3GPP TSG-SA4#27, July 2003
Tdoc S4-030502

Source:
Ericsson

Title:
Simulation results for buffer parameter signalling mode

Document for:
Information

Agenda Item:
7.6.1

1 Introduction

This input document presents simulation results comparing non-adaptive streaming with adaptive streaming based on the buffer reporting mode described in [1]. We also describe the used algorithm at the server side to allow others to reproduce the simulation results presented in this document. The results show significant quality gains for adaptive streaming using the buffer reporting mode compared to the non-adaptive case.

Section 2 outlines the example algorithm used to generate the simulation results presented in section 3. The algorithm demonstrates how the buffer reporting mode can be used to implement an adaptive transmission control which

1. avoids network buffer (GGSN/RNC) overflows and therefore packet losses during link outage times (e.g. caused by handover) and which

2. utilizes the available link capacity in an optimal way in order to deliver data as early as possible into the client buffer, at the same time taking care of not overflowing the client buffer.

Employed in this way, adaptive transmission control optimizes the quality of streaming services primarily by means of transmission curve modifications.

2 Used example algorithm for transmission rate control at server

The input parameters used in the example algorithm are explained in Table 1.

Configuration parameters:

TARGET_NW_BUFF_LEVEL:

Target fill level of network buffer

TARGET_CLIENT_BUFF_LEVEL:
Target fill level of client buffer

Reported (signaled) parameters:

total_media_buffer_size:
signaled via RTSP as explained in [1]

OBSN, HRSN:
Oldest buffered and highest received sequence number;
used to calculate the buffer fill level

An internal database is kept in order to calculate total play time of buffered data and free_buffer_space. The elements of the database should be indexed according to their sequence_number and are generated according to the following pseudo code:

total_sent_data = 0;

For each sent packet i {

 // Store side information like sending time,

 // sequence_number and timestamp of packet i

 // together with the actual value of total_sent_data in an

 // internal database;

 total_sent_data += sizeofpacket(i)

 pkt_db[i].SN = sequence number of packet i

 pkt_db[i].TS = timestamp of packet i

 pkt_db[i].sendAt = sending time of packet i

 pkt_db[i].total = total_sent_data

}

If the server receives sequence numbers for the oldest (OBSN) and youngest buffered packet (HRSN) in an RTCP receiver reports, it calculates the consumed buffer space by computing the difference

pkt_db[HRSN].total – pkt_db[OBSN].total

The server can then release the memory occupied by packets k < OBSN (all packets older than oldest buffered) to keep the memory footprint of the database low.

The server starts sending packets with an initial transmission rate, which is x * r, with r the rate signaled in the b=AS: SDP attribute and x>1 a factor, which controls how fast data should be transmitted initially. For the simulation results presented in section 3, x was set to 1.1.

With each received RTCP receiver report, a new transmission rate is calculated as outlined in the following:

 #define TARGET_NW_BUFF_LEVEL 8000

 TARGET_CLIENT_BUFF_LEVEL = 0.75 * total_media_buffer_size

 /* use initial transmission rate, which is slightly higher than content rate*/

 schedState->rate = 1.1 * content_rate

 // HRSN = highest received sequence number reported in RTCP RR

 // OBSN = sequence number of oldest buffered packet reported in RTCP RR

 // t = arrival time of RTCP RR report

 /* estimated amount of data buffered in the network */

net_buffered = GetTotalSentData() - pkt_db[HRSN].total;

delta_t = t - prev_time; /* time since previous RTCP RR */

/* estimated rate at which network buffer is shrinking */

 shrink_rate =
 ((double) prev_level - (double) net_buffered)/delta_t;

if (shrink_rate <= 0) {

 alpha = prev_level / TARGET_NW_BUFF_LEVEL; /* NW buffer is growing; */

} else {

 alpha = 2.0 - (prev_level / TARGET_NW_BUFF_LEVEL); /* NW buffer is shrinking */

}

/* calculate new delta_rate: if buffer is growing, delta_rate is negative, if it’s shrinking delta_rate is positive; if prev_level = target level (TARGET_NW_BUFF_LEVEL) and if shrink_rate is zero, everything is fine and delta_rate equals zero. */

delta_rate = alpha*shrink_rate*2.5;

/* we have to consider the free buffer space as well. If there’s less than TARGER_CLIENT_BUFF_LEVEL left than the server sets its transmission rate equal to the content rate. Otherwise it changes it’s transmission rate according to the calculated delta */

free_buffer_space =
 total_media_buffer_size – (pkt_db[HRSN].total - pkt_db[OBSN].total)

if (free_buffer_space < TARGER_CLIENT_BUFF_LEVEL)

 schedState->rate = content_rate;

else

 schedState->rate = schedState->rate + delta_rate;

prev_level = net_buffered;

prev_time = t;

3 Simulation results

Figure 1 presents simulations comparing streaming without adaptive transmission control with streaming using adaptive transmission control according to the reference algorithm specified in the previous section. The plots show client buffer size, client buffer level and network buffer level expressed in bytes for a given link rate characteristic as a result of applying adaptive transmission control (= adaptation of the transmission rate “Tx rate”). The content rate in this example was selected to be 27 kbps.

Note that “Tx rate” and “Link rate” are expressed in bits/sec while all other parameters are given in bytes.

The link behavior characterizes a scenario with good link conditions (average link rate = 32 kbps) interrupted by an 8 seconds long link outage between seconds 45 and 53.

The upper plot shows the behavior for the non-adaptive case. In this scenario the transmission rate is constant and equals the content rate in order to avoid client buffer overruns. During the initial buffering in the beginning, the client builds up a buffer. During the link outage, no new data is arriving at the client. The client buffer runs empty 5 seconds after the start of the link outage period, resulting in a buffer underflow with re-buffering. At the same time, the amount of data stored in the network buffer increases and reaches its maximum at 27 KB at the end of the link outage period. Note that the size of the network buffer at the SGSN in GPRS is usually limited. If we would assume an SGSN buffer size of 20 KB as indicated in the figure, non-adaptive streaming would not only result in re-buffering but also in lost packets due to an SGSN buffer overrun.
[image: image1.emf]Client buffer size

Link rate

Client

buffer level

Network

buffer level

Transmission

rate

Network

buffer size

Client buffer size

Link rate

Client

buffer level

Network

buffer level

Transmission

rate

Network

buffer size

[image: image2.emf]Client buffer size

Link rate

Client

buffer level

Network

buffer level

Transmission

rate

Network

buffer size

Client buffer size

Link rate

Client

buffer level

Network

buffer level

Transmission

rate

Network

buffer size

Figure 1: Top: Streaming w/o adaptive transmission control.
Bottom: Streaming with adaptive transmission control according to specified reference algorithm.
“Tx rate” and “Link rate” are expressed in bits/sec while all other parameters are given in bytes. The shaded (green) area in the bottom graph mark time periods during which the media buffer is filled up to the target fill level, which was set to 75% of its maximum size in this example.

In comparison to the non-adaptive case, the bottom figure shows the behavior for the adaptive case, using the reference algorithm described in section 2.

The graph shows that the server ramps up its transmission rate until it matches the link rate of 32 kbps. As can be seen, the client buffer is continuously growing until second 41 at which time the transmission rate falls back to the content rate since at that time the client buffer has reached the desired target level, which was in this case selected as 75% of it’s maximum size.

In contrast to the non-adaptive case, the 8 seconds long link interruptions does not lead to re-buffering since enough data is stored in the media buffer. The link interruption would therefore go unnoticed for the end-user. Note that during the link interruption, the server also reduces its transmission rate in order to avoid packet losses caused by overflowing the network buffer. After the link is back at 32 kbps, the server starts to increase again its transmission rate. As a consequence, the client buffer fills up again until it’s almost back at the target level just before the transmission of the stream is finished.

Figure 2 shows the same simulation results but focuses on the client curves for received and played data only. The left figure shows the non-adaptive case, while the right figure shows the adaptive case. In the non-adaptive case, the buffer underflow with re-buffering around second 50 is clearly visible. In the adaptive case the transmission control avoids this rebuffering by working ahead more data into the client buffer such that the streaming client “survives” the link outage without a need for rebuffering

[image: image3.emf][image: image4.emf]
Figure 2: Client curves (received and playout) for non-adaptive (left) and adaptive (right) transmission control. In the non-adaptive case, a buffer underflow with re-buffering occurs around second 50. In the adaptive case the transmission control avoids rebuffering by working ahead more data into the client buffer such that it “survives” the link outage without a need for rebuffering.
4 Conclusion

The buffer parameter signalling mode as described in [1] allows a server to implement an adaptive transmission control mechanism, which avoids quality degradations of streaming services under critical network conditions, like link outage times.

Under certain critical link conditions, adaptive transmission control may not be sufficient to avoid buffer underflows. In those situations it might become necessary to apply content rate adaptation (modification of the sampling curve) in order to avoid buffer underflow. To guide the content adaptation process, the buffer reporting mode also provides the possibility to optionally signal content adaptation hints from the client to the server. This gives a client application the additional possibility to control the content adaptation process according to its needs. Note that those content adaptation hints were not used in this document.

5 References

[1]
Signalling for rate adaptation in PSS, Tdoc S4-030501, Ericsson/Nokia, 3GPP SA4#27 meeting, Munich, July 2003

� Contacts: Uwe Horn (Uwe.Horn@Ericsson.com), Ericsson Eurolab GmbH, Aachen, Germany, � Magnus Westerlund (Magnus.Westerlund@Ericsson.com), Ericsson AB, Kista, Sweden

