TSG-SA WG4#26 meeting
Tdoc S4-030328

Paris, France, 5-9 May, 2003
Agenda Item: 6.7.2.2

Title:
Moving forward on reliable transport

Source:
PacketVideo

Document for:
Discussion

Agenda Item:
6.7.2.2 (PSM)

Introduction

In the previous meeting, we presented S4-030133 which compared two methods of reliable transport. The purpose was twofold:

· We showed various benefits of TCP Streaming, and proposed that this method be adopted as an optional transport mechanism to meet the reliable streaming requirement.

· We realize that Progressive Download might also be used to meet this requirement. We compared the two methods, and pointed out a few practical problems which should be solved in order to make Progressive Download a viable service. We suggested solutions for these problems.

We hope that progress on Reliable Transport can be made at SA4#26, and so we re-state our proposal that TCP Streaming be adopted as an optional transport mechanism. Should Progressive Download be adopted, we ask that the problems pointed out in the earlier contribution (S4-030133) be addressed in the solution. As stated in the earlier contribution, we don’t believe the two methods to be mutually exclusive, since each has advantages which fit certain use cases.

In any case, it should be noted that a reliable streaming working assumption was scheduled for SA4#25bis, and so PSM subgroup should attempt to at least make a tentative decision on this issue at the current meeting. This could be any one of the following:

· Adopt TCP Streaming as an optional transport

· Adopt Progressive Download as an optional download mechanism

· Adopt both options

· Adopt neither

In the remainder of this paper, we briefly summarize the main points of the previous contribution, and we list any comments that have been received on each point. We do not believe it necessary to repeat everything here, and so the reader is asked to review S4-030133 for additional details of the proposal and comparison.

Main points from previous contribution:
· TCP Streaming re-uses the RTSP Streaming features and tools of current PSS, including:

· PAUSE and Seek interaction, using appropriate RTSP methods

· Track selection (basic selection defined in RTSP, as well as the new SDP extensions for track labelling and grouping). Progressive download doesn’t allow you to select a subset of the file.

· Simple continuation of a ‘dropped’ session using PLAY with Range: header. (This is listed in TS 26.233 as one of the requirements for reliable transport.)

· TCP Streaming is simple and would require little change to PSS specifications. Tunnelling over RTSP is specified already in rfc2326.

· TCP Streaming works with any .3gp file. Progressive download requires specially arranged, interleaved files.

· TCP Streaming may be faster or slower than real time.

· This is a useful feature, but is already utilized in Progressive Download, which relies on TCP to follow the available bandwidth envelope.

· TCP Streaming doesn’t save the file on the device, so there is no DRM issue. Progressive download traditionally saves the file.

· Of course, saving a file is a definite feature, since it can be used for quick seeking, or for multiple playbacks. In addition, Ericsson points out in S4-030334 that it would be straightforward to have a progressive download client not save the file, or to save it only if associated DRM rules allow it.

· TCP Streaming uses SDP file based session establishment. The SDP file acts as a ‘helper file’ which a browser may pass to a media player using file association. Progressive download may require a ‘helper file’ to allow session initiation based on file association with standard browsers and MMS clients. Otherwise you need tight, custom integration between browser and media player.

· If the file is to be saved, Progressive Download should have a way to determine the file size before beginning the download. This could be included in the helper file. HTTP GET typically provides Content-Size in the response, but this is too late since at this point the download has already started.

· TCP Streaming may be used in the Live Streaming case. Progressive download is not suitable for live, since file metadata may not be sent until media data is completely known. Movie Fragments would solve this, at the expense of backward compatiblity with earlier clients.

· For cases of authoring files on the client, Progressive Download increases authoring complexity and requires media data to be recopied as a post-authoring step.

· TCP Streaming and Progressive Download seem to have comparable overhead, from the examples we looked at.

· Ericsson reports a different result in S4-030334. We provide further analysis in the Appendix to the current document which explains how they arrived at this result, and why the conclusion should be different.

· We talked about how TCP Streaming could be used to improve performance on GPRS.

· A comment was made at the previous meeting that bitstream switching might achieve this without the need for either reliable transport method.

· Both methods are acknowledged to be firewall-friendly.

It is interesting to note that both methods derive their most useful properties from TCP, and so underneath they behave in a similar fashion. In fact, there have been several points on which the two methods seem to be converging. For example,

· TCP Streaming slower than real time (e.g. over very constrained network bandwidth) behaves like a traditional Progressive Download solution. That is, the client would fill a large buffer up to a point where it estimates the remainder of the session can be played continuously, and begins rendering at that point.

· Progressive download may be implemented to avoid saving the file in order to avoid DRM issues. This is traditional streaming client behavior.

Note that a third possibility has been proposed in contribution S4-030350 from Apple. In this contribution, a new RTCP-based acknowledgement mechanism is proposed, however it would borrow some of the beneficial properties of TCP.

Problems to Solve for Progressive Download
It seems worthwhile to list the practical problems with Progressive Download that were presented in the previous contribution, and to comment on whether each has been addressed.

· Signal that a file is pseudostreamable

This issue is that there is currently no way for a client to definitively tell whether a .3gp file was authored to be Progressively Downloaded or not. The current informative text suggests that the client can examine the file as it is downloaded and determine whether it has the recommended structure (‘moov’ up front, media data interleaved). However, this puts an unnecessary burden on the client, and also leaves the ‘pseudo-stream detection’ algorithm as a client implementation issue. It seems less risky to include some signalling up front (in the file) which indicates that the file was created to be pseudostreamed.

This could be done by defining a new compatible brand, or else we could put signalling elsewhere in the file metadata (e.g. in ‘udta’ along with the asset information extensions).

· In S4-030334, Ericsson proposes a new brand to signal that the file is interleaved and suitable for progressive download. This solves the problem, however it might also be necessary to define (or at least make an authoring recommendation on) the interleave depth, i.e. how many seconds of each media may be contiguous in the file.

· Signal whether the file can be saved/exposed to user

This issue involves the concerns over file sharing when valuable content is Progressively Downloaded. It may be possible to solve this with a real DRM solution. However, if such a solution is not available, we might at least signal to the client whether the downloaded file should be presented unprotected to the user or not. The client would then be responsible for enforcing this (e.g. if the file is protected, then the client not expose the file to the user, and the file must be deleted upon exit). The intent would not be to create iron-clad protection, but at least it would avoid the case where the unprotected file is by default left open for copying.

As before, this could be done either by using a compatible brand, or by introducing new signalling in the file metadata (e.g. in ‘udta’).

· This issue is still open, but might be handled as part of the full DRM solution for Rel-6.

· Solve PSS client/browser or PSS client/MMS client integration issue

This issue concerns a practical matter of how to initiate a Progressive Download session. For PSS, the user will typically be using the phone browser to browse to content, which is then rendered using an associated player. Most browsers work using file association, i.e. the user clicks on a link to ‘somefile.xyz’, and in response the browser downloads the file and passes it to the application associated with ‘.xyz’ files. For MMS, the user may receive an MMS message with a link to a file, or with an attached file.

For PSS streaming sessions, an SDP file acts as a standardized helper file which is downloaded by the browser or MMS client and then passed to a PSS player. The player uses the SDP file to initiate a streaming session. This would work the same way for TCP Streaming as it would for the existing UDP streaming.

However, initiating a Progressive Download session presents a problem. Suppose the user browses to a page of content, and clicks on a link to ‘somefile.3gp’. A browser that works by file association will download the file and then invoke the associated application (a PSS player, in this case), passing it the file. This precludes Progressive Download, since even if the file is properly structured, the complete file is passed to the player after it is downloaded.

A similar problem would be seen if the phone has an MMS Client with an associated PSS client to handle media playback; such a combination may also work via file association.

This problem could be solved by doing custom integration between browser and PSS client (or between MMS client and PSS client). For example, the browser could somehow pass the http link to the content directly to the PSS client, which would then download and render the file. Alternately, the browser could begin downloading the file, and give access to the growing file to the PSS client, which could begin rendering as needed.

However, it would be better to have a solution which requires no custom integration, and which would work with current browsers and MMS clients using file association. This could be done by defining a helper file which initiates the progressive download session. The file could be quite simple, e.g. A “Progressive Download Helper” file called ‘somefile.pdh’ might contain a single line as follows:

http://63.1.2.3/IncredibleContent/somefile.3gp
This ‘.pdh’ file would be downloaded by the browser and passed to the PSS client, which would then use HTTP GET to start downloading ‘somefile.3gp’. Since the PSS client is now in control, it may view the contents of the file as it arrives, and it will begin to render the file as soon as it decides enough media has been received. Without some mechanism such as this, it will be impossible to launch a truly interoperable progressive download service.

· This issue is open and should be discussed.

Appendix: Comments on Ericsson’s overhead example
In contribution S4-030334, Ericsson provides a comparison of overhead between TCP Streaming (which is called RT for RTSP Tunneling in the contribution) and Progressive Download (PD). The conclusion reached is that RT has significantly higher overhead than PD. In particular:

“The difference betweeen PD and RT is most pronnounced for AMR. A 60 second AMR clip requires at least 11% more data to be transferred for RT than PD. Depending on the TCP/IP packetization strategy, the extra amount of data can be up to 50%.”

We disagree with these numbers, which seem to be based on the following assumptions:

· For the PD case, slices of the .3gp file are packed perfectly into 1400 byte TCP/IP packets. Delay (i.e. amount of ‘time’ conveyed by each packet) is not considered important in this case. (e.g. for AMR 12.2 about 0.85 seconds would be conveyed by each packet.)

· For the RT case, delay is considered to be important, and so for this case they put 5 AMR frames (0.1 seconds) in each RTP packet. For the worst case analysis, they also map one tunnelled RTP packet per TCP/IP packet, thus maximizing the overhead.

The first assumption is quite reasonable; the data in the downloaded file may be sliced arbitrarily, and so the TCP packetization for PD will be very efficient. However, the second assumption is not reasonable. To get a fair comparison, we would have to assume the RT server would do smart packetization, which turns out to be similar to the packetization used in the PD case. That is, a 1400-byte TCP/IP packet would contain a single tunnelled RTP packet which in turn would contain as much accumulated media data as possible.

If we repeat the Ericsson AMR example using this assumption, we get a very different result:

PD case: Consider a 60 second AMR 12.2 clip. Raw media data is:

32 bytes/frame * 50 frame/sec * 60 sec = 96,000 bytes
Assume 1000 bytes of .3gp file metadata (just over 1%) for a file size of 97,000 bytes.

If we ignore HTTP overhead and do perfect packetization using 1400-byte TCP/IP packets, then each full packet has 44 bytes of TCP/IP header and 1356 bytes of payload. This works out to 71 full TCP/IP packets plus one partial packet (768 bytes). Total data sent is:

71 * 1400 + 768 = 100,168 bytes

Note this is 4,168 bytes of overhead, so 4.34% overhead was added to the raw media.

RT (TCP-Streaming) case: Same 60 second AMR 12.2 clip, again 96,000 bytes raw media.

Ignore RTSP setup and assume RTCP isn’t needed in the reliable transport case. Assume each 1400-byte TCP packet is structured as follows:

[44 bytes IP/TCP Headers] [4-byte tunneling header] [12-byte RTP header] [AMR frames]

Thus each 1400-byte TCP/IP packet contains a single RTP packet which can accommodate:

1400 – (44+4+12) = 1340 RTP payload bytes

Each full TCP/IP packet thus holds 41 AMR 12.2 frames at 32 bytes each. Thus a ‘full’ packet has the following size:

(44+4+12) hdr bytes + (41 frames * 32 bytes/frame + 1 byte amr payload hdr) = 1373 bytes

The 60-second clip has 3000 AMR frames. We thus have 73 full TCP/IP packets to transport the majority of the AMR data. We then have one partial TCP/IP packet at the end which transports the last 7 frames. The size of this last packet is:

(44+4+12) hdr bytes + (7 frames * 32 bytes/frame + 1 byte amr payload hdr) = 285 bytes

And so the total size transported via TCP/IP is:

73 * 1373 + 285 = 100,514 bytes

This is an overhead of 4514 bytes, or 4.7% overhead added to raw media.

Comparison: The RT case sends 346 extra bytes, or 0.35 % more than the PD case. The overhead difference is not significant.

Further Comments:

· I believe the ‘worst case’ overhead of 50% shown in by Ericsson was produced as follows: 5 AMR 4.75 frames were placed in a single tunnelled RTP packet inside a single TCP/IP packet. In this case, the data size would be 5 frames * 13 bytes/frame = 65 bytes. The overhead size would be 44 + 4 + 12 + 1 byte = 61 bytes. Hence the computed overhead would be 48.4 % of the total data. Clearly this is not reasonable packetization.

· It is interesting to note that if you repeat the full 60-second AMR example using 4.75 kbit/s frames instead of 12.2 kbit/s frames, you get pretty much the same result. (By my calculation, media size is 39,000 bytes, PD case sends 39,500 byte .3gp file using a total of 40,820 bytes, and RT case sends a total of 40,830 bytes. The difference is 10 bytes, or 0.05 percent.) In this case, RT packetization produces ‘full’ TCP-IP packets of exactly 1400 bytes. (44+4+12+ (13 frames *13bytes/frame) +1 byte payload header)

· A similar packaging strategy might be used for video, though the exact result would be content-dependent.

Page: 1/5

Page: 6/6

