
EVALUATION OF A NOISE-ROBUST DSR FRONT-END
ON AURORA DATABASES

Dušan Macho1a, Laurent Mauuary2, Bernhard Noé3,
Yan Ming Cheng1a, Doug Ealey1b, Denis Jouvet2, Holly Kelleher1b, David Pearce1b, Fabien Saadoun3

1Human Interface Lab, Motorola Labs, aSchaumburg, USA and bBasingstoke, UK
2France Télécom R&D, Lannion, France

3Alcatel SEL AG, Stuttgart, Germany
dusan.macho@motorola.com, laurent.mauuary@rd.francetelecom.com, Bernhard.Noe@alcatel.de

ABSTRACT

This paper describes a noise-robust front-end designed within a
collaboration of Motorola, France Télécom and Alcatel for the
ETSI standardization of the advanced front-end for distributed
speech recognition (DSR). The proposed algorithm is based on
the cumulative knowledge in the three companies’ history in the
areas of noise reduction, speech enhancement as well as other
related fields. The major components of this algorithm are noise
reduction, waveform processing, cepstrum calculation, blind
equalization, and voice-activity detection. In the evaluation of
the proposed front-end on Aurora 2 and Aurora 3 databases we
obtained an average error rate reduction of 52.75% and 51.51%,
respectively, when compared to the WI007 ETSI MFCC-based
DSR front-end performance.

1. INTRODUCTION

Robustness is an essential issue in practical deployment of
automatic speech recognition (ASR) technology. In portable
devices such as cell phones, different acoustic environments or
channels interfere with speech and reduce the performance of
the recognition system.

Recent activity in the ETSI Aurora group was focused on
the standardization of a robust front-end for distributed speech
recognition with well-defined criteria and databases [4]. In this
paper, we describe the algorithm which demonstrated the best
overall performance among candidates and which was
consequently selected in February 2002 to be the new standard
for the Advanced DSR Front-end.

In DSR, speech features are calculated and compressed at

the terminal side and then transmitted over the network to the
server. At the server side, features are decompressed and the
recognition itself is performed. This DSR framework and the
main components of the presented front-end are displayed in
Figure 1. The front-end is split between terminal and server
sides. The majority of the front-end calculation is done in the
terminal. Here, de-noised cepstral features are calculated in the
feature extraction block. Cepstral features are then compressed
in the feature compression block and processed for channel
transmission in the last block called framing, bit-stream
formatting, error protection. At the server side, received
features are decoded in the bit-stream decoding, error
mitigation block and decompressed in feature decompression.
The server feature processing block performs a computationally
low feature processing stage, consisting mostly of derivative
calculation. Finally, features enter the back-end block, where
the recognition takes place.

In the following sections, we describe in more detail those
components of the presented front-end that increase the ASR
system robustness. Coding and compression schemes will not be
covered in this paper. At the end, we present the results we
obtained on the Aurora 2 and Aurora 3 databases.

2. NOISE-ROBUST FRONT-END

In this description, we consider the 8 kHz version of the front-
end. Extension to 11 and 16 kHz is described in detail in [5]. In
the proposed front-end, noise-reduced cepstral features are
calculated from the incoming digital signal. We use a two-stage
Mel-warped Wiener filter noise reduction scheme, which is a
combination of the two-stage Wiener filter scheme from [1] and

���������	�
���
���

	�������
�������
��

������
����	
����

�
�������
���	�������

����
����
�
�	��

����

������
���
���

����

���
����������
��
�������

 !"�

#�

����
������������

#�
����$�
��
%&
��
��#���

���$�

���������
�	
����

�
�
��������

������
�������

�������	�
���
���

��
%&
��
��"�	�����$�
������'�
��

����

#�

�����
"�	�����������

&������#�

����
���	�������

�
	�%����

	�
��
��������

Figure 1: Block scheme of the proposed front-end. The upper part shows the components implemented at the terminal side and the
lower part shows the components implemented at the server side.

the time domain noise reduction described in [9]. After noise
reduction (see Figure 1), SNR-dependent waveform processing
(SWP, [6]) is applied to the de-noised signal. The output signal
from SWP is used for cepstrum calculation. Finally, blind
equalization [8] is applied to the cepstral features.

At the server side, in the server feature processing block,
the dynamic parameters are calculated from cepstral features
(note that for this paper we have omitted the compression and
coding related blocks in order to concentrate on the front-end
algorithm). Also in this block, the energy coefficient is formed
and the feature vectors are selected that enter to the back-end.
The following sections describe the individual blocks of the
proposed robust front-end.

2.1. Noise Reduction

Noise reduction is performed by two passes of the Wiener filter
(see the block diagram on Figure 2). The first and second stages
are similar but not identical. Initially we describe the first stage
and then we will explain the differences between the two stages.

Processing is done on a frame-by-frame basis. We use a 25
ms frame length and 10 ms frame shift. The signal spectrum is
estimated from a Hanning windowed frame (200 samples) by
using an FFT of length 256. The FFT spectrum length is
reduced to 65 frequency bins by averaging every two
consecutive frequency bins of the 129-bin FFT spectrum. In the
next block called PSD mean (Power Spectral Density mean),
the averaging of two consecutive power spectra is performed,
which reduces the variance of spectral estimation.

The current frame spectrum and the corresponding
speech/non-speech decision from the VADNest block (Voice
Activity Detector for Noise estimation) are used in the WF
design block to estimate the Wiener filter frequency
characteristic.

VADNest is an energy-based voice activity detector. The
current frame is labeled as speech when the difference between
the current frame log energy and the long-term estimate of non-
speech log energy exceeds a defined threshold. A hangover of

15 frames is used at the transitions from speech to non-speech
segments, provided that the speech segment was at least 5
frames long. The frames labeled as non-speech are used for
updating the noise estimation.

The Wiener filter frequency characteristic is estimated in
two steps, as shown in Figure 3. The first estimate of the
Wiener filter is obtained from the de-noised spectrum Sden and
noise estimate SN like

 () ()
()tf

tf
tfH

,1

,
,

η
η
+

= with () ()
()tfS

tfS
tf

N

den

,

,
, =η (1)

where Sden is computed like

() () () () (){ }3 _, , 1 1 max , , ,0den den in PSD NS f t S f t S f t S f tβ β= − + − − (2)

where β=0.98 and the de-noised spectrum Sden3 is computed
from the previous frame like

 () () ()1,1,1, 23 −⋅−=− tfStfHtfS inden . (3)

The second Wiener filter frequency characteristic is obtained
from the second de-noised spectrum estimate Sden2 and the noise
estimate SN like

() ()
()tf

tf
tfH

,1

,
,2 η

η
+

= with () ()
() 








= th
N

den

tfS

tfS
tf ηη ,

,

,
max, 2 (4)

where ηth=0.079432823 corresponds to the maximum filter
attenuation of –11.33 dB and Sden2 is computed by applying the
first Wiener filter to the input signal spectrum like

 () () ()2 _, , ,den in PSDS f t H f t S f t= . (5)

In the Mel Filter-Bank block, the Wiener filter frequency
characteristic is smoothed and transformed to a Mel-frequency
scale by using 23 triangular Mel-warped frequency windows.
The frequency windows coincide with those used in the
Cepstrum Calculation block. The impulse response of the
Wiener filter is obtained by using a Mel-warped inverse cosine
transform in the Mel IDCT block. This impulse response is
truncated to a length of 17 and then windowed by a Hanning
window. The de-noised signal is obtained by convolving the
noisy input signal with the Wiener filter impulse response.

As displayed in Figure 2, the noise-reduced signal from the
first stage enters the second stage, where the second Wiener
filter is designed and used for noise reduction. The main
difference between the two stages is the gain factorization
block used in the second stage. In this block, a dynamic, SNR-
dependent noise reduction is performed in such a way that more
aggressive noise reduction is applied to purely noisy frames and
less aggressive noise reduction is used in frames also containing

Figure 2: Block scheme of noise reduction.

�
�����������
��

���������

���������
	
������
��

���
��
����

�����
������������

����
�����

������
�������

���������
	
������
��

���
��
����

�����
������������

����
�����

������
�������

�����
����
������
��

sin(n)

snr(n)

��� �
��

!��������

!��������

 ����������

��	
����
�
���

������
��
����������
�

��	
����
�
�����

������
��
����������
���

��	
����
�
�����

Sin_PSD

Sden

SN

H Sden2 H2

Sden3

������
���������
�

H2

Figure 3: Wiener filter design process

Sin

Sin_PSD

speech. We observed that gain factorization could be performed
more accurately in the second stage than in the first stage due to
the better SNR properties of the noise-reduced signal in the
second stage. Another difference is that in the second stage
VADNest is not used so that the noise spectrum is updated at
each frame.

By this two-stage approach, we gain more flexibility in the
Wiener filter design. Notice that the input signal of each stage
has a different SNR – in the first stage, the input signal SNR
may be very low, while in the second stage the input signal
SNR is higher. Thus, in each stage, different decisions are done
depending on the current SNR – this non-linear behavior would
be difficult to accomplish by a single-pass Wiener filter.

2.2. SNR-dependent Waveform Processing

In voiced segments of the speech signal, the speech waveform
exhibits quasi-periodic maxima and minima due to the glottal
excitation. By contrast, the interference noise energy can be
considered relatively constant within the speech period. There-
fore, within a noisy speech period, the SNR is variable; this
SNR variability is observable as long as the interference noise
intensity is not extremely high. In SNR-dependent Waveform
Processing (SWP), which is applied after noise reduction, the
high SNR portions of waveform are emphasized and the low
SNR waveform portions are de-emphasized by a weighting
function. The high SNR portions are detected as maxima of a
smoothed energy contour computed from the waveform. The
SNR has a decreasing tilt from one maximum to other, thus the
first 80% of the interval between the two maxima (including
maximum itself) is emphasized and the last 20% is de-empha-
sized by the weighting function. In this way, the overall SNR is
improved and also the speech periodicity is enhanced. A more
detailed description of SWP can be found in [6].

2.3. Cepstrum Calculation

The Cepstrum Calculation block is, with a few slight
differences, the same like the clean speech standard MFCC
front-end described in [3]. Better results were obtained with a
lower pre-emphasis coefficient ap=0.9 instead of ap=0.97.
Notice that the used filter-bank already includes a pre-emphasis
effect because the Mel filter-bank outputs are not energetically
normalized. Also, higher noise robustness is observed when
using a power spectrum estimate instead of a magnitude
spectrum estimate before performing the filter-bank integration.
This observation coincides with that in [7].

2.4. Blind Equalization

The blind equalization scheme [8] relies on the least mean
square algorithm, which minimizes the mean square error
computed as a difference between the current and target
cepstrum. The target cepstrum corresponds to the cepstrum of a
flat spectrum (notice that as the filter-bank outputs are not
energetically normalized, the filter-bank spectrum of a flat input
spectrum shows an increasing tilt). Blind equalization reduces
the convolutional distortion caused by the use of different
microphones in training of acoustic models and testing.

2.5. Server Feature Processing

Three operations are performed in the server feature processing
block. An energy coefficient is formed, derivative features are

appended to static cepstral features and the relevant feature
vectors are selected and sent to the back-end.

2.5.1. Energy Coefficient

Both the log energy and the zero-th cepstral coefficient c(0)
yield information about the whole band energy level in each
frame. We obtained the best recognition results by using an
energy coefficient En that is a linear combination of both log
energy lnE and c(0) computed for each frame like

() ()E

c
En ln4.0

23

0
6.0 += (6)

2.5.2. Dynamic Features

It is a well-known fact that adding dynamic information to the
static features improves the robustness of speech feature
representation. We appended velocity and acceleration features
to the 13 static features (c(1)...c(12) and En), both computed
over 9 frames. In total, 39 features are used for recognition.

2.5.3. Feature Vector Selection

In noisy speech recognition, the long non-speech segments of
signal tend to increase the number of insertion errors. These
errors are mostly caused by mismatch between features from
non-speech portions of the signal and the silence model. One
way to deal with this kind of error is to drop non-speech frames
from the recognition process and use mainly the speech frames.
This approach can significantly improve the recognition
performance of speech surrounded by long noisy segments. For
this purpose, we used a voice activity detector described in [2].

3. RECOGNITION EXPERIMENTS

3.1. Databases

The proposed front-end was evaluated on Aurora 2 and Aurora
3 databases. Aurora 2 is the TI digit database artificially
distorted by adding noise and using a simulated channel
distortion. Two kinds of training are used: clean speech training
(denoted as Clean in results tables), and training by using both
clean and noisy speech (denoted as Multi). For each training,
three tests are realized: A – matched training and testing noises,
B – mismatched training and testing noises, and C – test data
with both channel (i.e. convolutive) and additive distortions.

Aurora 3 is a set of multi-language SpeechDat-Car
databases recorded in-car under different driving conditions
with close-talking and hands-free microphones. Three
recognition experiments are defined for Aurora 3 with different
levels of training and testing mismatch: well-matched, medium
mismatched, and highly mismatched (denoted as Well, Mid, and
High, respectively, in results tables).

3.2. Acoustic Model Configuration

We tested the proposed front-end by using the back-end
configuration as defined by the ETSI Aurora group [4]. The
digit models have 16 states with 3 Gaussians per state. The
silence model has 3 states with 6 Gaussians per state. Also, a
one-state short pause model is used and is tied with the middle
state of the silence model.

We also used more complex models, where digit models
had 20 Gaussians per state and silence model had 36 Gaussians
per state. The number of states was kept the same as in the
previous configuration.

3.3. Results with Back-End fixed by ETSI Aurora Group

Table 1 and Table 2 show the word error rates and
improvements obtained by the proposed front-end on Aurora 2
and Aurora 3 databases, respectively. We can observe that
significant improvement is achieved in both databases. In
Aurora 2, word error rate was reduced from 12.97% to 8.26%
for the multi-condition training experiment (34.82% in relative
terms) and from 41.94% to 13.11% for the clean training
experiment (70.69% relatively). A similar tendency can be
observed in Aurora 3 database: we obtained 47.72% and
73.44% relative improvements in well-matched and high-
mismatched experiments, respectively.

3.4. Results with Complex Back-End

Table 3 shows the relative improvements we obtained when
using the complex back-end configuration. Only Aurora 2 was
tested. In comparison to the previous results, a large increase in
relative terms can be observed for multi-condition training
(from 34.82% to 54.24%) and gave an absolute overall WER of
6.75%. This improvement is attributed to the fact that larger
models represent better the variability of the multi-condition
training data.

Using the complex back-end, we also measured the
improvement this front-end provides relative to the mel-
cepstrum and “perfect” endpoints. It gave 52.3% improvement,
which is a similar gain to that found for the baseline system
(52.75%).

4. CONCLUSIONS

In this paper, we presented and evaluated a noise-robust front-
end designed for the ETSI distributed speech recognition
advanced front-end standard. The proposed front-end contains
several components that improve the robustness of ASR systems
against both additive noise and channel distortions: Wiener filter
based noise reduction, SNR-dependent waveform processing,
blind equalization and voice activity detector based feature
vector selection. Compared to the previous WI007 ETSI MFCC-
based DSR front-end, the relative improvements are on average
52.13%, which surpasses all thresholds set by the ETSI Aurora
working group. Additionally, when using more complex back-
end modeling, a relative improvement of 65.14% was achieved
for the Aurora 2 database.

5. REFERENCES
[1] Agarwal, A., Cheng, Y.M., “Two-Stage Mel-Warped Wiener Filter

for Robust Speech Recognition”, Proc. ASRU’99, 1999.
[2] ETSI draft standard doc. “Speech Processing, Transmission and

Quality aspects (STQ); Distributed speech recognition; Advanced
Front-end feature extraction algorithm; Compression algorithm”,
ETSI ES 202 050 v0.1.0 (2002-04), April 2002. (In preparation)

[3] ETSI standard doc. “Speech Processing, Transmission and Quality
aspects (STQ); Distributed speech recognition; Front-end feature
extraction algorithm; Compression algorithms”, ETSI ES 201 108
V1.1.2 (2000-04), available from
http://pda.etsi.org/pda/queryform.asp, April 2000.

[4] Hirsch, H.-G., Pearce, D., "The AURORA Experimental Framework
for the Performance Evaluations of Speech Recognition Systems
under Noisy Conditions", ISCA ITRW ASR 2000, Sept 2000.

[5] Macho, D., Cheng, Y.M., “Robust Wideband ASR Front-End based
on an Extension of Narrowband Robust Front-End”, submitted to this
conference.

[6] Macho, D., Cheng, Y.M., “SNR-dependent Waveform Processing for
Robust Speech Recognition”, Proc. ICASSP’01, 2001.

[7] Macho, D., Nadeu, C., “Use of Voicing Information to Improve the
Robustness of the Spectral Parameter Set”, Proc. ICSLP’00, 2000.

[8] Mauuary, L., “Blind Equalization in the Cepstral Domain for Robust
Telephone based Speech Recognition”, Proc. EUSPICO’98, Vol.1,
pp. 359-363, 1998.

[9] Noé et al., “Noise Reduction for Noise Robust Feature Extraction for
Distributed Speech Recognition”, Proc. Eurospeech’01, 2001.

Set A Set B Set C Overall
Multi 11.93% 12.78% 15.44% 12.97%
Clean 41.26% 46.60% 34.00% 41.94%
Average 26.59% 29.69% 24.72% 27.46%

Set A Set B Set C Overall
Multi 7.88% 8.04% 9.43% 8.26%
Clean 12.56% 13.00% 14.45% 13.11%
Average 10.22% 10.52% 11.94% 10.68%

Set A Set B Set C Overall

Multi 30.57% 38.27% 36.40% 34.82%
Clean 70.04% 74.94% 63.47% 70.69%
Average 50.30% 56.61% 49.94% 52.75%

Aurora 2 Reference Word Error Rate

Aurora 2 Word Error Rate

Aurora 2 Relative Improvement

Table 1: Aurora 2 reference word error rates, noise-robust
front-end error rates and the related relative improvements.

Finnish Spanish German Danish Average
Well (x40%) 7.26% 7.06% 8.80% 12.72% 8.96%
Mid (x35%) 19.49% 16.69% 18.96% 32.68% 21.96%
High (x25%) 59.47% 48.45% 26.83% 60.63% 48.85%
Overall 24.59% 20.78% 16.86% 31.68% 23.48%

Finnish Spanish German Danish Average
Well (x40%) 3.91% 3.36% 4.89% 6.63% 4.70%
Mid (x35%) 19.08% 6.08% 9.16% 18.51% 13.21%
High (x25%) 13.39% 8.45% 8.75% 20.41% 12.75%

Overall 11.59% 5.58% 7.35% 14.23% 9.69%

Finnish Spanish German Danish Average
Well (x40%) 46.14% 52.41% 44.43% 47.88% 47.72%
Mid (x35%) 2.10% 63.57% 51.69% 43.36% 40.18%
High (x25%) 77.48% 82.56% 67.39% 66.34% 73.44%
Overall 38.56% 63.85% 52.71% 50.91% 51.51%

Aurora 3 Referance Word Error Rate

Aurora 3 Word Error Rate

Aurora 3 Relative Improvement

Table 2: Aurora 3 reference word error rates, noise-robust
front-end error rates and the related relative improvements.

Set A Set B Set C Overall

Multi 51.96% 56.10% 55.05% 54.24%
Clean 75.37% 80.45% 68.56% 76.04%
Average 63.67% 68.28% 61.81% 65.14%

Aurora 2 Relative Improvement

Table 3: Aurora 2 relative improvements with the complex
back-end configuration.

