TSG-SA4#26 Meeting
Tdoc S4 (03)0350

May 5 – 9, 2003, Paris, France

Source:
David Singer, Apple, USA

Title:
Issues and Discussion on Reliable Streaming

Document for:
Discussion

Agenda Item:
6.7.2.2

This document outlines some issues and concepts in reliable streaming, and proposes a way ahead.

1 The need for reliability

1.1 The nature of loss

The obvious question is to resolve what the cause of unreliability is, so that we can design the correct answer. Some possibilities are:

a) Link loss; loss in the radio network is the only likely one here, and this is usually managed by lower levels;

b) Single-stream overload; the stream that is sent is simply too large for some bottleneck (again, probably the radio link, and again, this should be managed at lower levels);

c) Stochastic overload; the overall average traffic fits through the bottleneck(s), but the variation in burst times, packet arrival times etc., cause some sporadic loss as some buffers overflow;

d) Gross overload; some bottleneck is persistently overload by the aggregate traffic through it.

Really, only (c) and (d) should be managed at the RTP level, and of these, it could be argued that in a managed network (as the radio network is), (d) shouldn’t arise either. It may be that we’re only dealing with occasional ‘stochastic’ loss.

1.2 The nature of loss-recovery

It’s important that any technique adopted be socially acceptable on the network. RTP is currently ‘blast and hope’ and this can be very unfriendly to other traffic trying to pass through any congestion point – RTP can ‘hog’ the resource. We must be friendly to cross-traffic of at least two kinds:

a) other streams like our own (other reliable RTP streams);

b) TCP streams.

Some techniques appear to work well until everyone uses them. For example, if I use re-transmission on my stream, and it is now larger by 20%, and no-one else does, I will use 20% more bandwidth (on average) yet recover much more than that; for me, it was a win. But by the time everyone is using re-transmission through that congestion point, all streams are larger, and we will be experiencing the same bad effect as before – we will simply have moved the loss around.

2 Reliability Techniques

There are two obvious classes of technique here: re-transmission on demand, and ‘forward’ techniques.

2.1 Re-transmission

Re-transmission systems rely on the sender being able to work out what got lost, usually either through the receipt of a negative acknowledgement (NAK), or by the lack of a positive acknowledgement (ACK). These two techniques have rather different characteristics and trade-offs.

2.1.1 NAK-based

NAK-based systems send a NAK for lost packets, and nothing for packets that arrive. This means that if the loss is small, they send less ACK/NAK data than ACK-based systems.

It also means that these systems are backwards-compatible; if a new NAK-aware client sends NAKs to an old, non-reliable server, the protocol can be designed so that the server will ignore them. Similarly a new server, receiving no NAKs from an old client, will do nothing new. No negotiation is needed.

Similarly, the system can be self-tuning. For example, at the server, to support NAKs, the server must remember what packets were sent with their associated sequence numbers. How long must the server remember this ‘tail-back’? Initially it can guess, but it can also remember ‘what is the oldest NAK request this client has ever sent me’, and tune accordingly. Similarly the client has to know ‘how late may I dare ask for a re-transmission and still get the packet in time to play it’. Again, it can initially guess, but after a few NAK requests it can get a reasonable estimate of the round-trip delay, including the server response time.

2.1.2 ACK-based

In contrast, ACK-based systems must be negotiated. Otherwise new server with an old client will re-transmit everything, as it sees no ACKs.

However, ACK-based systems have several advantages. The most prominent is that because they are sending more data, they enable much better estimating of the network characteristics. TCP is an ACK-based system and it is able to estimate its ‘fair’ bandwidth from the way that the round-trip acknowledgments work. In addition, it can be sure not to ‘flood’ the network by setting a threshold for the amount of un-acknowledged data that is sent. Finally, since it is able to estimate the network capacity, it can choose to ‘over-send’ – send data faster than is needed to take advantage of available capacity, saving up for that ‘rainy day’ when there is congestion. This same technique can also prime the player faster at stream startup, reducing startup delays.

2.1.3 TCP-based

There is a special version of ACK-based, and that is TCP. In general, mixed-traffic networks, it is desirable that RTP be a ‘nice citizen’ with TCP cross-flows; the current ‘blast and hope’ technique is not social. There is one protocol which is known to be friendly to TCP cross-traffic, and that is, of course, TCP itself.

There is no reason why TCP cannot be used:

a) in a packet-based rather than byte-stream fashion;

b) to ‘acknowledge’ packets which have not in fact arrived but are no longer wanted.

2.2 Forward techniques

Forward error correction or redundant transmission are examples of forward techniques. They have two very undesirable characteristics for stochastic loss, however:

a) they are best adapted when the statistical nature of the loss is well-understood (as for example happens in dirty optical disks, or radio links);

b) they always ‘bulk up’ the stream to cope with the worst possible loss, even when there is none.

3 Proposal

We suggest that the best technique to adopt is ACK-based, as it enables the best feedback and system tuning. ACKs should be sent in RTCP packets, and more than one RTP packet ‘ACKed’ in one RTCP packet.

We also suggest that the TCP flow-control, bandwidth sharing, and flood-prevention techniques be used. This makes the protocol a better network citizen.

The initial negotiation of whether re-transmission is allowed and can be done, and under what parameters (if any) can be done in RTSP exchanges, with headers. This involves little overhead traffic.

Within these parameters, a simple protocol can be achieved.

Page: 1/2

Page: 2/2

