3GPP TSG-SA4 Meeting #26
Tdoc S4-030301

Paris, France, 5–9 May 2003

Title:
Complexity Estimation Tool for the PSS and MMS Audio
Codec Selection
Source:
VoiceAge

Document for:
Discussion and approval

Agenda Item:
6
1. Summary

VoiceAge agreed to produce a common complexity measurement tool for all organizations that have declared their intent to submit a candidate codec for the PSS and MMS audio codec selection. This tool consists of complexity counters collected into an ANSI C library. The library is intended to be included in a codec algorithm, each line of which is instrumented with the complexity counters. The tool is available for all codec proponents. Others may obtain it by request as needed. The tool was distributed to the codec proponents on April 16, 2003 with an example program that gives guidelines on the use of complexity counters. The header file of the ANSI C library and the distributed example program are shown in this contribution.

This contribution gives an overview on the tool and its usage, and proposes the adoption of this tool as an integral part of the candidate deliverables.

The tool measures the computational complexity and program ROM based on a floating-point C source code instrumented with complexity counters. RAM and table ROM have to be estimated by other means. The complexity assessment methology implemented in the tool was presented originally in document S4-030155 of the 3GPP SA4#25bis meeting held February 24–28, 2003. This methology was adopted in the 3GPP SA4 Audio Codec Ad-hoc meeting, held April 7–9, 2003 as the working assumption to be used in the PSS and MMS audio codec selection.
The tool is meant to provide a consistent, platform independent method of obtaining and reporting complexity estimates, which can be assessed by SA4 in the audio codec selection. The weights assigned with arithmetic operations reflect those of the ETSI basic operator set. It should be noted, however, that the methodology cannot give an exact correspondence with the complexity of the fixed-point implementation. This is among several other reasons because the complexity overhead resulting from a higher accuracy required by some variables in fixed-point arithmetic cannot be taken into account. One limitation with the program ROM counter of the tool is that the instructions need to be executed to be counted. Therefore the codec should be executed in conditions that give the broadest possible coverage of the source code.
The subsequent sections present the header file of the tool, the example program distributed to the codec proponents, and the output produced by the example program. The example program is based on the Levinson-Durbin and autocorrelation subroutines of the floating-point ANSI C source code TS 26.204 version 5.1.0 of the AMR-WB codec.

2. Header File of the Complexity Estimation Tool

/*

 * flc.h

 *

 * Tool for estimating computational complexity and Program ROM.

 *

 * Copyright 2003 VoiceAge Corp. All Rights Reserved.

 * Written by Joachim Thiemann, April 11, 2003

 */
#ifndef FLC_H

#define FLC_H

#include <stdio.h>

/* NOTE: CHANGE THIS VALUE ACCORDING TO THE FRAME LENGTH OF THE CODEC*/

/* Frame lenght is defined in milliseconds */

#define FLC_FRAMELEN 20.0F

/* opcodes - this list must match the names in flc.c */

enum flc_fields

{

 FLC_NOP = 0,

 FLC_ADD,

 FLC_MULT,

 FLC_MAC,

 FLC_MOVE,

 FLC_STORE,

 FLC_LOGIC,

 FLC_SHIFT,

 FLC_BRANCH,

 FLC_DIV,

 FLC_SQRT,

 FLC_TRANS, /* transcendal functions such as sin and cos */
 FLC_FUNC,

 FLC_LOOP,

 FLC_INDIRECT, /* indirect reference */
 FLC_PTR_INIT,

 FLC_MISC, /* for all other ops of weight 1 mem, 1 cycle */

 FLC_OPEND

};

#define _FLC(o,c) {static int f=0; FLC_ops((o),(c)); if (!f) {f=1;FLC_mem((o),(c));}}

#define ADD(c) _FLC(FLC_ADD, (c))

#define MULT(c) _FLC(FLC_MULT, (c))

#define MAC(c) _FLC(FLC_MAC, (c))

#define MOVE(c) _FLC(FLC_MOVE, (c))

#define STORE(c) _FLC(FLC_STORE, (c))

#define LOGIC(c) _FLC(FLC_LOGIC, (c))

#define SHIFT(c) _FLC(FLC_SHIFT, (c))

#define BRANCH(c) _FLC(FLC_BRANCH, (c))

#define DIV(c) _FLC(FLC_DIV, (c))

#define SQRT(c) _FLC(FLC_SQRT, (c))

#define TRANS(c) _FLC(FLC_TRANS, (c))

#define FUNC(c) _FLC(FLC_FUNC, (c))

#define LOOP(c) _FLC(FLC_LOOP, (c))

#define INDIRECT(c) _FLC(FLC_INDIRECT, (c))

#define PTR_INIT(c) _FLC(FLC_PTR_INIT, (c))

#define MISC(c) _FLC(FLC_MISC, (c))

/* Double ops count as double the operations but same memory. */

#define _FLCD(o,c) {static int f=0; FLC_ops((o),2*(c)); if (!f) {f=1;FLC_mem((o),(c));}}

#define DADD(c) _FLCD(FLC_ADD, (c))

#define DMULT(c) _FLCD(FLC_MULT, (c))

#define DMOVE(c) _FLCD(FLC_MOVE, (c))

#define DDIV(c) _FLCD(FLC_DIV, (c))

/* external function prototypes */

void FLC_init();

void FLC_end();

void FLC_sub_start(char *name);

void FLC_sub_end();

void FLC_frame_update();

void FLC_ops(int op, int count);

void FLC_mem(int op, int count);

#endif

3. Example Source Code
/*

 * flc_example.c

 *

 * Examples and guidelines for the use of the computational complexity

 * and Program ROM estimation tool.

 *

 * The Levinson-Durbin and autocorrelation routines of the AMR-WB

 * floating-point ANSI C source code in TS 26.204 version 5.1.0 are

 * adopted as examples.

 *

 * Copyright 2003 VoiceAge Corp. All Rights Reserved.

 * Written by Joachim Thiemann, April 11, 2003

 */

#include <stdlib.h>

#include <math.h>

#include "flc.h"

static char *id = "$Id: flc_example.c,v 1.8 2003/04/16 21:55:15 thiemann Exp $";

#define M 16

#define L_WINDOW 256

#define PI2 6.283185307F

typedef float Float32;

typedef long int Word32;

Float32 E_ROM_hamming_cos[L_WINDOW];

void E_UTIL_autocorr(Float32 *x, Float32 *r);

void E_LPC_lev_dur(Float32 *a, Float32 *r, Word32 m);

void Set_Zero(Float32 *p, int c);

void main()

{

 Float32 input[L_WINDOW];

 Float32 r[M+1], a[M+1];

 int n;

 // Data initialisation, which is not counted for this example

 // as normally this data would be in ROM and input data.
 for (n = 0; n < L_WINDOW; n++)

 {

 E_ROM_hamming_cos[n] =

 0.54F - 0.46F * (float)cos((PI2/(L_WINDOW-1)) * (float)n);

 input[n] = 32768.0F * ((2*rand()/(float)RAND_MAX)-1.0F);

 }

 // FLC_init() must be called before any wmops counters

 // to initialise internal data structures.

 FLC_init();

 for (n = 0; n < 100; n++)

 {

 E_UTIL_autocorr(input, r); FUNC(2);

 E_LPC_lev_dur(a, r, M); FUNC(3);

 // The FLC tool can keep track of per-frame maxima to evaluate

 // the worst-case conditions. The function FLC_frame_update

 // must be called at the end of the frame loop.
 FLC_frame_update();

 }

 // FLC_end() is the routine that computes and prints the complexity

 // of the program.

 FLC_end();

 return;

}

/*

 * E_UTIL_autocorr

 *

 * Parameters:

 * x I: input signal

 * r O: autocorrelations

 *

 * Function:

 * Compute the autocorrelations of windowed speech signal.

 * order of LP filter is M. Window size is L_WINDOW.

 * Analysis window is "window".

 *

 * Returns:

 * void

 */
void E_UTIL_autocorr(Float32 *x, Float32 *r)

{

 Float32 t[L_WINDOW + M];

 Word32 i, j;

 FLC_sub_start("Autocorr");

 // Initialise pointers into t[], x[], and E_ROM_hamming_cos[].
 LOOP(1);PTR_INIT(3);

 for (i = 0; i < L_WINDOW; i += 4)

 {

 // No INDIRECT is needed since access is via pointers. This is

 // an unrolled loop, but see below for a more extreme example.

 // Note that in contrast to the one below, the unrolling provides

 // no savings as far as the wmops count is concerned, since it is

 // only a partial unrolling.

 // Free pointer updates are limited to increment, decrement, increment

 // by a constant, and increment by a constant with modulo. Other,

 // more complex pointer operations require arithmetic instructions,

 // that is, an accumulator and are charged accordingly.
 t[i] = x[i] * E_ROM_hamming_cos[i]; MULT(4);STORE(4);

 t[i + 1] = x[i + 1] * E_ROM_hamming_cos[i + 1];

 t[i + 2] = x[i + 2] * E_ROM_hamming_cos[i + 2];

 t[i + 3] = x[i + 3] * E_ROM_hamming_cos[i + 3];

 }

 // Note that the memset function in the original AMR-WB code clear

 // M and M+1 locations. Internal system functions should be avoided.

 // Instead, new functions should be called for complexity evaluation

 // with the complexity counters included.

 // However, the equivalent count can be gotten also from

 //

 // memset(&t[L_WINDOW], 0, M*sizeof(Float32));

 // FUNC(2);LOOP(1);PTR_INIT(1);MOVE(1);STORE(M-1);

 // memset(r, 0, (M + 1)*sizeof(Float32));

 // FUNC(2);LOOP(1);PTR_INIT(1);MOVE(1);STORE(M);

 // Also, note that the expressions &t[L_WINDOW] and M+1 evaluate to

 // constants at compile-time and thus are not counted at runtime.
 Set_Zero(&t[L_WINDOW], M); FUNC(2);

 Set_Zero(r, M + 1); FUNC(2);

 // Initialise the t[j] pointer.

 LOOP(1);PTR_INIT(1);

 for (j = 0; j < L_WINDOW; j++)

 {

 // This is an example of a fully unrolled loop saving saving

 // a few instructions. r[] and t[] must still be initialised,

 // since they will be handled as autoincrementing pointers.

 PTR_INIT(2);

 r[0] += t[j] * t[j]; MAC(17);STORE(17);

 r[1] += t[j] * t[j + 1];

 r[2] += t[j] * t[j + 2];

 r[3] += t[j] * t[j + 3];

 r[4] += t[j] * t[j + 4];

 r[5] += t[j] * t[j + 5];

 r[6] += t[j] * t[j + 6];

 r[7] += t[j] * t[j + 7];

 r[8] += t[j] * t[j + 8];

 r[9] += t[j] * t[j + 9];

 r[10] += t[j] * t[j + 10];

 r[11] += t[j] * t[j + 11];

 r[12] += t[j] * t[j + 12];

 r[13] += t[j] * t[j + 13];

 r[14] += t[j] * t[j + 14];

 r[15] += t[j] * t[j + 15];

 r[16] += t[j] * t[j + 16];

 }

 // For branches, comparisons are always against zero; thus x < 1 is

 // thought as x-1 < 0. Note also a read from r[0].
 INDIRECT(1);ADD(1);BRANCH(1);

 if (r[0] < 1.0F)

 {

 r[0] = 1.0F; MOVE(1);

 }

 FLC_sub_end();

 return;

}

/*

 * E_LPC_lev_dur

 *

 * Parameters:

 * a O: LP coefficients (a[0] = 1.0)

 * r I: vector of autocorrelations

 * m I: number of coefficients

 *

 * Function:

 * Wiener-Levinson-Durbin algorithm to compute

 * the LPC parameters from the autocorrelations of speech.

 *

 * Returns:

 * void

 */
void E_LPC_lev_dur(Float32 *a, Float32 *r, Word32 m)

{

 Float32 buf[M];

 Float32 *rc; /* reflection coefficients 0,...,m-1 */
 Float32 s, at, err;

 Word32 i, j;

 FLC_sub_start("Lev_dur");

 // rc is a pointer getting initialised. Access via this pointer

 // will not be an INDIRECT anymore, and writes to it become

 // STORE rather than MOVE.

 rc = &buf[0]; PTR_INIT(1);

 // Access to r[] requires an INDIRECT. Note that a negation

 // is a multiplication by -1.0.

 rc[0] = (-r[1]) / r[0]; MULT(1);INDIRECT(2);DIV(1);STORE(1);

 // Since there are no other operations, these are MOVEs.

 a[0] = 1.0F; MOVE(1);

 a[1] = rc[0]; MOVE(1);

 // Since err is a local variable, no MOVE or STORE is required

 // when some other operations are done.

 err = r[0] + r[1] * rc[0]; INDIRECT(2);MAC(1);

 // Note that the PTR_INIT for rc[] was done above.
 LOOP(1);

 for (i = 2; i <= m; i++)

 {

 s = 0.0F; MOVE(1);

 // Two pointers used: one into r[] and one into a[].
 LOOP(1);PTR_INIT(2);

 for (j = 0; j < i; j++)

 {

 s += r[i - j] * a[j]; MAC(1);

 }

 // This is a STORE since the pointer was initialised.
 rc[i - 1] = (-s) / (err); MULT(1);DIV(1);STORE(1);

 // Two extra pointers required into a[j] and a[i-j].
 LOOP(1);SHIFT(1);PTR_INIT(2);

 for (j = 1; j <= (i >> 1); j++)

 {

 at = a[j] + rc[i - 1] * a[i-j]; MAC(1);

 a[i-j] += rc[i - 1] * a[j]; MAC(1);STORE(1);

 a[j] = at; MOVE(1);

 }

 a[i] = rc[i - 1]; MOVE(1);

 err += rc[i - 1] * s; MAC(1);

 BRANCH(1);

 if (err <= 0.0F)

 {

 err = 0.01F; MOVE(1);

 }

 }

 FLC_sub_end();

 return;

}

/*

 * Set_Zero

 *

 * Parameters:

 * p O: array to be zeroed

 * c I: number of elements

 *

 * Function:

 * A simple replacement of the memset function specifically

 * for Float32.

 *

 * Returns:

 * void

 */
void Set_Zero(Float32 *p, int c)

{

 int n;

 FLC_sub_start("Set_Zero");

 LOOP(1);PTR_INIT(1);

 for (n = 0; n < c; n++)

 {

 p[n] = 0.0F; MOVE(1);

 }

 FLC_sub_end();

}

4. Output of the Example Source Code
Call Graph and total ops per function

Function Calls Ops Ops/Call

ROOT 1 0 0

-Autocorr 100 974700 9747

--Set_Zero 200 3700 18.5

-Lev_dur 100 90400 904

Program Memory Usage by Function

Function ADD MULT MAC MOVE STORE LOGIC SHIFT BRNCH DIV

Set_Zero 0 0 0 1 0 0 0 0 0

Autocorr 1 4 17 0 21 0 0 1 0

Lev_dur 0 2 5 5 3 0 1 1 2

ROOT 0 0 0 0 0 0 0 0 0

totals 1 6 22 6 24 0 1 2 2

Function SQRT TRANC FUNC LOOP IND PTR MISC

Set_Zero 0 0 0 1 0 1 0

Autocorr 0 0 2 2 1 6 0

Lev_dur 0 0 0 3 4 5 0

ROOT 0 0 2 0 0 0 0

totals 0 0 4 6 5 12 0

--- SUMMARY ---

Total Ops: 1.0688e+06

Total Program ROM usage: 80 (word)

--- Per Frame Summary ---

Number of Frames: 100

Average Ops/frame: 10688.00 Max Ops/frame: 10688

Maximum frame WMOPS: 0.534400 (Frame is 20.00 ms)

Average frame WMOPS: 0.534400
� Contact: Vesa Ruoppila

VoiceAge Corporation

750 chemin Lucerne Suite 250, Montreal (QC) H3R 2H6, Canada

+1 514 7374940 x269 tel, +1 514 9082037 fax

vesar@voiceage.com

2(6)

