2.

[image: image2.emf]Header Compressed Data CRC

SI1 SI2 LEN …LEN bytes of subfield data…

Group

Metadata 1

Group

Metadata 2

Group

Metadata 3

Group

Metadata 4

Gzip file

“Extra field” subfield

“Group

metadata” fields

Header Compressed Data CRC Header Compressed Data CRC

SI1 SI2 LEN …LEN bytes of subfield data… SI1 SI2 LEN …LEN bytes of subfield data…

Group

Metadata 1

Group

Metadata 2

Group

Metadata 3

Group

Metadata 4

Group

Metadata 1

Group

Metadata 2

Group

Metadata 3

Group

Metadata 4

Gzip file

“Extra field” subfield

“Group

metadata” fields

Figure 2: GZIP file format and an “extra field” subfield.
To provide information helpful for the progressive downloading a subfield of an “extra field” with SI1 and SI2 equal respectively to ‘P’ and ‘D’ consists of number of “group metadata” fields. Each of these fields contains information describing the SVG group, i.e., “group metadata 1” has the information concerning group 1, etc. The “group metadata” field has the following structure:

	Name
	Size (bytes)

	LEN_G
	2

	END_TIME
	2

	MIN_R
	2

Table 1: Group Metadata definition for extension fields

LEN_G

Length of the decompressed group in bytes. Provides information which part of the decompressed data has a meaningful content and can be provided to the SVG Viewer.

END_TIME

The time value represented by an integer value being a multiplicity of 20 ms provides a hint to the SVG Viewer when the group can be discarded if needed. Time 0 is the start of the presentation. END_TIME equal to ‘11111111 11111111’ means that no information is provided.

MIN_R

This rate value in (1000 bits)/sec. gives a hint to the SVG Viewer that after reception of the corresponding group it can start the SVG presentation if the minimum rate of the file reception is larger than MIN_R and every group will be delivered by its presentation time. MIN_R equal to ‘11111111 11111111’ means that no information is available.

2.4 How compressed SVG works for PSS and MMS

A MIME type is defined for SVG files: image/svg+xml [5]. This MIME type can be used to refer to both compressed and uncompressed SVG files. Conforming SVG Viewers should check for the first two bytes at the beginning of each SVG file. If the first two bytes of the SVG file are defined in hexadecimal as: 0x1f (first byte), 0x8b (second byte), the file is a GZIP compressed file according to the GZIP specification. Otherwise the file is an uncompressed SVG file.

3 Conclusions

We propose to recommend GZIP for delivery of compressed SVG data.

We also propose to adopt an extension mechanism (exploiting the GZIP optional “extension field”) to enable progressive transmission of compressed SVG content. Note that GZIP compliant decoders can ignore the "extension field" and still decompress valid SVG content.

4 References

[1]
W3C Recommendation http://www.w3.org/TR/SVG11/

[2]
W3C Recommendation http://www.w3.org/TR/SVGMobile/

[3]
W3C Working Draft http://www.w3.org/TR/SVG12/

[4]
GZIP file format specification version 4.3 http://www.ietf.org/rfc/rfc1952.txt

[5]
RFC 3023 - Media types based on XML ftp://ftp.isi.edu/in-notes/rfc3023.txt

Page: 1/1

Page: 2/3

