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Changes to the C-code:

1.
How the code is changed in the file isp_az.c
Lines 21-119:

void Isp_Az(

     Word16 isp[],                         /* (i) Q15 : Immittance spectral pairs            */

     Word16 a[],                           /* (o) Q12 : predictor coefficients (order = M)   */

     Word16 m

)

{

    Word16 i, j, hi, lo, q;

    Word32 f1[NC16k + 1], f2[NC16k];

    Word16 nc;

    Word32 t0;

    nc = shr(m, 1);

    test();

    if (sub(nc, 8) > 0)

    {

        Get_isp_pol_16kHz(&isp[0], f1, nc);

        for (i = 0; i <= nc; i++)

        {

            f1[i] = L_shl(f1[i], 2);       move32();

        }

    } else

        Get_isp_pol(&isp[0], f1, nc);

    test();

    if (sub(nc, 8) > 0)

    {

        Get_isp_pol_16kHz(&isp[1], f2, sub(nc, 1));

        for (i = 0; i <= nc - 1; i++)

        {

            f2[i] = L_shl(f2[i], 2);       move32();

        }

    } else

        Get_isp_pol(&isp[1], f2, sub(nc, 1));

    /*-----------------------------------------------------*

     *  Multiply F2(z) by (1 - z^-2)                       *

     *-----------------------------------------------------*/

    for (i = sub(nc, 1); i > 1; i--)

    {

        f2[i] = L_sub(f2[i], f2[i - 2]);   move32();  /* f2[i] -= f2[i-2]; */

    }

    /*----------------------------------------------------------*

     *  Scale F1(z) by (1+isp[m-1])  and  F2(z) by (1-isp[m-1]) *

     *----------------------------------------------------------*/

    for (i = 0; i < nc; i++)

    {

        /* f1[i] *= (1.0 + isp[M-1]); */

        L_Extract(f1[i], &hi, &lo);

        t0 = Mpy_32_16(hi, lo, isp[m - 1]);

        f1[i] = L_add(f1[i], t0);          move32();

        /* f2[i] *= (1.0 - isp[M-1]); */

        L_Extract(f2[i], &hi, &lo);

        t0 = Mpy_32_16(hi, lo, isp[m - 1]);

        f2[i] = L_sub(f2[i], t0);          move32();

    }

    /*-----------------------------------------------------*

     *  A(z) = (F1(z)+F2(z))/2                             *

     *  F1(z) is symmetric and F2(z) is antisymmetric      *

     *-----------------------------------------------------*/

    /* a[0] = 1.0; */

    a[0] = 4096;                           move16();

    q = -1;                                move16();

    Overflow = 1;                          move16();

    while (Overflow)

    {

        Overflow = 0;                      move16();

        q = add(q, 1);

        for (i = 1, j = sub(m, 1); i < nc; i++, j--)

        {

            /* a[i] = 0.5*(f1[i] + f2[i]); */

            t0 = L_add(f1[i], f2[i]);          /* f1[i] + f2[i]             */

            a[i] = round(L_shl(t0, sub(4, q))); /* from Q23 to Q12 and * 0.5 */

            move16();

            /* a[j] = 0.5*(f1[i] - f2[i]); */

            t0 = L_sub(f1[i], f2[i]);          /* f1[i] - f2[i]             */

            a[j] = round(L_shl(t0, sub(4, q))); /* from Q23 to Q12 and * 0.5 */

            move16();

        }

    }

    a[0] = shr(a[0], q);

    /* a[NC] = 0.5*f1[NC]*(1.0 + isp[M-1]); */

    L_Extract(f1[nc], &hi, &lo);

    t0 = Mpy_32_16(hi, lo, isp[m - 1]);

    t0 = L_add(f1[nc], t0);

    a[nc] = round(L_shl(t0, sub(4, q)));    /* from Q23 to Q12 and * 0.5 */

    move16();

    /* a[m] = isp[m-1]; */

    a[m] = shr_r(isp[m - 1], add(3, q));           /* from Q15 to Q12          */

    move16();

    return;

}
2.
How the code is changed in the file syn_filt.c
Lines 14-107:

void Syn_filt(

     Word16 a[],                           /* (i) Q12 : a[m+1] prediction coefficients           */

     Word16 m,                             /* (i)     : order of LP filter                       */

     Word16 x[],                           /* (i)     : input signal                             */

     Word16 y[],                           /* (o)     : output signal                            */

     Word16 lg,                            /* (i)     : size of filtering                        */

     Word16 mem[],                         /* (i/o)   : memory associated with this filtering.   */

     Word16 update                         /* (i)     : 0=no update, 1=update of memory.         */

)

{

    Word16 i, j, y_buf[L_SUBFR16k + M16k], a0, s;

    Word32 L_tmp;

    Word16 *yy;

    yy = &y_buf[0];                        move16();

    /* copy initial filter states into synthesis buffer */

    for (i = 0; i < m; i++)

    {

        *yy++ = mem[i];                    move16();

    }

    s = sub(norm_s(a[0]), 2);

    a0 = shr(a[0], 1);                     /* input / 2 */

    /* Do the filtering. */

    for (i = 0; i < lg; i++)

    {

        L_tmp = L_mult(x[i], a0);

        for (j = 1; j <= m; j++)

            L_tmp = L_msu(L_tmp, a[j], yy[i - j]);

        L_tmp = L_shl(L_tmp, add(3, s));
        y[i] = yy[i] = round(L_tmp);       move16();move16();

    }

    /* Update memory if required */

    test();

    if (update)

        for (i = 0; i < m; i++)

        {

            mem[i] = yy[lg - m + i];       move16();

        }

    return;

}

void Syn_filt_32(

     Word16 a[],                           /* (i) Q12 : a[m+1] prediction coefficients */

     Word16 m,                             /* (i)     : order of LP filter             */

     Word16 exc[],                         /* (i) Qnew: excitation (exc[i] >> Qnew)    */

     Word16 Qnew,                          /* (i)     : exc scaling = 0(min) to 8(max) */

     Word16 sig_hi[],                      /* (o) /16 : synthesis high                 */

     Word16 sig_lo[],                      /* (o) /16 : synthesis low                  */

     Word16 lg                             /* (i)     : size of filtering              */

)

{

    Word16 i, j, a0, s;

    Word32 L_tmp;

    s = sub(norm_s(a[0]), 2);

    a0 = shr(a[0], add(4, Qnew));          /* input / 16 and >>Qnew */

    /* Do the filtering. */

    for (i = 0; i < lg; i++)

    {

        L_tmp = 0;                         move32();

        for (j = 1; j <= m; j++)

            L_tmp = L_msu(L_tmp, sig_lo[i - j], a[j]);

        L_tmp = L_shr(L_tmp, 16 - 4);      /* -4 : sig_lo[i] << 4 */

        L_tmp = L_mac(L_tmp, exc[i], a0);

        for (j = 1; j <= m; j++)

            L_tmp = L_msu(L_tmp, sig_hi[i - j], a[j]);

        /* sig_hi = bit16 to bit31 of synthesis */

        L_tmp = L_shl(L_tmp, add(3, s));           /* ai in Q12 */

        sig_hi[i] = extract_h(L_tmp);      move16();

        /* sig_lo = bit4 to bit15 of synthesis */

        L_tmp = L_shr(L_tmp, 4);           /* 4 : sig_lo[i] >> 4 */

        sig_lo[i] = extract_l(L_msu(L_tmp, sig_hi[i], 2048));   move16();

    }

    return;

}
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