Page 1

3GPP TSG-SA4 Meeting #27
Tdoc (
S4-030491

Munich, Germany, 7-11 July 2003

	CR-Form-v7

	CHANGE REQUEST

	

	(

	26.173
	CR
	018
	(

rev
	-
	(

Current version:
	5.7.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	x
	Radio Access Network
	
	Core Network
	x

	

	Title:
(

	Possible decoder LPC coefficients overflow

	
	

	Source:
(

	Nokia

	
	

	Work item code:
(

	AMRWB
	
	Date: (

	2/7/2003

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	Rel-5

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(

	AMR-WB decoder can produce unstable output during DTX-operation.

	
	

	Summary of change:
(

	Conversion from ISP to LPC coefficients is changed, so that LPC coefficients cannot overflow. Synthesis is changed to support scaled LPC coefficients.

	
	

	Consequences if
(

not approved:
	Decoder synthesis filter may be unstable causing uncontrolled ouput when DTX is used.

	
	

	Clauses affected:
(

	Isp_az.c, syn_filt.c

	
	

	
	Y
	N
	
	

	Other specs
(

	
	x
	 Other core specifications
(

	

	affected:
	
	x
	 Test specifications
	

	
	
	x
	 O&M Specifications
	

	
	

	Other comments:
(

	

Changes to the C-code:

1.
How the code is changed in the file isp_az.c
Lines 21-119:

void Isp_Az(

 Word16 isp[], /* (i) Q15 : Immittance spectral pairs */

 Word16 a[], /* (o) Q12 : predictor coefficients (order = M) */

 Word16 m

)

{

 Word16 i, j, hi, lo, q;

 Word32 f1[NC16k + 1], f2[NC16k];

 Word16 nc;

 Word32 t0;

 nc = shr(m, 1);

 test();

 if (sub(nc, 8) > 0)

 {

 Get_isp_pol_16kHz(&isp[0], f1, nc);

 for (i = 0; i <= nc; i++)

 {

 f1[i] = L_shl(f1[i], 2); move32();

 }

 } else

 Get_isp_pol(&isp[0], f1, nc);

 test();

 if (sub(nc, 8) > 0)

 {

 Get_isp_pol_16kHz(&isp[1], f2, sub(nc, 1));

 for (i = 0; i <= nc - 1; i++)

 {

 f2[i] = L_shl(f2[i], 2); move32();

 }

 } else

 Get_isp_pol(&isp[1], f2, sub(nc, 1));

 /*---*

 * Multiply F2(z) by (1 - z^-2) *

 ---/

 for (i = sub(nc, 1); i > 1; i--)

 {

 f2[i] = L_sub(f2[i], f2[i - 2]); move32(); /* f2[i] -= f2[i-2]; */

 }

 /*--*

 * Scale F1(z) by (1+isp[m-1]) and F2(z) by (1-isp[m-1]) *

 --/

 for (i = 0; i < nc; i++)

 {

 /* f1[i] *= (1.0 + isp[M-1]); */

 L_Extract(f1[i], &hi, &lo);

 t0 = Mpy_32_16(hi, lo, isp[m - 1]);

 f1[i] = L_add(f1[i], t0); move32();

 /* f2[i] *= (1.0 - isp[M-1]); */

 L_Extract(f2[i], &hi, &lo);

 t0 = Mpy_32_16(hi, lo, isp[m - 1]);

 f2[i] = L_sub(f2[i], t0); move32();

 }

 /*---*

 * A(z) = (F1(z)+F2(z))/2 *

 * F1(z) is symmetric and F2(z) is antisymmetric *

 ---/

 /* a[0] = 1.0; */

 a[0] = 4096; move16();

 q = -1; move16();

 Overflow = 1; move16();

 while (Overflow)

 {

 Overflow = 0; move16();

 q = add(q, 1);

 for (i = 1, j = sub(m, 1); i < nc; i++, j--)

 {

 /* a[i] = 0.5*(f1[i] + f2[i]); */

 t0 = L_add(f1[i], f2[i]); /* f1[i] + f2[i] */

 a[i] = round(L_shl(t0, sub(4, q))); /* from Q23 to Q12 and * 0.5 */

 move16();

 /* a[j] = 0.5*(f1[i] - f2[i]); */

 t0 = L_sub(f1[i], f2[i]); /* f1[i] - f2[i] */

 a[j] = round(L_shl(t0, sub(4, q))); /* from Q23 to Q12 and * 0.5 */

 move16();

 }

 }

 a[0] = shr(a[0], q);

 /* a[NC] = 0.5*f1[NC]*(1.0 + isp[M-1]); */

 L_Extract(f1[nc], &hi, &lo);

 t0 = Mpy_32_16(hi, lo, isp[m - 1]);

 t0 = L_add(f1[nc], t0);

 a[nc] = round(L_shl(t0, sub(4, q))); /* from Q23 to Q12 and * 0.5 */

 move16();

 /* a[m] = isp[m-1]; */

 a[m] = shr_r(isp[m - 1], add(3, q)); /* from Q15 to Q12 */

 move16();

 return;

}
2.
How the code is changed in the file syn_filt.c
Lines 14-107:

void Syn_filt(

 Word16 a[], /* (i) Q12 : a[m+1] prediction coefficients */

 Word16 m, /* (i) : order of LP filter */

 Word16 x[], /* (i) : input signal */

 Word16 y[], /* (o) : output signal */

 Word16 lg, /* (i) : size of filtering */

 Word16 mem[], /* (i/o) : memory associated with this filtering. */

 Word16 update /* (i) : 0=no update, 1=update of memory. */

)

{

 Word16 i, j, y_buf[L_SUBFR16k + M16k], a0, s;

 Word32 L_tmp;

 Word16 *yy;

 yy = &y_buf[0]; move16();

 /* copy initial filter states into synthesis buffer */

 for (i = 0; i < m; i++)

 {

 *yy++ = mem[i]; move16();

 }

 s = sub(norm_s(a[0]), 2);

 a0 = shr(a[0], 1); /* input / 2 */

 /* Do the filtering. */

 for (i = 0; i < lg; i++)

 {

 L_tmp = L_mult(x[i], a0);

 for (j = 1; j <= m; j++)

 L_tmp = L_msu(L_tmp, a[j], yy[i - j]);

 L_tmp = L_shl(L_tmp, add(3, s));
 y[i] = yy[i] = round(L_tmp); move16();move16();

 }

 /* Update memory if required */

 test();

 if (update)

 for (i = 0; i < m; i++)

 {

 mem[i] = yy[lg - m + i]; move16();

 }

 return;

}

void Syn_filt_32(

 Word16 a[], /* (i) Q12 : a[m+1] prediction coefficients */

 Word16 m, /* (i) : order of LP filter */

 Word16 exc[], /* (i) Qnew: excitation (exc[i] >> Qnew) */

 Word16 Qnew, /* (i) : exc scaling = 0(min) to 8(max) */

 Word16 sig_hi[], /* (o) /16 : synthesis high */

 Word16 sig_lo[], /* (o) /16 : synthesis low */

 Word16 lg /* (i) : size of filtering */

)

{

 Word16 i, j, a0, s;

 Word32 L_tmp;

 s = sub(norm_s(a[0]), 2);

 a0 = shr(a[0], add(4, Qnew)); /* input / 16 and >>Qnew */

 /* Do the filtering. */

 for (i = 0; i < lg; i++)

 {

 L_tmp = 0; move32();

 for (j = 1; j <= m; j++)

 L_tmp = L_msu(L_tmp, sig_lo[i - j], a[j]);

 L_tmp = L_shr(L_tmp, 16 - 4); /* -4 : sig_lo[i] << 4 */

 L_tmp = L_mac(L_tmp, exc[i], a0);

 for (j = 1; j <= m; j++)

 L_tmp = L_msu(L_tmp, sig_hi[i - j], a[j]);

 /* sig_hi = bit16 to bit31 of synthesis */

 L_tmp = L_shl(L_tmp, add(3, s)); /* ai in Q12 */

 sig_hi[i] = extract_h(L_tmp); move16();

 /* sig_lo = bit4 to bit15 of synthesis */

 L_tmp = L_shr(L_tmp, 4); /* 4 : sig_lo[i] >> 4 */

 sig_lo[i] = extract_l(L_msu(L_tmp, sig_hi[i], 2048)); move16();

 }

 return;

}

�PAGE \# "'PAGE: '#'�'" �� � HYPERLINK "http://www.3gpp.org/ftp/Information/DocNum_FTP_structure_V3.zip" ��Document numbers� are allocated by the Working Group Secretary.

�PAGE \# "'PAGE: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'PAGE: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'PAGE: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'PAGE: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'PAGE: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'PAGE: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'PAGE: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'PAGE: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'PAGE: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'PAGE: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'PAGE: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'PAGE: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'PAGE: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'PAGE: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'PAGE: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'PAGE: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'PAGE: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'PAGE: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'PAGE: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'PAGE: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

CR page 1

