3GPP TSG-SA4#27, July 2003
Tdoc S4- 030501

7-11 July 2003, Munich, Germany

Source:
Ericsson, Nokia

Title:
Signaling for rate adaptation in PSS

Document for:
Proposal for decision

Agenda Item:
7.6.1

1 Introduction and overview of the solution

Ericsson and Nokia have jointly looked at a solution that could solve the problem of rate adaptation. They determined that there are two different modes in which the rate adaptation should operate. Even though these two modes would be similar in terms of implementation, it was determined that for maximum flexibility (especially of the server), it is worth having the two modes in the solution. These two modes are referred to as the scheduling mode and the buffer reporting mode. The similarities and differences of these two modes are explained below.

In both modes it is assumed that the server performs transmission rate control (i.e. send at an acceptable rate irrespective of the content rate of the data). The maximum transmission rate of the server is chosen so as to not overflow the network buffers. This rate is determined based on such things as the RTCP feedback from the receiver or some possible QoS information about the link. There should not be any impact from the chosen mode of operation on determining the allowable maximum transmission rate.

Note that a server implementation would normally send at the maximum tolerable transmission rate it has determined, unless it is determined this would create some overflow of the client or network buffers.

Even though the sender adapts its transmission rate so as not sending more than what can be delivered by the network, there will inevitably be some transfer delay variation between packets. This type of transfer delay variation when the transmission rate is controlled by the server can be referred to as “inter-packet jitter”. Note that jitter has generally a very broad meaning. We thus use the term “inter-packet jitter” to refer to the network jitter when the transmission rate is kept under control by the sender.

The main difference between the two modes is how they deal with the “inter-packet jitter” as explained below.

In the scheduling mode, the “inter-packet jitter” is seen as an inherent source of short-term variations that should be compensated by the client. The client will allocate some amount of pre-buffering to compensate for this jitter and the sender will not know about it. The client can use some knowledge about the radio network it is connected to (and any signalled QoS parameter) to determine how much the inter-packet jitter buffer should be.

Once this amount of inter-packet jitter has been chosen, the client also needs to allocate some additional buffer for the variation caused by the transmission rate variation. These variations are caused at the sender by a “shift” between the time a packet is sent and the actual sampling time of the packet as reflected by its RTP timestamp. The initial buffering that the client chooses is obviously linked to the shift. The shift introduced by the sender should be less than the size of the receiver buffer (in time) minus the size of the inter-packet jitter buffer (in time) allocated by the receiver. Once the receiver has chosen its initial buffering duration, the receiver sends the tolerable shift to the sender. At the sender, all that remains to be done to schedule the packets is to compare the current time (transmission time) with the packet timestamp (sampling time).

In the buffer reporting mode, how to schedule the packets is based on a new RTCP reporting parameter defined in this document. This parameter carries information about the state of the total buffer at the time the RTCP packet was sent. An “intelligent” server could be optimised so as to optimally schedule the packets with the feedback about the exact buffer state. In this case, it will be up to the server to determine at any point of time how to divide the estimated buffer length between the inter-packet jitter and the difference between the packet sampling time and transmission time.

The reasons why to operate in the scheduling mode are:

· Reduced signalling bandwidth: the necessary signalling bandwidth is reduced because there is no need to add buffer status information to the RTCP reports.

· Reduced server complexity: the server in addition to the transmission rate control (as explained above) only needs to provide the scheduling function based on the shift chosen by the client.

The reasons why to operate in the buffer reporting mode are:

· Frequently updated information about the buffer status is provided to the server by the clientThis gives more flexibility to implement intelligent servers.

· Reduced client complexity: the client only reports status information, but no extra computations are involved.

2 Scheduling mode

2.1 Definitions

From the above overview it should be clear how the scheduling mode works. This section describes the details of the signalling semantics and syntax that need to be implemented in this mode.

Definition (shift): the time difference (between the media sampling time (i.e. timestamp) of an RTP packet and its transmission time (i.e. when it is sent by the server) is defined as the "shift". The shift is initialised at the beginning of the session, i.e. set to zero when the first packet is sent.

During the session, the shift is a positive value when the packet sampling time is later than the packet transmission time. The shift is a negative value when the packet sampling time is earlier than the packet transmission time.

Definition (minimum shift): At transmission time t, the minimum shift indicates the lowest sampling time (i.e. lowest RTP timestamp) that should be sent be sent. If its value is (_min, the sender must transmit at time t a packet whose sampling time is no less than t+(_min.

As explained above, the minimum shift value corresponds to the part of the buffer duration excluding the amount of protection that has been allocated by the client to cope with inter-packet jitter. For example, if the client chooses an initial buffer delay of 8 seconds, it may decide that 3 seconds would be necessary for the inter-packet jitter. This means that the scheduling delay of the sender should be at most 5 seconds. The receiver would thus signal the value of the minimum shift to be –5 seconds.

The needed protection against transmission rate variation over a wireless network can be substantial (throughput variation because of network load, radio conditions, several seconds of interruption because of handovers, possible extra buffering to perform retransmission). In order to minimise the setup delay (that could include setting up a new PDP context and RTSP signalling in addition to the initial buffering), the client may choose an initial buffering for rate variations (i.e. in the absolute sense, lower minimum shift) that is less than the required buffering it has determined would be satisfactory. For this reason, a second shift parameter called the target shift can optionally be given to the sender

Definition (target shift): it is the shift that the client would like the sender to achieve. If this parameter is (_target, the server should aim at sending at time t a packet whose sampling time is at least t+(_target.

In the previous example, the client has determined that the needed inter-packet jitter is 3 seconds and allocated a buffer for protection against the throughput variation of 5 seconds. However, it anticipates that the adequate protection against the throughput variations and to have some buffering for retransmission, it would need 12 seconds of buffering. It could thus signal a target shift of 7 seconds. When the sender achieves the target shift, the receiver will thus have a buffering (excluding the inter-packet jitter buffer) of the initial buffering (5 seconds) plus the target shift (7 seconds), i.e. 12 seconds.

The target shift indication should be used by scalable servers. The target shift can be taken into account by the server in order to determine its optimum output bitstream. The client should not expect any speed at which the target could be reached. The target also integrates well with the use of RTP retransmission. When it is below the target, the sender could choose to retransmit only what it thinks are important packets. When it is above the target, the sender may retransmit all the missing packets.

Definition (maximum number of bytes): It is the maximum difference between the number of bytes that have been sent at time t and the number of bytes that have been sampled up to time t. The maximum number of bytes is the total number of bytes that can be sent at any time in the receiver buffer that was allocated for throughput variations. The server must comply to this parameter in order to avoid buffer overflow.

Note that this maximum number of bytes does not include the “inter-packet” jitter tolerating buffer space that has been allocated by the client and that is unknown to the sender. It is up to the receiver to add some extra bytes to the total number of bytes declared to the sender.

2.2 Change of parameters during the session

The client may change the parameters during the session. This could be for example the case if a long handover occurs before the target shift was achieved by the sender and as a result caused underflow. The receiver at that point may rebuffer for some amount of time (this amount of time is up to the receiver). As always, this rebuffering time should include the inter-packet jitter and the buffer for throughput variation. The receiver can inform the sender of the rebuffering for throughput variations through the minimum shift. This is illustrated in the example below.

This rebuffering time translates into allowing greater scheduling delay at the sender. For example, if before the re-buffering event the sender could send the packets with an RTP timestamp that is 5 seconds later than their sending time in order to make it to the receiver buffer and if the receiver decides to rebuffer for 3 seconds, then the sender is now allowed to have a delay of 8 seconds between the sending time and the sampling time in order to make it to the receiver buffer. The receiver should thus signal as a minimum shift the value of –8 seconds when it decides to rebuffer for a duration of 3 seconds.

2.3 RTSP signalling

A new RTSP header should be defined (“3GPP-Shift-Parameters”). This header should be used by the client requests to signal the shift parameters.

If the request applies to the session level RTSP URL, the shift should apply to all the medium in the session. If the request applies to a media level RTSP URL, the shift should apply only to this media.

This new header can be sent with any RTSP method.

The ABNF for this RTSP header is shown below:

3gpp-scheduling-parameters = "3GPP-Schedulign-Parameters" ":" shift-parameter *(";" shift-parameter) CRLF

shift-parameter = min-shift / target-shift / max-size

min-shift = "min_shift" “=" “+” / “-" 9*DIGIT ; in ms

target-shift = "target-shift" “=" “+” / “-" 9*DIGIT ; ms

max-size = “max_size" “=" 1*DIGIT; bytes

The first time the client sends all the parameters. In subsequent requests, the client may send only the parameter(s) it requests to change.

3 Buffer reporting mode

In buffer reporting mode the following parameters are signalled in addition to standard RTSP / RTCP signalling:

· The size in bytes of the buffer the clients provides for rate adaptation. The size is signalled through RTSP [9]. Note that the more available buffer space is signalled to the server, the more data a server can work ahead into the buffer during good link conditions.

· The sequence number of the oldest (“oldest buffered sequence number”) packet in the client buffer. It is signalled to the server via RTCP [7]. The OBSN parameter is used to give regular feedback about where in the media timeline the client is currently playing. It also allows the server to easily detect the current client play status (e.g. paused, initial buffering / re-buffering, or playing).

With these two additional parameters and by means of the “Highest Received Sequence Number” already contained in RTCP receiver reports, the server can calculate the number of bytes in the client buffer at the sending time of the last received RTCP report. Based on the calculated client buffer fill level the server can avoid overflowing the buffer. It will also allow the server to detect when the buffer level drops dangerously low. Since the OBSN is reported periodically, the server can also detect when the client starts consuming packets and also detect any re-buffering events. The two parameters mentioned above are sufficient for implementing an adaptive transmission control at the server, which avoids client buffer overflows and which can utilize available link capacity without overflowing network buffers. Note that server controlled content rate adaptation can be easily integrated without a need for additional parameters.

By introducing additional parameters, it is possible for a client to assist the content adaptation process controlled by the server. This is achieved by introducing two additional parameters signalled via RTSP from the client to the server, called “minimal buffer protection time” and “target buffer protection time”. These parameters will give the server indications on when it may perform content adaptation. The minimal protection time declares the minimal amount of media playout time the client regards as required in order to deal with short term critical link conditions. If there’s a risk that the client has less time than indicated by the minimal protection time available in its buffer, the server should perform content adaptation to maintain the desired minimum protection time. In contrast to the minimum protection time, the target protection time indicates the amount of playable media (in time), which the client likes to have in its buffer before it feel confident to handle transport problems. Therefore a server should not perform content adaptation towards higher content rates until the given target time is available in the buffer.

Like the client's buffer size, the minimal and target protection time values are signalled using RTSP as the they will rarely be changed.

3.1 Buffer model

The buffer reporting mode requires a well-defined buffer model, which is explained in

Figure 1 for one media stream. The FAQ section explains a simple algorithm, which can be used to calculate buffer space per media flow given a total amount of client buffer available for sessions containing more than one media flow. The media buffer may be divided into an optional pre-decoder buffer and the de-jitter buffer. The packet, which is just about to be played out is called the oldest buffered packet, whereas the most recently arrived packet is called the youngest buffered packet. The packets in the media buffer are ordered according to their playout times. Note that the sequence number of the youngest buffered packet is identical to the highest received sequence number reported in an RTCP receiver report.

Both the pre-decoder and the de-jitter buffer may contain gaps caused by missing packets. In the calculation of the buffer level in bytes, missing packets are treated as if they had been received since a missing packet may in fact arrive at a later time due to packet reordering or retransmissions. In addition, if one would use the additional memory that becomes available due to a missing packet this memory need to be freed when the playout time of the missing packet had been passed. This makes usage of such space practically impossible.

[image: image1.emf]NW

socket

Current fill level

of optional pre-

decoder buffer

Used buffer

Free buffer

Media

decoder

Youngest

buffered

packet

Oldest

buffered

packet

De-jitter

buffer

Missing

packets

Total media buffer

Enqueue()

Dequeue()

Procedures:

n

n+1 m

NW

socket

Current fill level

of optional pre-

decoder buffer

Used buffer

Free buffer

Media

decoder

Youngest

buffered

packet

Oldest

buffered

packet

De-jitter

buffer

Missing

packets

Total media buffer

Enqueue()

Dequeue()

Procedures:

n

n+1 m

Figure 1: Media buffer model

Connected to each media buffer are two procedures enqueue() and dequeue(). Enqueue queues an RTP packet whenever there is one available from the network socket. Dequeue() dequeues the oldest buffered packet according to its RTP timestamp. The mapping of RTP timestamps to absolute dequeueing time
[image: image2.wmf]deq

t

is done by the client according to the following formula:

[image: image3.wmf]ï

î

ï

í

ì

-

+

-

=

buffering

re

and

buffering

initial

during

undefined

conditions

normal

under

t

rate

clock

TS

TS

t

offset

first

oldest

deq

,

_

)

(

with
[image: image4.wmf]oldest

TS

 the RTP timestamps of the oldest buffered packet,
[image: image5.wmf]first

TS

 the RTP timestamp of the first received packet of the session used as a reference for all other packet timestamps,
[image: image6.wmf]rate

clock

_

 the clock rate of the media stream according to the RTP payload type and
[image: image7.wmf]offset

t

 an absolute time offsets, which depends on the overall initial buffering delay, including the delay required by an optional pre-decoder buffer associated with the particular media stream. Note that
[image: image8.wmf]deq

t

 is not defined (e.g. does not dequeue any packets) during initial buffering and re-buffering events.

3.2 RTSP Signalling

A new RTSP request and response header is defined that can be used in the methods SETUP, PLAY, OPTIONS, and SET_PARAMETER.

The header defined in ABNF [6] has the following syntax:

3GPP-adaptation-def = "3GPP-Adaptation" ":" adaptation-spec 0*("," adaptation-spec)

adaptation-spec
= url-def *adapt-params

adapt-params
= ";" buffer-size-def

/ ";" min-time-def

/ ";" target-time-def

/ ";" seqnr-def

url-def
= "url" "=" <"> url <">

buffer-size-def
= "size" "=" 1*9DIGIT ; bytes

min-time-def
= "min-time" "=" 1*9DIGIT; ms

target-time-def = "target-time" "=" 1*9DIGIT; ms

seqnr-def
= "seq" "=" 1*5DIGIT ; RTP sequence number

url
= (absoluteURI / relativeURI)

absoluteURI and relativeURI are defined in RFC 2396 [10] with RFC 2732 [11] applied. The base URI for any relative URI is the RTSP request URI

While the buffer size is a mandatory parameter if rate adaptation is used, the min-time (= minimum buffer protection time) and target-time (target buffer protection time) parameters are optional parameters that are set by the client.

The following gives an example with two media streams using track ID 1 and 3 out of a .3gp file:

PLAY rtsp://streaming.example.com/test.3gp RTSP/1.0

CSeq: 5

Range: npt=0.0-

Session: RCsm-r2eDyBe

3GPP-Adaptation: url="rtsp://streaming.example.com/test.3gp/trackID=1";size=14500,min-time=3000; target-time=5000;url=" rtsp://streaming.example.com/test.3gp/trackID=3";min-time=3000;target-time=5000;size=36000

RTSP/1.0 200 OK

CSeq: 5

Range: npt=0.0-

RTP-Info: url= rtsp://mediaserver.com/movie.test/streamID=0; seq=9900;rtptime=4470048, url=rtsp://mediaserver.com/movie.test/streamID=1; seq=1004;rtptime=1070549

3GPP-Adaptation: url="rtsp://streaming.example.com/test.3gp/trackID=1";seq=9900, url=" rtsp://streaming.example.com/test.3gp/trackID=3";seq=1004

Any client supporting the rate adaptation parameters shall in the SETUP for each individual media include the "3GPP-Adaptation" header. The header may be included in a PLAY, OPTIONS and SET_PARAMETER request to update the buffer size values during a session.

A client may change the size of the buffer space made available for adaptation during a session. This does not cause any problem when the buffer size is increased for a media. However reducing it requires some caution from the client. When a client reduces the buffer space the client can't reclaim the memory until the server has ensured that it is not any more using it. To accomplish this, the server shall signal in the RTSP response from what RTP sequence number the new buffer size is used. The minimal and target protection time values are updated immediately upon reception of the RTSP request.

The "3GPP-Adaptation" header shall be sent in responses to correct requests containing this header. In PLAY, and other request where the RTSP server is playing media the server shall use the "seq" parameter to report from which RTP-sequence number the request buffer changes are used. This means that when the given sequence number is received the new buffer sizes are used by the server As example of this mechanism a client requesting to reduce the buffer size, can free its memory only after the given or a later (higher sequence number) RTP packet has been received.

3.2.1 RTCP signalling

The signalling of oldest sequence number should be performed during the whole session, from creation of the RTP session by the SETUP request until the session is removed by TEARDOWN. The reporting shall be done in periodic way and should be done as least as often as the server indicates through signalling. See the SDP attribute "3GPP-Adaptation" for details on how to signal this.

To signal oldest sequence number within the RTCP packet an APP extension is defined below.

The APP packet type looks like this.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|V=2|P| subtype | PT=APP=204 | length |

+-+

| SSRC/CSRC |

+-+

| name (ASCII) |

+-+

| application-dependent data ...

+-+

To realize this feedback solution the following two things are defined to be used in the APP packet.

name: This APP data format is detected through the name "PSS0", i.e. 0x50535330.

subtype: This field shall be set to 0 for this format and name.

length: According to the rules defined in RFC 1889 [7], i.e. number of 32 bit words -1. This will mean that the field will be 2+2*N, where N is the number of sources reported on. This will typically be 4, i.e. 20 bytes packets.

application-dependent data:

One or more of the following data format blocks can be included in the application-dependent data location of the APP packet. The APP packets length field is used to detect how many blocks of data that are present.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| SSRC |

+-+

| Reserved | OBSN |

+-+

SSRC: The SSRC of the media stream the buffered packets belong to.

OBSN: Oldest Buffered Sequence Number. The RTP sequence number of the oldest packet present in the announced buffer space for the SSRC reported on.

Reserved: This space is unused and shall be set to 0 by the sender and shall be ignored by the receiver.

The oldest sequence number reports will use 20 bytes per RTCP packet when a single source (SSRC) is reported on. For each additional source another 8 bytes is used.

3.3 Signalling example

This chapter contains a complete signalling example where the client buffer feedback functionality is initialised and used.

To allow the server to know that a client supports the buffer feedback formats and signalling the client includes a link to its UAProf description in its RTSP DESCRIBE request.

DESCRIBE rtsp://mediaserver.com/movie.test RTSP/1.0
CSeq: 1
User-Agent: TheStreamClient/1.1b2
x-wap-profile: http://uaprof.example.com/products/TheStreamClient1.1b2

RTSP/1.0 200 OK
CSeq: 1
Content-Type: application/sdp
Content-Length: 500

v=0
o=- 950814089 950814089 IN IP4 144.132.134.67
s=Example of aggregate control of AMR speech and H.263 video
e=foo@bar.com
c=IN IP4 0.0.0.0
b=AS:77
t=0 0
a=range:npt=0-59.3478
a=control:*
m=audio 0 RTP/AVP 97
b=AS:13
b=RR:350
b=RS:300
a=rtpmap:97 AMR/8000
a=fmtp:97 octet-align=1
a=control:streamID=0
a=3GPP-Adaptation:2
m=video 0 RTP/AVP 98
b=AS:64
b=RR:2000
b=RS:1200
a=rtpmap:98 H263-2000/90000
a=fmtp:98 profile=3;level=10
a=control: streamID=1
a=3GPP-Adaptation:1

SETUP rtsp://mediaserver.com/movie.test/streamID=0 RTSP/1.0
CSeq: 2
Transport: RTP/AVP/UDP;unicast;client_port=3456-3457
User-Agent: TheStreamClient/1.1b2
3GPP-Adaptation: url=" rtsp://mediaserver.com/movie.test/streamID=0";size=14500;min-time=3000;target-time=5000

RTSP/1.0 200 OK
CSeq: 2
Transport: RTP/AVP/UDP;unicast;client_port=3456-3457;server_port=5678-5679;ssrc=A432F9B1
Session: dfhyrio90llk
3GPP-Adaptation: url=" rtsp://mediaserver.com/movie.test/streamID=0";size=14500;min-time=3000;target-time=5000

SETUP rtsp://mediaserver.com/movie.test/streamID=1 RTSP/1.0
CSeq: 3
Transport: RTP/AVP/UDP;unicast;client_port=3458-3459
Session: dfhyrio90llk
User-Agent: TheStreamClient/1.1b2
3GPP-Adaptation: url=" rtsp://mediaserver.com/movie.test/streamID=1";size=35000;min-time=3000;target-time=5000

RTSP/1.0 200 OK
CSeq: 3
Transport: RTP/AVP/UDP;unicast;client_port=3458-3459; server_port=5680-5681; ssrc=4D23AE29
Session: dfhyrio90llk
3GPP-Adaptation: url=" rtsp://mediaserver.com/movie.test/streamID=1";size=35000;min-time=3000;target-time=5000

PLAY rtsp://mediaserver.com/movie.test RTSP/1.0
CSeq: 4
Session: dfhyrio90llk
User-Agent: TheStreamClient/1.1b2

RTSP/1.0 200 OK
CSeq: 4
Session: dfhyrio90llk
Range: npt=0-
RTP-Info: url= rtsp://mediaserver.com/movie.test/streamID=0; seq=9900;rtptime=4470048, url= rtsp://mediaserver.com/movie.test/streamID=1; seq=1004;rtptime=1070549

The following is an example for an RTCP packet reporting on the video stream:

RTCP Receiver Report:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|V=2|P| RC | PT=RR=201 | length = 7 |

+-+

| SSRC of packet sender = 0x324FE239 |

+=+

| SSRC_1 (SSRC of first source) = 0x4D23AE29 |

+-+

| fraction lost | cumulative number of packets lost |

+-+

| extended highest sequence number received = 0x00000551 (1361) |

+-+

| interarrival jitter |

+-+

| last SR (LSR) |

+-+

| delay since last SR (DLSR) |

+=+

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|V=2|P|subtype=0| PT=APP=204 | length = 4 |

+-+

| Client SSRC = 0x324FE239 |

+-+

| name = "PSS0" |

+-+

| Server SSRC = 0x4D23AE29 |

+-+

| Reserved = 0x0000 | OBSN = 1323 |

+-+

From the above RTCP packet the server concludes that the client has 39 (1361-1323+1) packets in its video buffer, which has a total size of 35000 bytes as indicated during the RTSP session setup.

If the client desires to change the buffer allocation during the session, it can report a new buffer size to the server by means of an RTSP SET_PARAMETER request.

SET_PARAMETER rtsp://example.com/fizzle/foo RTSP/1.0
CSeq: 8
Session: dfhyrio90llk
User-Agent: TheStreamClient/1.1b2
3GPP-Adaptation: url=" rtsp://mediaserver.com/movie.test/streamID=0";size=16000,url=" rtsp://mediaserver.com/movie.test/streamID=1";size=39000

RTSP/1.0 200 OK
CSeq: 8
Session: dfhyrio90llk
3GPP-Adaptation: url=" rtsp://mediaserver.com/movie.test/streamID=0";size=16000;seq=10733;min-time=3000;target-time=5000, url=" rtsp://mediaserver.com/movie.test/streamID=1";size=39000;seq=1406;min-time=3000;target-time=5000

3.4 Frequently Asked Questions (FAQ) about buffer reporting mode

Q: The buffer reporting mode requires a well-specified buffer per media flow. Please clarify how a client should distribute its total amount of available buffer space between the different media flows of a session

A: The buffer model shown in Fig. 1 applies to just one media stream. In practice, the client will use one buffer for all media flows. It’s up to the client to decide upon how exactly the available buffer space should be distributed across the different media flows.

A simple approach is the following:
Let
[image: image9.wmf]]

[

i

t

predec

 be the initial pre-decoder buffering delay for media flow i or 0 if there’s no pre-decoder specified for media flow i.

Note that even media flows without a specified pre-decoder buffer require an initial pre-decoder delay and therefore pre-decoder buffer space if they are used together with media flows which have a specified pre-decoder. Take as an example an audio stream used together with a video stream with 2 seconds initial pre-decoder buffering. Although the audio stream does not have a pre-decoder specified a client may want to apply the same amount of pre-decoder buffering to the audio data as used for the video data.

In order to ensure that in those situations pre-decoder buffer requirements of media flows without a specified pre-decoder are taken into account as well we first calculate the maximum initial pre-decoder buffering delay across all media flow as

[image: image10.wmf]]

[

max

i

t

T

predec

i

predec

=

.

We the use
[image: image11.wmf]predec

T

 to calculate the pre-decoder buffer size for each media flow i as

[image: image12.wmf]î

í

ì

=

otherwise

i

r

T

specified

if

i

flow

media

for

buffer

predecoder

of

size

i

b

predec

predecoder

,

8

/

]

[

*

,

]

[

with
[image: image13.wmf]]

[

i

r

the average content rate of media flow i as indicated in the b=AS: SDP attribute.

Let b be the total client buffer space. The portion of the buffer which can be dedicated to the de-jitter buffer
[image: image14.wmf]dejitter

b

is then calculated as

[image: image15.wmf]å

=

-

=

N

i

predecoder

dejitter

i

b

b

b

1

]

[

with
[image: image16.wmf]]

[

i

b

predecoder

the pre-decoder buffer size for media flow I or 0 if there is no pre-decoder specified.

The total amount of time storable in the dejitter buffer is calculated as

[image: image17.wmf]å

=

=

N

i

dejitter

dejitter

i

r

b

t

1

]

[

*

8

.

The total amount of buffer space, which should be assigned to media flow i is then calculated as

[image: image18.wmf]]

[

8

*

]

[

]

[

i

b

t

i

r

i

b

predecoder

dejitter

+

=

Q: Why can’t we completely separate network de-jitter and pre-decoder buffer in the buffer model used in buffer reporting mode?

A: A complete separation would require that the client removes packets from the de-jitter buffer at the same speed as they were transmitted by the server. This is however not possible since the client does not know at which rate the packets had been transmitted. From the bandwidth SDP in SDP it only knows the maximum (peak) rate but a server does not necessarily transmit data at the peak rate continuously.

Q: How much memory in the client buffer does an RTP packet consume?

A: The calculation of the memory needed to store one RTP packet in the client buffer should include the RTP header since most of the information stored in the RTP header is needed at the client anyway

Q: How do you prevent client buffer overflow in buffer reporting mode?

A: Prevention of overflow is achieved by the sender through the buffer size signalled in RTSP and an estimation of the current buffer size in bytes. If the receiver signals the oldest sequence number through RTCP, the sender can estimate the buffer size as follows:

Let n be the sequence number of the oldest buffered packet and m the one of the youngest buffered packet. The server then applies the following formula to calculate the free buffer space at the time the report was sent:

[image: image19.wmf]å

=

-

=

m

n

i

i

size

space

buffer

total

space

buffer

free

]

[

_

_

_

_

,

where size(i) indicates the size of RTP packet i, including both the RTP header and the payload.

Obviously, the server can calculate the total playtime of the packets stored in the media buffer based on sequence numbers n and m of the oldest and youngest packet in the client buffer.
m, the sequence number of the youngest buffered packet is identical to the highest received sequence number found in an RTCP receiver report. The sequence number n of the oldest buffered packet and the total media buffer size need to be signalled additionally as described earlier.

When using RTCP, the sender has to take account of the (variable) delay of RTCP feedback to estimate the actual current buffer size. However the time of the transmission of the RTCP feedback can be derived through the RTCP Receiver report fields "last SR (LSR)" and " delay since last SR (DLSR)". The more frequently the RTCP reports are received the better the server estimation will be.

If no RTCP is used, the sender can only estimate the current buffer fullness using the number of bytes sent and the consumption of date according to the RTP timestamp. The used buffer space will be in this case underestimated by the amount of initial prebuffering used. Any clock skew or later re-buffering will introduce even more errors in to the estimation.

Q: How do you prevent client buffer underflow in buffer reporting mode?

A: If only the oldest buffered sequence number (OBSN) and total buffer size is signalled by the client, the sender should try to avoid buffer underflow by keeping the client buffer at an appropriate, safe fill level, e.g. close to its maximum size. However, in that case, the server does not have any indication from the client on what should be a healthy buffer level in case the buffer cannot be kept at a safe fill level due to critical link conditions.

By means of the minimum buffer protection time parameter, the client signals this information to the server. It’s up to the client to select an appropriate value because it knows best what protection level is appropriate. For example the client knows such things as: the type of radio network it is connected to and the expected jitter, how many flows are sharing its PDP context. The client also knows how much jitter could be introduced by itself, i.e. limit on how fast/often it can retrieve packets from the network socket or “realtime-ness” of its OS in general. If the client has signalled a minimum buffer protection time value, the server should schedule packets respecting the minimum buffer protection time.

If the client has signalled a minimum buffer protection time the server should try to fulfil it even if that would require content adaptations like stream thinning and/or down-switching during critical link conditions.

4 Signalling of service support and mode selection

Both rate adaptation modes shall be supported on the client side. The server would thus be able to choose the mode it wants to use. The client can detect which rate adaptation mode the server likes to use through an SDP attribute.

A client receiving an SDP where the SDP attribute "3GPP-Adaptation-scheduling" is present knows that the server supports and would like to use the scheduling mode. The receiver should thus send through RTSP the shift parameters it would like to use.

A client receiving an SDP where the SDP attribute "3GPP-Adaptation-reporting" is present knows that the server supports and would like to use the buffer reporting mode. It should send at least the buffer size in RTSP and the RTCP reports defined in section 3.3. In addition, it may send the minimal or target protection time parameters.

 A client implementing rate adaptation shall understand the SDP attribute "3GPP-Adaptation-scheduling" and "3GPP-Adaptation-reporting".

Two new media level only SDP attribute are thus defined in ABNF [6]:

sdp-attribute-Adaptation-line = "a" "=" "3GPP-Adaptation-scheduling:" / ("3GPP-Adaptation-reporting:" report-frequency) CRLF

report-frequency = 1*2DIGIT

The SDP attribute shall only be present on media level. The same attribute shall be given for those media that the client should report on. The report frequency value indicates to the client that it should report the oldest sequence number in at least every "report-frequency" RTCP packet.

A client not understanding the SDP attribute will ignore it and therefore this solution is backwards compatible. The server will detect the client support in the RTSP SETUP request when the buffer size headers are included in the case of the reporting mode or when the shift parameters are received in the scheduling mode.
5 Conclusion

The solution for rate adaptation described in this document is proposed to be adopted in PSS Rel. 6 specifications.

6 References

[1]
3GPP TR 26.937 (V1.4.0 onwards): "Transparent end-to-end
packet switched streaming service (PSS); RTP usage model".

[2]
Introduction to rate adaptation for Rel. 5-6 PSS, Tdoc S4-030171,
Nokia/Ericsson, 3GPP SA4#25bis meeting, Berlin, Germany, 24-28 February 2003.

[3] New client to server signalling for co-operative rate adaptation, Tdoc S4-030126,
 Nokia, 3GPP SA4#25bis meeting, Berlin, Germany, 24-28 February 2003.

[4]
New client to server signalling for co-operative rate adaptation, Tdoc S4-030329 Nokia, 3GPP SA4#26 meeting Paris, France, May 2003.

[5]
Adaptive Flow Control for improved mobile streaming QoS– Problem Statement and Requirements, Tdoc S4-030337, Ericsson, 3GPP SA4#26 meeting, Paris, France, May 2003.

[6]
D. Crocker and P. Overell, "Augmented BNF for syntax specifica-tions: ABNF," RFC 2234, Internet Engineering Task Force, Nov. 1997.

[7]
H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, "RTP: a transport protocol for real-time applications," RFC 1889, Internet Engineering Task Force, Jan. 1996.

[8]
M. Handley and V. Jacobson, "SDP: session description protocol,"RFC 2327, Internet Engineering Task Force, Apr. 1998.

[9]
H. Schulzrinne, et. al., "Real Time Streaming Protocol (RTSP)", IETF RFC 2326, April 1998.

[10]
T. Berners-Lee, R. Fielding, and L. Masinter, "Uniform resource identifiers (URI): generic syntax," RFC 2396, Internet Engineering Task Force, Aug. 1998.

[11]
R. Hinden, B. Carpenter, L. Masinter, "Format for Literal IPv6 Addresses in URL's," RFC 2732, Internet Engineering Task Force, December 1999.
_1117962007.unknown

_1118497298.unknown

_1118571071.unknown

_1118571088.unknown

_1118571686.unknown

_1118568561.unknown

_1118570531.unknown

_1117963186.unknown

_1117963333.unknown

_1117963140.unknown

_1117962188.unknown

_1115120314.unknown

_1115120386.unknown

_1115120439.unknown

_1115121596.unknown

_1115120335.unknown

_1115120254.unknown

