
EVALUATION OF A NOISE-ROBUST DSR FRONT-END  
ON AURORA DATABASES 

Dušan Macho1a, Laurent Mauuary2, Bernhard Noé3, 
Yan Ming Cheng1a, Doug Ealey1b, Denis Jouvet2, Holly Kelleher1b, David Pearce1b, Fabien Saadoun3 

1Human Interface Lab, Motorola Labs, aSchaumburg, USA and bBasingstoke, UK 
2France Télécom R&D, Lannion, France 

3Alcatel SEL AG, Stuttgart, Germany 
dusan.macho@motorola.com, laurent.mauuary@rd.francetelecom.com, Bernhard.Noe@alcatel.de 

 

ABSTRACT 

This paper describes a noise-robust front-end designed within a 
collaboration of Motorola, France Télécom and Alcatel for the 
ETSI standardization of the advanced front-end for distributed 
speech recognition (DSR). The proposed algorithm is based on 
the cumulative knowledge in the three companies’ history in the 
areas of noise reduction, speech enhancement as well as other 
related fields. The major components of this algorithm are noise 
reduction, waveform processing, cepstrum calculation, blind 
equalization, and voice-activity detection.  In the evaluation of 
the proposed front-end on Aurora 2 and Aurora 3 databases we 
obtained an average error rate reduction of 52.75% and 51.51%, 
respectively, when compared to the WI007 ETSI MFCC-based 
DSR front-end performance. 

1. INTRODUCTION 

Robustness is an essential issue in practical deployment of 
automatic speech recognition (ASR) technology. In portable 
devices such as cell phones, different acoustic environments or 
channels interfere with speech and reduce the performance of 
the recognition system. 

Recent activity in the ETSI Aurora group was focused on 
the standardization of a robust front-end for distributed speech 
recognition with well-defined criteria and databases [4]. In this 
paper, we describe the algorithm which demonstrated the best 
overall performance among candidates and which was 
consequently selected in February 2002 to be the new standard 
for the Advanced DSR Front-end. 

In DSR, speech features are calculated and compressed at 

the terminal side and then transmitted over the network to the 
server. At the server side, features are decompressed and the 
recognition itself is performed. This DSR framework and the 
main components of the presented front-end are displayed in 
Figure 1. The front-end is split between terminal and server 
sides. The majority of the front-end calculation is done in the 
terminal. Here, de-noised cepstral features are calculated in the 
feature extraction block. Cepstral features are then compressed 
in the feature compression block and processed for channel 
transmission in the last block called framing, bit-stream 
formatting, error protection. At the server side, received 
features are decoded in the bit-stream decoding, error 
mitigation block and decompressed in feature decompression. 
The server feature processing block performs a computationally 
low feature processing stage, consisting mostly of derivative 
calculation. Finally, features enter the back-end block, where 
the recognition takes place.  

In the following sections, we describe in more detail those 
components of the presented front-end that increase the ASR 
system robustness. Coding and compression schemes will not be 
covered in this paper. At the end, we present the results we 
obtained on the Aurora 2 and Aurora 3 databases. 

2. NOISE-ROBUST FRONT-END 

In this description, we consider the 8 kHz version of the front-
end. Extension to 11 and 16 kHz is described in detail in [5]. In 
the proposed front-end, noise-reduced cepstral features are 
calculated from the incoming digital signal. We use a two-stage 
Mel-warped Wiener filter noise reduction scheme, which is a 
combination of the two-stage Wiener filter scheme from [1] and 
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Figure 1: Block scheme of the proposed front-end. The upper part shows the components implemented at the terminal side and the 
lower part shows the components implemented at the server side. 



the time domain noise reduction described in [9]. After noise 
reduction (see Figure 1), SNR-dependent waveform processing 
(SWP, [6]) is applied to the de-noised signal. The output signal 
from SWP is used for cepstrum calculation. Finally, blind 
equalization [8] is applied to the cepstral features.  

At the server side, in the server feature processing block, 
the dynamic parameters are calculated from cepstral features 
(note that for this paper we have omitted the compression and 
coding related blocks in order to concentrate on the front-end 
algorithm). Also in this block, the energy coefficient is formed 
and the feature vectors are selected that enter to the back-end. 
The following sections describe the individual blocks of the 
proposed robust front-end. 

2.1. Noise Reduction 

Noise reduction is performed by two passes of the Wiener filter 
(see the block diagram on Figure 2). The first and second stages 
are similar but not identical. Initially we describe the first stage 
and then we will explain the differences between the two stages.  

Processing is done on a frame-by-frame basis. We use a 25 
ms frame length and 10 ms frame shift. The signal spectrum is 
estimated from a Hanning windowed frame (200 samples) by 
using an FFT of length 256. The FFT spectrum length is 
reduced to 65 frequency bins by averaging every two 
consecutive frequency bins of the 129-bin FFT spectrum. In the 
next block called PSD mean (Power Spectral Density mean), 
the averaging of two consecutive power spectra is performed, 
which reduces the variance of spectral estimation.  

The current frame spectrum and the corresponding 
speech/non-speech decision from the VADNest block (Voice 
Activity Detector for Noise estimation) are used in the WF 
design block to estimate the Wiener filter frequency 
characteristic.  

VADNest is an energy-based voice activity detector. The 
current frame is labeled as speech when the difference between 
the current frame log energy and the long-term estimate of non-
speech log energy exceeds a defined threshold. A hangover of 

15 frames is used at the transitions from speech to non-speech 
segments, provided that the speech segment was at least 5 
frames long. The frames labeled as non-speech are used for 
updating the noise estimation.  

The Wiener filter frequency characteristic is estimated in 
two steps, as shown in Figure 3. The first estimate of the 
Wiener filter is obtained from the de-noised spectrum Sden and 
noise estimate SN like 
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where Sden is computed like 
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where β=0.98 and the de-noised spectrum Sden3 is computed 
from the previous frame like  
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The second Wiener filter frequency characteristic is obtained 
from the second de-noised spectrum estimate Sden2 and the noise 
estimate SN like 
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where ηth=0.079432823 corresponds to the maximum filter 
attenuation of –11.33 dB and Sden2 is computed by applying the 
first Wiener filter to the input signal spectrum like 

 ( ) ( ) ( )2 _, , ,den in PSDS f t H f t S f t= . (5) 

In the Mel Filter-Bank block, the Wiener filter frequency 
characteristic is smoothed and transformed to a Mel-frequency 
scale by using 23 triangular Mel-warped frequency windows. 
The frequency windows coincide with those used in the 
Cepstrum Calculation block. The impulse response of the 
Wiener filter is obtained by using a Mel-warped inverse cosine 
transform in the Mel IDCT block. This impulse response is 
truncated to a length of 17 and then windowed by a Hanning 
window. The de-noised signal is obtained by convolving the 
noisy input signal with the Wiener filter impulse response. 

As displayed in Figure 2, the noise-reduced signal from the 
first stage enters the second stage, where the second Wiener 
filter is designed and used for noise reduction. The main 
difference between the two stages is the gain factorization 
block used in the second stage. In this block, a dynamic, SNR-
dependent noise reduction is performed in such a way that more 
aggressive noise reduction is applied to purely noisy frames and 
less aggressive noise reduction is used in frames also containing 

Figure 2: Block scheme of noise reduction. 
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speech. We observed that gain factorization could be performed 
more accurately in the second stage than in the first stage due to 
the better SNR properties of the noise-reduced signal in the 
second stage. Another difference is that in the second stage 
VADNest is not used so that the noise spectrum is updated at 
each frame. 

By this two-stage approach, we gain more flexibility in the 
Wiener filter design. Notice that the input signal of each stage 
has a different SNR – in the first stage, the input signal SNR 
may be very low, while in the second stage the input signal 
SNR is higher. Thus, in each stage, different decisions are done 
depending on the current SNR – this non-linear behavior would 
be difficult to accomplish by a single-pass Wiener filter. 

2.2. SNR-dependent Waveform Processing 

In voiced segments of the speech signal, the speech waveform 
exhibits quasi-periodic maxima and minima due to the glottal 
excitation. By contrast, the interference noise energy can be 
considered relatively constant within the speech period. There-
fore, within a noisy speech period, the SNR is variable; this 
SNR variability is observable as long as the interference noise 
intensity is not extremely high. In SNR-dependent Waveform 
Processing (SWP), which is applied after noise reduction, the 
high SNR portions of waveform are emphasized and the low 
SNR waveform portions are de-emphasized by a weighting 
function. The high SNR portions are detected as maxima of a 
smoothed energy contour computed from the waveform. The 
SNR has a decreasing tilt from one maximum to other, thus the 
first 80% of the interval between the two maxima (including 
maximum itself) is emphasized and the last 20% is de-empha-
sized by the weighting function. In this way, the overall SNR is 
improved and also the speech periodicity is enhanced. A more 
detailed description of SWP can be found in [6]. 

2.3. Cepstrum Calculation 

The Cepstrum Calculation block is, with a few slight 
differences, the same like the clean speech standard MFCC 
front-end described in [3]. Better results were obtained with a 
lower pre-emphasis coefficient ap=0.9 instead of ap=0.97. 
Notice that the used filter-bank already includes a pre-emphasis 
effect because the Mel filter-bank outputs are not energetically 
normalized. Also, higher noise robustness is observed when 
using a power spectrum estimate instead of a magnitude 
spectrum estimate before performing the filter-bank integration. 
This observation coincides with that in [7]. 

2.4. Blind Equalization 

The blind equalization scheme [8] relies on the least mean 
square algorithm, which minimizes the mean square error 
computed as a difference between the current and target 
cepstrum. The target cepstrum corresponds to the cepstrum of a 
flat spectrum (notice that as the filter-bank outputs are not 
energetically normalized, the filter-bank spectrum of a flat input 
spectrum shows an increasing tilt). Blind equalization reduces 
the convolutional distortion caused by the use of different 
microphones in training of acoustic models and testing. 

2.5. Server Feature Processing 

Three operations are performed in the server feature processing 
block. An energy coefficient is formed, derivative features are 

appended to static cepstral features and the relevant feature 
vectors are selected and sent to the back-end. 

2.5.1. Energy Coefficient 

Both the log energy and the zero-th cepstral coefficient c(0) 
yield information about the whole band energy level in each 
frame. We obtained the best recognition results by using an 
energy coefficient En that is a linear combination of both log 
energy lnE and c(0) computed for each frame like 

 
( ) ( )E

c
En ln4.0

23

0
6.0 +=  (6) 

2.5.2. Dynamic Features 

It is a well-known fact that adding dynamic information to the 
static features improves the robustness of speech feature 
representation. We appended velocity and acceleration features 
to the 13 static features (c(1)...c(12) and En), both computed 
over 9 frames. In total, 39 features are used for recognition. 

2.5.3. Feature Vector Selection 

In noisy speech recognition, the long non-speech segments of 
signal tend to increase the number of insertion errors. These 
errors are mostly caused by mismatch between features from 
non-speech portions of the signal and the silence model. One 
way to deal with this kind of error is to drop non-speech frames 
from the recognition process and use mainly the speech frames. 
This approach can significantly improve the recognition 
performance of speech surrounded by long noisy segments. For 
this purpose, we used a voice activity detector described in [2]. 

3. RECOGNITION EXPERIMENTS 

3.1. Databases 

The proposed front-end was evaluated on Aurora 2 and Aurora 
3 databases. Aurora 2 is the TI digit database artificially 
distorted by adding noise and using a simulated channel 
distortion. Two kinds of training are used: clean speech training 
(denoted as Clean in results tables), and training by using both 
clean and noisy speech (denoted as Multi). For each training, 
three tests are realized: A – matched training and testing noises, 
B – mismatched training and testing noises, and C – test data 
with both channel (i.e. convolutive) and additive distortions.  

Aurora 3 is a set of multi-language SpeechDat-Car 
databases recorded in-car under different driving conditions 
with close-talking and hands-free microphones. Three 
recognition experiments are defined for Aurora 3 with different 
levels of training and testing mismatch: well-matched, medium 
mismatched, and highly mismatched (denoted as Well, Mid, and 
High, respectively, in results tables). 

3.2. Acoustic Model Configuration 

We tested the proposed front-end by using the back-end 
configuration as defined by the ETSI Aurora group [4]. The 
digit models have 16 states with 3 Gaussians per state. The 
silence model has 3 states with 6 Gaussians per state. Also, a 
one-state short pause model is used and is tied with the middle 
state of the silence model. 



We also used more complex models, where digit models 
had 20 Gaussians per state and silence model had 36 Gaussians 
per state. The number of states was kept the same as in the 
previous configuration. 

3.3. Results with Back-End fixed by ETSI Aurora Group 

Table 1 and Table 2 show the word error rates and 
improvements obtained by the proposed front-end on Aurora 2 
and Aurora 3 databases, respectively. We can observe that 
significant improvement is achieved in both databases. In 
Aurora 2, word error rate was reduced from 12.97% to 8.26% 
for the multi-condition training experiment (34.82% in relative 
terms) and from 41.94% to 13.11% for the clean training 
experiment (70.69% relatively). A similar tendency can be 
observed in Aurora 3 database: we obtained 47.72% and 
73.44% relative improvements in well-matched and high-
mismatched experiments, respectively.  

3.4. Results with Complex Back-End 

Table 3 shows the relative improvements we obtained when 
using the complex back-end configuration. Only Aurora 2 was 
tested. In comparison to the previous results, a large increase in 
relative terms can be observed for multi-condition training 
(from 34.82% to 54.24%) and gave an absolute overall WER of 
6.75%. This improvement is attributed to the fact that larger 
models represent better the variability of the multi-condition 
training data.  

Using the complex back-end, we also measured the 
improvement this front-end provides relative to the mel-
cepstrum and “perfect” endpoints.  It gave 52.3% improvement, 
which is a similar gain to that found for the baseline system 
(52.75%). 

4. CONCLUSIONS 

In this paper, we presented and evaluated a noise-robust front-
end designed for the ETSI distributed speech recognition 
advanced front-end standard. The proposed front-end contains 
several components that improve the robustness of ASR systems 
against both additive noise and channel distortions: Wiener filter 
based noise reduction, SNR-dependent waveform processing, 
blind equalization and voice activity detector based feature 
vector selection. Compared to the previous WI007 ETSI MFCC-
based DSR front-end, the relative improvements are on average 
52.13%, which surpasses all thresholds set by the ETSI Aurora 
working group. Additionally, when using more complex back-
end modeling, a relative improvement of 65.14% was achieved 
for the Aurora 2 database. 
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Set A Set B Set C Overall
Multi 11.93% 12.78% 15.44% 12.97%
Clean 41.26% 46.60% 34.00% 41.94%
Average 26.59% 29.69% 24.72% 27.46%

Set A Set B Set C Overall
Multi 7.88% 8.04% 9.43% 8.26%
Clean 12.56% 13.00% 14.45% 13.11%
Average 10.22% 10.52% 11.94% 10.68%

Set A Set B Set C Overall

Multi 30.57% 38.27% 36.40% 34.82%
Clean 70.04% 74.94% 63.47% 70.69%
Average 50.30% 56.61% 49.94% 52.75%

Aurora 2 Reference Word Error Rate

Aurora 2 Word Error Rate

Aurora 2 Relative Improvement

Table 1: Aurora 2 reference word error rates, noise-robust 
front-end error rates and the related relative improvements. 

Finnish Spanish German Danish Average
Well (x40%) 7.26% 7.06% 8.80% 12.72% 8.96%
Mid (x35%) 19.49% 16.69% 18.96% 32.68% 21.96%
High (x25%) 59.47% 48.45% 26.83% 60.63% 48.85%
Overall 24.59% 20.78% 16.86% 31.68% 23.48%

Finnish Spanish German Danish Average
Well (x40%) 3.91% 3.36% 4.89% 6.63% 4.70%
Mid (x35%) 19.08% 6.08% 9.16% 18.51% 13.21%
High (x25%) 13.39% 8.45% 8.75% 20.41% 12.75%

Overall 11.59% 5.58% 7.35% 14.23% 9.69%

Finnish Spanish German Danish Average
Well (x40%) 46.14% 52.41% 44.43% 47.88% 47.72%
Mid (x35%) 2.10% 63.57% 51.69% 43.36% 40.18%
High (x25%) 77.48% 82.56% 67.39% 66.34% 73.44%
Overall 38.56% 63.85% 52.71% 50.91% 51.51%

Aurora 3 Referance Word Error Rate

Aurora 3 Word Error Rate

Aurora 3 Relative Improvement

Table 2: Aurora 3 reference word error rates, noise-robust 
front-end error rates and the related relative improvements. 

Set A Set B Set C Overall

Multi 51.96% 56.10% 55.05% 54.24%
Clean 75.37% 80.45% 68.56% 76.04%
Average 63.67% 68.28% 61.81% 65.14%

Aurora 2 Relative Improvement

Table 3: Aurora 2 relative improvements with the complex 
back-end configuration. 


