3GPP TSG-SA WG4 Meeting #26

Tdoc S4 (03) 0334
Paris, France, 5-9 May 2003
Agenda Item: 6.7.2.2

Source:
Ericsson

Title:
Reliable streaming

Document for:
Discussion and approval

Agenda Item:
PSM SWG

Introduction

At the last three SA4 meetings the requirements for reliable transport in PSS Release 6 have been addressed. According to [1], PSS should provide a reliable delivery mechanism that enables the users to receive the content without any errors due to the transport mechanism. 

Today PSS mandates two protocols for data transport of media:

· RTP over UDP/IP for continuous media (video and audio).

· HTTP over TCP/IP for static media, synthetic audio, timed text, scene descriptions, etc.

For reliable streaming, the transport using RTP over UDP/IP has to be replaced by another protocol, whereas the media transport over TCP/IP is not affected. In addition to the above, PSS also mandates RTSP for control data. 

Orange initiated the discussion in SA4 by proposing to replace RTP over UDP/IP by solutions based on TCP transport [2]. PacketVideo followed up the discussion by comparing two solutions [3,4]:

· RTSP Tunnelling (RT): This solution uses RTP streaming over TCP, where the RTP packets are multiplexed on the RTSP TCP connection. The RTP payload formats and RTSP control protocol of the current PSS can be re-used.

· Progressive Download (PD): Here RTP is replaced by HTTP download of a 3GP file (or possibly an AMR file) over TCP/IP and the file is played during download. No additional protocols are needed as HTTP is already mandated by PSS. 

In this document we compare the solutions and propose that Progressive Download is included as an alternative delivery mechanism for continuous media in PSS. PacketVideo has previously proposed that RTSP tunnelling is added an optional transport in PSS [3,4].

Reliable versus error-free streaming

Before proposing reliable streaming as a new transport mechanism in PSS it is necessary to reflect on what it actually means. With reliable streaming we mean streaming with a reliable transport, i.e. all parts of the media transport are delivered. This is not the same as error-free streaming, which is unfortunately difficult to obtain in a lossy environment. If the content should be presented on the terminal as intended by the content provider, transport latency must also be considered. Error-free streaming requires that the terminal

· receives the bitstream without losses and 

· renders it at the intended rate without interruptions. 

In reality these requirements are non-compatible and a compromise is necessary. By using RTP transport over UDP in the current PSS specification we compromise on lossless reception by focussing on a continuous playout. Losses can in many cases be handled gracefully by error concealment. The success depends on the level of interleaving and segmentation of the media from the server side, as well as the capabilities of the client to conceal and utilise redundancy.

In contrast, the focus of reliable streaming is to obtain a lossless transport of the media stream. This can only be obtained by compromising on continuous playout by allowing interruptions or varying playout rate. Some smoothness is of course achieved by using a buffer, but the only way to guarantee an error-free playout is to buffer the whole sequence (which is download and not streaming).

Comparison between RTSP Tunnelling (RT) and Progressive Download (PD)

· Functionalities

RT and PD provide similar functionalities. The user is able to request streaming of a clip from start, it can pause and resume while playing and continue playout from a different time.

RT handles these functionalities by using the same RTSP methods as PSS does today. 

PD handles the same functionalities directly by using a 3GP player. Pause, resume and random access to an earlier time are trivial as the file is stored in the client. Playout from a later time can be achieved by downloading from a later position in the file by specifying a range header in HTTP GET. The exact byte position follows from the meta-data part of the 3GP file.

· Delay

For both RT and PD there is a constant set-up time before data can be received. A straightforward comparison in terms of Round-Trip Times (RTT) yields:

PD: 
TCP connect

1.5


HTTP GET

1.0


In total


2.5
RT:
TCP connect

1.5


RTSP DESCRIBE
1.0


RTSP SETUP (x2)
2.0


RTSP PLAY

1.0


In total


5.5
Hence, the set-up time for PD is only 2.5 RTT, or 45%, compared to 5.5 RTT for RT.

For PD there is an additional delay from downloading the initial meta-data part of the 3GP file. This delay is negligible, though, in particular for short files:

For short clips the 3GP meta data is around 0.5 KB and will thus be included in the first TCP packet (with an MTU size of 1400 bytes). For long clips the meta-data part constitutes 1-3 per cent of the file. This is not much in itself, and the initial part of it can even be reduced by using fragmented files. 

· Overhead

It is possible to compare the data transfer overheads from the two approaches. The bitstream data (such as AMR frames in IETF storage format [5] or H.263/MPEG-4 video streams) is comparable in size to the total payload data in RTP packets. The overhead on top of this can be estimated for Progressive Download and RTSP Tunnelling as detailed below:

PD: First the bitstream is contained in a 3GP file, which gives an overhead of at least 0.5 KB for short files (a few seconds). For long files, the overhead is roughly 1% for video, 1% for AMR with constant bitrate and no DTX, and 3% for AMR with variable frame sizes.

Downloading the 3GP file over TCP/IP requires for each block a TCP/IP header of 20 (IPv4) + 24 (Option less TCP header) = 44 bytes. In the examples we will assume block sizes of 1400 bytes.

RT: When doing RTSP tunnelling each RTP packet will use a 4 bytes tunnel-interleave header plus the 12 bytes RTP header. Comparing with a typical packetization scheme over UDP we assume 10 RTP packets per second, i.e. each RTP packet contains either 5 AMR frames or 1 video frame (10 fps). The RTSP/RTP overhead will thus be 10*(12+4) = 160 bytes per second. On top of this there is the overhead from TCP/IP. Depending on the packetization scheme, one can here minimise the overhead or the delay. The most efficient way is to fill each TCP packet (1400 bytes) before it is sent, but this will generate delays, in particular for AMR, compared to normal streaming over UDP/IP. Using one TCP packet per RTP packet removes the extra delay at the expense of increasing the overhead. 

Examples: We have used some clips to exemplify the calculations above:
AMR: The difference between PD and RT is most pronounced for AMR. A 60 second AMR clip requires at least 11% more data to be transferred for RT than PD. Depending on the TCP/IP packetization strategy, the extra amount of data can be up to 50%. For short clips the 3GP packaging gives more overhead. However, even for a 5s clip PD is more efficient than RT.

Video: For video the overheads are similar in sizes, but less pronounced due to the relative large amounts of data. An example with 60s MPEG-4 video at 48kbps requires between 1.7% and 3.1% more data for RT compared to PD of the corresponding 3GP file, depending on the TCP/IP packetization strategy.

· Bandwidth utilization

An upper limit to the available bandwidth is governed by TCP, which automatically tries to maximise the throughput and take advantage of peaks in the bandwidth. The level of optimisation will depend on the TCP implementation.

For PD, TCP is the only limiting factor and there is no need to further accommodate for variations. The bandwidth will be utilised optimally for downloads. However, bitstream switching to alter the media bandwidth (if the bandwidth goes down drastically) is not possible.

For RT the bandwidth is additionally constrained by the transmission rate as for ordinary PSS streaming. To fully utilise the TCP bandwidth, the speed header can be used, although this basically means that the stream will be “downloaded” without respecting buffer limitations. One advantage of RT, however, is that the bitrate-adaptation tools of PSS may be used.

· Storage

The main difference between RT and PD is that PD stores a file in the client. The advantage of storing a file is that it can be viewed several times or re-distributed (respecting any DRM if applicable). Pause and seek functionalities are also easier and faster to execute. 

Note, however, that if storing of a file is not wanted (e.g. due to memory constraints) or not allowed (e.g. due to DRM constraints), then the file can be discarded just as for RT except for some parts of the meta data. Hence, file storing can be made optional in PD.

· Implementation

RT: The RTSP tunnelling mechanism needs to be implemented on both client and server.

PD: HTTP is already mandated by PSS. An additional feature is that all files can be used (no hint tracks are needed) as long as they are interleaved and start with the meta data (can be done easily by a transcoder that also can strip unwanted tracks). If support for 3GP files in a client is an issue (terminals only capable of AMR and not AAC or video), then PD of AMR files can be used. UAProf can be used for capability exchange before a file is progressively downloaded.

· Changes to specifications

For RT we need to specify how the RTSP tunnelling is done, although most parts of the specification can be re-used. For PD there is in principle no need to add anything to the specification as PD is already possible in PSS today. We would however suggest adding a profile brand identifier for 3GP files that indicate that these are interleaved and suitable for PD. Such a brand would serve as a help for servers and clients, although it is possible to analyse the meta data of a 3GP file and deduct whether it can be downloaded progressively.

Conclusions and Proposal

Our view is that the current PSS meets most demands of streaming, but that Progressive Download could be a useful complement, in particular for short clips or when the file is intended to be played several times. We propose to add Progressive Download as an optional feature.

References

[1] 3GPP TS 22.233 V6.2.0: ”Transparent end-to-end packet-switched streaming service; Stage 1”

[2] S4-020648: “Proposition of Alternative delivery mechanisms to ensure a reliable transport of AudioVisual Content” by Orange.

[3] S4-030043: “Support for TCP Streaming in PSS Rel-6” by PacketVideo.
[4] S4-030133: “Further comments on reliable transport” by PacketVideo.
[5] IETF RFC 3267: "Real-Time Transport Protocol (RTP) Payload Format and File Storage Format for the Adaptive Multi-Rate (AMR) Adaptive Multi-Rate Wideband (AMR-WB) Audio Codecs", Sjoberg J. et al., June 2002.

� Contact: Per Fröjdh (Per.Frojdh@ericsson.com), Ericsson Research, Stockholm, Sweden.



2

