TSG-SA WG4#25bis meeting
Tdoc S4-030133

Berlin, Germany, 24-28 February, 2003
Agenda Item: 6.7.2

Title:
Further comments on reliable transport

Source:
PacketVideo

Document for:
Discussion

Agenda Item:
6.7.2 (PSM)

Introduction

At SA4#25, PacketVideo brought a contribution entitled “Support for TCP Streaming in PSS Release-6” (S4-030043). The purpose of the document was to explore differences between Progressive Download and TCP Streaming, and to point out some advantages of TCP Streaming which had not been previously considered. We proposed that TCP be added as an optional transport mechanism in order to achieve reliable streaming delivery. This would be a simple addition to the specification, have minimal impact on client and server, and allow us to meet the requirement for reliable transport while leveraging all currently defined streaming features. In our view, Progressive Download would be considered a separate (and different) service, since it involves delivery of complete .3gp files, and because it does not leverage current features of PSS streaming. The two methods need not be mutually exclusive, since each has advantages which fit certain use cases.

In the current contribution, we begin with a review of the points made in the previous document, and we discuss the comments received from discussion in SA4#25. We then identify some new issues which are relevant to the discussion:

· TCP Streaming works with any .3gp file

· TCP Streaming may be faster or slower than real time

· TCP Streaming uses SDP file based session establishment

· Live streaming

· Authoring files on the client

· Comparison of overhead

· Performance on GPRS

Details on each issue are provided in the contribution.

We maintain our original recommendation that TCP Streaming be added as an optional transport. We also consider some problems which should be solved in order to make Progressive Download into a truly workable service, and we suggest solutions.

Review of previous contribution
At SA4#25, some initial discussion was made about how to meet the requirement for a reliable transport mechanism in PSS. Two techniques were specifically discussed:

· TCP Streaming – this would be nearly identical to the current PSS streaming, except that TCP would replace UDP as the transport. The media would be tunnelled under the RTSP control channel, as described in Section 10.12 of RFC 2326.
· Progressive download – this would involve creating special interleaved .3gp files which contain all metadata up front. The files would be downloaded to a client device (likely using HTTP/TCP), and the client would begin displaying the media at some point before the download is complete.

In our earlier contribution, we noted that TCP Streaming is a simple extension to the audio/visual streaming currently used in PSS, and that all functionality currently supported in PSS could be supported under TCP Streaming with no need for additional specification. For example:

· PAUSE and Seek interaction, using appropriate RTSP methods

· Track selection (basic selection defined in RTSP, as well as the new SDP extensions for track labelling and grouping)

· Simple continuation of a ‘dropped’ session using PLAY with Range: header. (This is listed in TS 26.233 as one of the requirements for reliable transport.)

· Annex G buffer model and related signalling

We believe specifying TCP streaming is simple and would require no 3GPP-specific extensions. This is because the RTP and RTSP specifications are set up to use TCP as a valid transport. RTSP already provides signalling (in the Transport: header) to negotiate TCP vs. UDP when setting up a stream. It also provides a mechanism for tunnelling the media over the RTSP control channel (see section 10.12 of RFC 2326). This allows the entire session to be carried on a single TCP connection initiated by the client.

In our view, Progressive Download differs from existing PSS streaming in that it transfers a complete .3gp file to the client. This provides new functionality to the end user in that the file may be replayed and shared. However, the fact that a file is delivered causes various impacts to the client which must be considered:

· Client must have enough space to store the full file, and should be able to determine file size before starting the download. This issue may require additional signalling, or custom communication between browser and client. (Note that HTTP GET typically provides Content-Size in the response, but this is too late since at this point the download has already started)

· Client must be able to determine if a file is pseudo-streamable and how much of the file should be downloaded before rendering can safely begin. To determine whether a file is pseudo-streamable, we strongly believe up-front signalling is required. The decision of when to start rendering would be a client implementation issue.

· Progressive download presents a client/browser integration problem, since most browsers will by default download the entire file before passing it to the client. Solving this would either require custom integration between clients and browsers, or else the introduction of a ‘helper’ file to allow the client to start a Progressive Download session. This issue is expanded in the current document.

· Delivery of complete .3gp files adds security problems for valuable content; such content might not be deliverable via download without a suitable DRM solution.

One other functional difference was noted: Progressive Download is by nature less interactive than current PSS streaming. For example,

· Download doesn’t accommodate track selection. The client must download the complete file, even if it only will use a subset of the tracks.

· Seeking is less functional than in current PSS. While a progressive download client could seek backwards to parts of the file which have already arrived, it cannot seek forwards to later parts of the clip which have not yet arrived.

Both TCP Streaming and Progressive Download have a nice side benefit: they are more firewall friendly than the existing streaming based on UDP.

Review of Discussion in SA4#25
Many useful comments were received in the previous meeting, which I will summarize here:

· On the point that TCP Streaming is more interactive than Progressive Download, it was pointed out that Progressive Download has an advantage that once the download is complete the user can seek anywhere in the file without experiencing server lag time.

· Regarding the Progressive Download DRM issue, it was stated that nothing prohibits a current client from writing a UDP stream to a file (implying that there’s no “new” DRM problem). However, we believe there is a difference, in that a Progressive Download service without a DRM solution would make file sharing/copying a standard feature on all handsets that support the service, and so sharing the files would become simple and ‘legitimised’. This concern can be solved in a few ways:

· Introduce a real DRM solution. Actually this seems to be a current requirement. Section 9 of TS 22.233 v6.1.0 says “PSS shall support the 3GPP DRM mechanism (see ref [9])”, where [9] points to the current Stage-1 DRM (TS 22.242).

· Or at minimum, introduce signalling to inform the client whether the user should have unprotected access to the delivered file, and require PSS compliant clients to enforce this in some way

· A comment was made that Track Selection is a useful feature of TCP Streaming, and that with a download mechanism you must download the entire file whether you need it or not.

· There was some question on how overhead due to TCP Streaming would compare to file format overhead in a downloaded file. This depends a lot on how the file is authored (and how the stream is packetized). This issue will be expanded below.

· There was some question of whether TCP Streaming would improve the user experience over current GPRS networks. Additional comments on this will be provided below.

· The current requirement for reliable transport was reviewed. It is copied here (from TS 22.233 v6.1.0) for discussion:

The PSS should provide a reliable delivery mechanism that enables the user to receive the content without any errors due to the transport mechanism. Such mechanism should support the following features :

-
The rendering of video content without any transport degradation : the content is downloaded without any errors, it assures that the subscribers see the content that has been designed by the content creators.

-
The rendering of the content should start before the transfer is complete.

-
A broken session should be restarted efficiently without going back to the beginning : the PSS client is able to detect what content is missing and to ask the server to send this content.

Note:
In addition to the regular PSS transport mechanism it is possible to use download transport mechanisms in the following way: Audiovisual data encapsulated in a file is transmitted from the server to the client. The user is able to play the content during the file download, giving a similar look and feel to the regular PSS transport mechanism.
· One comment was made that the above requirement seems to have been written with a download solution already in mind (i.e. ‘download’ is mentioned twice in the requirement). A second comment was that the above requirement taken as a whole probably cannot be satisfied. (i.e. if you start rendering the content “before transfer is complete,” then you cannot guarantee that subscribers see the content exactly as “designed by the content creators,” since the bitrate in the network may vary, causing the need to pause and rebuffer). Some clarification on the requirement may be needed.

New input for consideration
We now present some new issues and data which are relevant to the discussion.

TCP Streaming works with any .3gp file

TCP streaming can be used with any valid .3gp file. Progressive download only works with specially structured files that have the ‘moov’ atom at the front and interleaved media data.

TCP Streaming can be faster than real time, real time, or slower than realtime

TCP streaming can be used as a replacement for UDP streaming under good network conditions, when the network bandwidth is greater than or equal to the clip bitrate.

When streaming faster than real time, the client has control over the rate. If the client stops pulling TCP packets from the protocol stack, acknowledgements will not go back and the server will be throttled. This makes it easy for the server to send data as fast as possible, and the client to prevent its jitter buffer from overflowing.

TCP streaming can also be used for slower than real time streaming when the available network bandwidth is less than the clip bitrate. In this case, TCP streaming acts just like progressive download, in that the client can buffer a large amount of data prior to beginning playback. How much to buffer is a client implementation decision, just as it would be for a Progressive Download client.

TCP Streaming Uses SDP file based session establishment

A .sdp file may be used as a helper file to start a TCP Streaming session, in the same way it would be used for UDP streaming. Progressive download would require either a new helper file or tight integration with browser or MMS client in order to start sessions. This issue is explained in more detail below.

Live streaming

We see streaming from a live source to be a common use case. Adding reliable transport to a live stream would be a simple matter using TCP Streaming (and in fact our current authoring product uses TCP Streaming for live streaming between author and server).

However, Progressive Download cannot support live delivery, at least not using a .3gp compatible file as described in the informative section (9.2.6) of TS 26.234 Rel-5. The reason is that the metadata (stored in the ‘moov’ atom) must be placed at the start of the file, before the interleaved media tracks. However, the ‘moov’ atom contains many tables which depend on the samples in the media tracks. As an example, the sample size box (‘stsz’) contains the sizes of all the media samples. This table cannot be constructed until all media has been encoded and all sizes are known.

For this reason, one cannot author and transmit a .3gp file suitable for progressive download directly from a live source. Instead, the following steps must be taken:

· Encode the media (e.g. to temporary file)

· Contruct the ‘moov’ box based on the known media samples

· Assemble the file (e.g. [ftyp] [moov] [interleaved media])

· Now file is ready for progressive download

Live Progressive Download would be possible if the .3gp format were extended to include Movie Fragments (‘moof’). These would allow the metadata to be sent progressively, interleaved with the media. However, this approach is not recommended since it breaks backward compatibility. Files authored with ‘moof’ boxes would not be playable on existing .3gp clients.

Authoring files on the client

The above description brings up an additional problem: authoring a Progressive Download file takes more time and consumes more resources than it would take to author a .3gp file without any Progressive Download requirement. This may be acceptable when authoring VOD content, however there are use cases where it is desirable to author a file on a client, such that the file can be streamed reliably to other clients. For example:

· A user records a .3gp file on a phone using local camera/mic.

· The user uploads the content to an MMS server for delivery to several friends.

· The content is then streamed reliably to the destination clients.

If the reliable delivery is done using TCP Streaming, then the client may author the file in any way it wishes, so long as the .3gp format is respected. For example, the client could author directly into a file as follows:

[ftyp] [interleaved media] [moov]
By putting the metadata (‘moov’) at the end, all media dependencies are known at the time ‘moov’ is created. Thus there is no need to create temporary files and assemble the file as a post-authoring step. However, to create a file suitable for Progressive Download, the client must follow the steps described in the previous subsection. This requires nearly twice the storage space (since media is first written to a temporary file, then copied into the real file), plus may create a significant delay due to the post-authoring assembly. In short, authoring a Progressive Download file puts unneeded complexity at the client.

One possible alternative would be for the client to upload any .3gp file to the server, and then have the server transcode the file into Progressive Download format before delivery. This would of course add significant complexity to the server.

Comparison of overhead

Both TCP Streaming and Progressive Download involve overhead. It is difficult to compare the overhead because it depends greatly on how the file is authored, or how the stream is packetized. In this section the best we can do is check a few sample sessions and files and give ballpark estimates. We will also make the assumption that TCP and IP overhead is roughly the same between the two methods, and so TCP/IP headers will be ignored.

To give some idea of .3gp file overhead, we looked at A+V files from five different vendors. Each analysed file was 30 seconds with AMR 12.2 kbit/s + H.263 64 kbit/s. We compared the size of the .3gp files to the size of the raw bitstreams contained within the files in order to compute the percentage overhead. We found this to range from about 1% to 3%. Note that the files weren’t specially prepared to be progressively downloadable, they were simply taken from an existing set of interoperability test files.

To get an idea of comparable TCP Streaming overhead, we did a simple experiment using an existing PSS server and player streaming over UDP. We streamed a seven second clip (AMR 12.2 + MPEG-4 64 kbit/s) and then analysed the captured session to compute the overhead due to RTP headers and payload headers. We then added in 4 bytes per RTP packet to account for the ‘$’ encapsulation block (this is the overhead due to tunnelling over RTSP). We found that the overhead for audio was about 5.1%, and the overhead for video was about 1.5%. Overall, the overhead was around 2%. Note that RTCP was not considered in the analysis. Much of the function of RTCP would not be useful on a reliable channel, and so we expect the server to set a very low (or zero) RTCP bandwidth using RTCP bandwidth modifiers in SDP.

The above analysis was done on a few .3gp files and a single streaming session, and so cannot be considered exhaustive by any means. However, one should note that the overhead for both .3gp files and streaming sessions is essentially adjustable, and we could certainly change the above numbers up or down by changing packetization or using tricks in the file. The main point of this analysis is to show that overhead due to each method need not be excessive, and that there is no wild difference between TCP Streaming overhead and that due to authoring a .3gp file.

Performance on GPRS

We now make some remarks on how TCP Streaming could be used to improve performance on current GPRS networks.

When conditions are good (i.e. network bandwidth is the same or greater than needed), TCP Streaming can be used just like UDP streaming, and performance would be similar. In this case packet loss is rare (due to RLC retransmission), and so TCP streaming offers little advantage over UDP streaming. One small advantage mentioned earlier is that the server may stream faster than real time, with the client limiting the rate to prevent buffer overflow.

When conditions are poorer (insufficient bandwidth due to degraded radio conditions or handover into a busy cell), TCP Streaming may be used to send the media slower than real time using a large client buffer. In this case, the system operates much like Progressive Download, with the client buffering a large portion of the clip before deciding to begin (or continue) rendering.

In some cases, we have observed gaps in GPRS transmission on the order of 8 to 10 seconds where no packets get through (either due to radio problems, coverage holes, or handover). If an unexpected transmission gap is short enough, RLC retransmission is effective, and the packets are delivered in time to be useful. If the gap is too long, then packets are queued in the network (awaiting RLC retransmission) until the wireless network buffer overflows. In the UDP case, this results in large strings of lost packets. TCP streaming would prevent these packets from being lost. A long transmission gap would result in the client rebuffering during the gap, and continuing after a pause (but without loss of data).

Problems to Solve for Progressive Download
Finally, we provide a compact list of some issues which we believe should be solved in order to make a workable, interoperable Progressive Download service. A recommended solution is provided for each.

· Signal that a file is pseudostreamable

This issue is that there is currently no way for a client to definitively tell whether a .3gp file was authored to be Progressively Downloaded or not. The current informative text suggests that the client can examine the file as it is downloaded and determine whether it has the recommended structure (‘moov’ up front, media data interleaved). However, this puts an unnecessary burden on the client, and also leaves the ‘pseudo-stream detection’ algorithm as a client implementation issue. It seems less risky to include some signalling up front (in the file) which indicates that the file was created to be pseudostreamed.

This could be done by defining a new compatible brand, or else we could put signalling elsewhere in the file metadata (e.g. in ‘udta’ along with the asset information extensions).

· Signal whether the file can be saved/exposed to user

This issue involves the concerns over file sharing when valuable content is Progressively Downloaded. It may be possible to solve this with a real DRM solution. However, if such a solution is not available, we might at least signal to the client whether the downloaded file should be presented unprotected to the user or not. The client would then be responsible for enforcing this (e.g. if the file is protected, then the client not expose the file to the user, and the file must be deleted upon exit). The intent would not be to create iron-clad protection, but at least it would avoid the case where the unprotected file is by default left open for copying.

As before, this could be done either by using a compatible brand, or by introducing new signalling in the file metadata (e.g. in ‘udta’).

· Solve PSS client/browser or PSS client/MMS client integration issue

This issue concerns a practical matter of how to initiate a Progressive Download session. For PSS, the user will typically be using the phone browser to browse to content, which is then rendered using an associated player. Most browsers work using file association, i.e. the user clicks on a link to ‘somefile.xyz’, and in response the browser downloads the file and passes it to the application associated with ‘.xyz’ files. For MMS, the user may receive an MMS message with a link to a file, or with an attached file.

For PSS streaming sessions, an SDP file acts as a standardized helper file which is downloaded by the browser or MMS client and then passed to a PSS player. The player uses the SDP file to initiate a streaming session. This would work the same way for TCP Streaming as it would for the existing UDP streaming.

However, initiating a Progressive Download session presents a problem. Suppose the user browses to a page of content, and clicks on a link to ‘somefile.3gp’. A browser that works by file association will download the file and then invoke the associated application (a PSS player, in this case), passing it the file. This precludes Progressive Download, since even if the file is properly structured, the complete file is passed to the player after it is downloaded.

A similar problem would be seen if the phone has an MMS Client with an associated PSS client to handle media playback; such a combination may also work via file association.

This problem could be solved by doing custom integration between browser and PSS client (or between MMS client and PSS client). For example, the browser could somehow pass the http link to the content directly to the PSS client, which would then download and render the file. Alternately, the browser could begin downloading the file, and give access to the growing file to the PSS client, which could begin rendering as needed.

However, it would be better to have a solution which requires no custom integration, and which would work with current browsers and MMS clients using file association. This could be done by defining a helper file which initiates the progressive download session. The file could be quite simple, e.g. A “Progressive Download Helper” file called ‘somefile.pdh’ might contain a single line as follows:

http://63.1.2.3/IncredibleContent/somefile.3gp
This ‘.pdh’ file would be downloaded by the browser and passed to the PSS client, which would then use HTTP GET to start downloading ‘somefile.3gp’. Since the PSS client is now in control, it may view the contents of the file as it arrives, and it will begin to render the file as soon as it decides enough media has been received. Without some mechanism such as this, it will be impossible to launch a truly interoperable progressive download service.

Conclusion

We again propose that TCP Streaming be included in PSS Rel-6 as an optional transport method. This seems to be the simplest way to satisfy the requirement for reliable transport, while preserving all of the current PSS features and functionalities. In addition, TCP Streaming works in some scenarios where Progressive Download seems unsuitable (e.g. Live Streaming, Authoring on Client).

We view Progressive Download as addressing a different functionality than the current PSS streaming, since it delivers a complete .3gp file to the client, and since it is not based on the current streaming framework. Progressive download could be useful, and could be offered in addition to TCP Streaming. However, some problems must be solved in order to make it a usable, deployable service. A few are identified in this document, along with possible solutions.

Page: 1/8

Page: 8/8

