	3GPP TSG-S4 #25

San Francisco, USA

20 -24 January 2003
	S4-02753

Agenda Item:
12.4

Source:
Research in Motion

Title:
Proposal for Incorporating a Subset of SVG-Tiny into the MMS Specification
Document for:
Discussion

Introduction

The W3C—guardians of SVG initiative—made significant progress by modularising the SVG specification so that it could be decomposed into subsets, thereby lowering the bar so that rich animated graphics could be deployed on more constrained devices (such as mobile phones). When looked at in isolation, SVG Tiny is a very appealing mechanism for deploying rich, animated graphics to mobile phones: SVG documents are described in XML, a powerful and industry-backed Web technology, and it is an open standard defined by industry stakeholders.

However, there is a fundamental difference in business objectives between SVG Tiny and MMS. Essentially, SVG Tiny is trying to generically define a broad set of graphics-routines to allow a wide breadth of graphics applications to be deployed. By supporting a broad set of features, SVG Tiny aims to provide utility to a broad range of applications. Business Objective: Service as many applications as possible.
MMS has a business objective that is not completely parallel with the goals of SVG Tiny. The industry has invested heavily in MMS, and it is extremely important to all of the stakeholders involved with MMS that the technology is given the highest chance of success. This means it must be deployed broadly and deeply on as many handsets as possible with compelling and interesting content that appeals to consumers. Business Objective: Reach as many consumers as possible.

It is clear why these objectives are at odds: The SVG Tiny business objective tends to produce a technical solution that is larger, more complicated, and more difficult to deploy broadly and deeply. The MMS business objective needs a technical solution that is small, cheap, and can reach as many handsets as possible.

This discussion document expands on some of the issues that arise when trying to apply SVG Tiny to the world of MMS and suggests an approach to solving the problem.

SVG Tiny and J2ME

J2ME is an important technology for the rapid promotion of compelling MMS experiences. Writing J2ME applications is easier and cheaper than writing native applications. J2ME applications can be downloaded over-the-air onto the device, allowing users to upgrade their MMS capabilities over time without having to return the device to the manufacturer. J2ME applications are portable across handsets that support the J2ME specification. (Some will argue that J2ME is not completely portable in all cases—which we concede—but it is more portable than writing native embedded applications.) Most importantly, carriers and handset manufacturers worldwide are adopting J2ME.

One important problem is the fact that SVG Tiny is extremely difficult to implement in the existing flavours of J2ME in the marketplace, for the following reasons:

· Some SVG Tiny features are difficult to implement without more direct access to low-level graphics APIs, which are often not available via the J2ME APIs. A good example of this is the powerful font support suggested by the SVG Tiny specification.

· There are still a lot of features that need to be implemented, which leads to larger applications. With maximum J2ME application footprints of 30k on some handsets, it becomes very difficult to successfully implement all of the required features to obtain compliance with the specification.

· Some features that are described in the specification will tax the processing power of many of these devices, and are often extremely difficult and impractical to implement in J2ME. An example of this is the ability for SVG Tiny to dynamically rotate raster images.

As most networks and handset manufacturers are beginning to manufacture and release handsets that support J2ME applications and provisioning into the marketplace, not being able to take advantage of this portable application environment will hinder the ability of a simplified SVG to be deployed in the marketplace.

A Subset of SVG Tiny for Constrained Mobile Devices

To alleviate this problem, a subset of SVG could be defined that enables compelling graphics to be developed, transmitted over the air, and rendered on a wide range of devices—including devices that support the J2ME Java Programming APIs.

An example of how this can be very effective is demonstrated by RIM’s Plazmic SVG solution, which was designed from the beginning to be an effective subset of SVG that could be implemented on J2ME handsets. The solution designers were merciless in selecting SVG features that permitted implementation on extremely constrained environments, yet still allowed compelling graphics solutions to be deployed. For example, the designers elected to omit features such as scaling and rotation, or any kind of complex font support.

The subset of SVG being used in the Plazmic solution has been refined and deployed commercially for over 2 years. It has proven effective and efficient on 9.6kbps PDC networks run by NTT DoCoMo in Japan, on handsets that allow no more than a 10k Java application footprint and have a limitation of 10k per single file download to the device. Customers of the Plazmic solution include Walt Disney Internet Group Japan and Fuji Sanke Living in Japan.

The Plazmic solution is easily ported to other embedded Java environments. For example, it is ported to work on Java-enabled phones supporting the MIDp 1.0 specification and on Research in Motion’s Java-enabled handheld devices.

The following table lists the devices and networks that can run the Plazmic solution:

	Devices
	Network
	Network Protocol
	Maximum Application Footprint
	Java Profile

	NEC N503i, N503iS
	NTT DoCoMo
	PDC
	10k
	DoJa 1.0

	Sony SO503i, SO503iS
	NTT DoCoMo
	PDC
	10k
	DoJa 1.0

	Fujitsu F503i, F503iS
	NTT DoCoMo
	PDC
	10k
	DoJa 1.0

	Panasonic P503i, P503iS
	NTT DoCoMo
	PDC
	10k
	DoJa 1.0

	Mitsubishi D503i, D503iS
	NTT DoCoMo
	PDC
	10k
	DoJa 1.0

	Panasonic P504i
	NTT DoCoMo
	PDC
	10k
	DoJa 1.0

	Sony SO504i
	NTT DoCoMo
	PDC
	10k
	DoJa 1.0

	NEC N504i
	NTT DoCoMo
	PDC
	10k
	DoJa 1.0

	Mitsubishi D504i
	NTT DoCoMo
	PDC
	10k
	DoJa 1.0

	Fujitsu F504i
	NTT DoCoMo
	PDC
	10k
	DoJa 1.0

	Kenwood J-K51
	J-Phone
	PDC
	100k
	MIDP 1.0

	Sharp J-SH51
	J-Phone
	PDC
	100k
	MIDP 1.0

	Panasonic J-P51
	J-Phone
	PDC
	100k
	MIDP 1.0

	Toshiba J-T51
	J-Phone
	PDC
	100k
	MIDP 1.0

	Casio A3012CA
	KDDI
	CDMA2000
	50k
	MIDP 1.0

	Hitachi C3001H
	KDDI
	CDMA2000
	50k
	MIDP 1.0

	Sanyo A30011SA
	KDDI
	CDMA2000
	50k
	MIDP 1.0

	Toshiba C5001T
	KDDI
	CDMA2000
	50k
	MIDP 1.0

	Panasonic C3003P
	KDDI
	CDMA2000
	50k
	MIDP 1.0

	Toshiba A3013T
	KDDI
	CDMA2000
	50k
	MIDP 1.0

	Sony A3014S
	KDDI
	CDMA2000
	50k
	MIDP 1.0

	Blackberry 5810
	Rogers AT &T, Bell Mobility
	GSM/GPRS
	64K
	MIDP 1.0

	Samsung SPH-A500
	Sprint PCS
	CDMA
	?
	MIDP 1.0

	Motorola i95cl
	Telus Mobility ‘mike’/Motorola iDEN
	IDEN
	?
	MIDP 1.0

Conclusions

To maximize the odds of proliferating a rich mobile graphics format into MMS, the 3GPP should consider simplifying or sub-setting the current SVG Tiny specification.

Phone handsets worldwide are adopting the Java CLDC specification as a mechanism to deploy and run applications across wireless networks. This presents a unique opportunity for the proliferation of rich-mobile media. With a cost-effective graphics solution capable of running across the huge breadth of devices that will enter the market, MMS will have a greater probability of achieving success quickly.

The SVG Tiny subset should be perceived as a stepping-stone into rich graphics, not an end point. Over time, handsets will be capable of running more and more complicated graphics environments. Indeed, SVG Tiny—and maybe even the complete SVG specification—will eventually be capable of running on mobile handsets. However, it is important to adopt and promote technology that can work on today’s technology so that we can maximize the probability of MMS becoming successful in the long term.

It should also be noted that we believe that is technically feasible for SVG Tiny to be implemented on some mobile handsets and incorporated into MMS solutions today, and this should be encouraged. However, SVG Tiny is not a solution that will, in the short term, be deployed broadly alongside MMS.

Appendix A: Supported SVG Elements Comparison

The following table compares the SVG elements supported by the Plazmic SVG specification and the SVG Tiny specification. Note that this is intended to give only an approximate comparison of the differences between the specifications. In some elements, only a subset of the attributes and functionality is supported. For example, while Plazmic SVG supports the group element (i.e., g), it does not support scaling or rotating the local coordinate system on the group element.

	SVG Tag
	Plazmic
	SVG Tiny

	a
	Yes
	Yes

	altGlyph
	
	

	altGlyphDef
	
	

	altGlyphItem
	
	

	animate
	Yes
	Yes

	animateColor
	Yes
	Yes

	animateMotion
	

	Yes

	animateTransform
	Yes
	Yes

	circle
	Yes
	Yes

	clipPath
	
	

	color-profile
	
	

	cursor
	
	

	definition-src
	
	

	defs
	
	Yes

	desc
	Yes
	Yes

	ellipse
	Yes
	Yes

	feBlend
	
	

	feColorMatrix
	
	

	feComponentTransfer
	
	

	feComposite
	
	

	feConvolveMatrix
	
	

	feDiffuseLighting
	
	

	feDisplacementMap
	
	

	feDistantLight
	
	

	feFlood
	
	

	feFuncA
	
	

	feFuncB
	
	

	feFuncG
	
	

	feFuncR
	
	

	feGaussianBlur
	
	

	feImage
	
	

	feMerge
	
	

	feMergede
	
	

	feMorphology
	
	

	feOffset
	
	

	fePointLight
	
	

	feSpecularLighting
	
	

	feSpotLight
	
	

	feTile
	
	

	feTurbulence
	
	

	filter
	
	

	font
	
	Yes

	font-face
	
	Yes

	font-face-format
	
	

	font-face-name
	
	

	font-face-src
	
	

	font-face-uri
	
	

	foreigbject
	
	

	g
	Yes
	Yes

	glyph
	
	Yes

	glyphRef
	
	

	hkern
	
	Yes

	image
	Yes
	Yes

	line
	Yes
	Yes

	linearGradient
	
	

	marker
	
	

	mask
	
	

	metadata
	
	Yes

	missing-glyph
	
	Yes

	mpath
	
	

	path
	Yes
	Yes

	pattern
	
	

	polygon
	Yes
	Yes

	polyline
	Yes
	Yes

	radialGradient
	
	

	rect
	Yes
	Yes

	script
	
	

	set
	Yes
	Yes

	stop
	
	

	style
	
	

	svg
	Yes
	Yes

	switch
	
	Yes

	symbol
	
	

	text
	Yes
	Yes

	textPath
	
	

	title
	Yes
	Yes

	tref
	
	

	tspan
	
	

	use
	
	

	view
	
	

	vkern
	
	

�PAGE \# "'Page: '#'�'" �� John and I thought that we might be able to add support for this in G2.

