3GPP TSG-SA4#23 meeting
Tdoc S4-020551

September 30 - October 4, 2002, Montreal, Canada

Source:
Nokia

Title:
Follow up to CR 26.234-33 Correction to PSS Video Buffering Verifier (Annex G)

Document for:
Proposal

Agenda Item:
7. Packet Switched Multimedia (PSM) SWG

1 Introduction

This contribution is a follow up to our proposal "CR 26.234-33 Correction to PSS Video Buffering Verifier (Annex G)" [1] at SA4#22. The purpose of this document is to answer and clarify all points raised during the discussion at SA4#22, and update the CR 26.234-33 proposal considering these points. The document follows the structure of detailing the answer to each question in "Report on TSG-S4 PSM SWG during SA4#22 meeting" [2], but as the answers already consider an updated CR proposal, first the proposed CR 26.234-33 update is described.

2 Proposal Update

2.1 Original proposal (quote from S4-020414 [1])

"PSS clients can choose to use different than recommended parameters, as long as they comply with PSS client buffering requirements (Annex G.4). The usage of different than recommended parameters is usually for the purpose of dealing with the non constant delay and not reliable nature of the transmission channel. …"

"PSS clients while playing the indicated playback range may signal in an RTSP OPTIONS request the actual parameters that they use instead of the recommended ones. …"

"PSS servers can, but are not required to, adapt at streaming time their rate control and/or packet scheduling to consider the difference between the actual and recommended parameters. For example, if longer than recommended actual initial pre-decoder buffering period is signaled by PSS clients, PSS servers can condition their rate adaptation algorithm given the maximum packet transfer delay variation that the streaming client's additional initial pre-decoder buffering period can compensate for. …"

2.2 Updated proposal

Assume that the packet transfer delay variation and server transmission schedule variation compensating buffers in the streaming client are implemented in the same buffer as the video pre-decoder buffer (3GPP TS 26.234 Annex G).

This single video receiver buffer is filled by the network and is emptied according to the Annex G model by the video decoder.

PSS clients while playing the indicated playback range may signal in an RTSP OPTIONS request the video receiver buffering parameters that they use.

The total receiver buffer size and initial buffering delay is to be signaled. A different RTSP header field name with different definition than "x-predecbufsize" and "x-initpredecbufperiod" is to be used: for example "x-receiverbufsize" and "x-initreceiverbufperiod".

It is thereby possible to differentiate between the pre-decoder buffering and "extra buffering" capabilities of the client at the syntax level. Subtracting the pre-decoder buffering parameters from the total receiver buffering parameters gives the "extra buffer".

3 Answer to comments from the SA4#22 PSM report

3.1 Is this a change of the conceptual model where the jitter buffer and pre-decoder buffer are separate entities?

Figure 4 in the SA4#22 contribution "Use case example for PSS video buffering model" [3] shows the jitter compensation buffer and the pre-decoder buffer as separate entities. There the intention was to clarify that a jitter compensation buffer and a pre-decoder buffer fulfill different purposes and should therefore be treated as separate concepts. However, this does not mean that those buffers should be implemented as separate entities. There is no need to enforce a strict separation.

Defining a separate jitter and pre-decoder buffer model would have inefficiencies. If a separate jitter buffering model was defined with strict boundaries, the following questions would need to be answered:

· At what rate is it emptied? It is not known when the packets were scheduled by the server.

· What happens if it underflows/overflows? If there is a strict boundary between the two buffers a jitter buffer underflow/overflow should mean a packet loss!

There is no clear requirement to enforce strict jitter buffering, as the jitter buffer is followed by the pre-decoder buffer anyway. It is apparent, that the jitter buffer boundaries could only be weakly defined (i.e. if some packet comes late it is not dropped but passed further), thus it is questionable whether such model definition is useful at all.

Jitter buffering at the streaming client is to compensate for both packet transfer delay variation and server transmission schedule variation. There is no functional or syntax level distinction made between the two in the context of receiver buffering.

As in practical implementation there is only one buffer before decoding at the client, it is proposed to take the "single buffer" approach also in the specification.

3.2 Why is this needed, the formulation of the problem is not clear?

The following are some example scenarios where the proposed scheme is useful.

· The server can decide to follow a systematic work-ahead schedule (i.e. send video data ahead of schedule) and accumulate data in the receiver buffer (constrained by the buffer space available) to decrease the vulnerability against transfer delay variation. Such strategy does not require long pre-roll, but still achieves higher buffer levels. An example of such proposed strategy is in [6]. The server has to know the total buffer size (not just the pre-decoder buffer size) and initial buffering delay (not just how much is strictly needed for pre-decoder buffering) parameters as upper and lower bounds for such work-ahead strategy. See figure below for an example (find notes to the figures in appendix section 5).

[image: image1.emf]0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

0510152025303540

Time (sec)

Cumulative data (bits)

Sampling curve Transmitter curve Receiver curve Playout curve

· The server can not rely on it that the client was able to get from the network the required guaranteed bandwidth (m-line in SDP) to transmit a given advertised stream. So it has to be prepared to do some form of media rate adaptation. The most easily applicable form of rate adaptation for video in PSS is bitstream switching (see SA4#19 contribution "Multi-level Video Scalability using Bridging Streams" [4] for an example of how bitstream switching can be performed in PSS). The different bitstreams however, have different rate variation over time, so in general different pre-decoder buffer level is assumed for them at the switching time instance. Transparent, on-the-fly bitstream switching will therefore result in pre-decoder buffer level "mismatch". The server needs to know the client buffering parameters to be able to estimate whether the buffer level mismatch can be absorbed by the buffer or it has to adjust its transmission schedule to add some work-ahead or fall-behind delay correcting the mismatch. Although [7] talks about frame dropping instead of bitstream switching as means of media rate adaptation, it illustrates the point of buffer level control throughout the media rate adaptation.

· Transfer delay variation or different than constant rate pre-roll strategy during the initial buffering time period can also result in mismatch between the server assumed and actual buffer level (see SA4 PSM AHG contribution "Video streaming traffic characteristics - Application modeling in the RTP usage model" [5] Figure 6: "Bitrate variation for Real Networks streaming over different network scenarios" as an example of different than constant rate pre-roll strategy). If the actual reception rate is different from the assumed constant transmission rate during the initial pre-decoder buffering delay, the client could alternatively choose to buffer for a different period of time than the recommended pre-decoder buffering delay in its attempt to reach the required buffer level at the start of decoding. To align the assumed and actual buffering delays at the server and client, the client can inform the server about how long initial buffering delay it has applied.

In all the above cases it is the client's advantage to inform the server about its real buffering capabilities and parameters, so the server can calculate an optimal transmission schedule without buffer underflow or overflow. In particular, any "extra buffering" in addition to the pre-decoder buffering, will result in higher than assumed receiver buffer level, which can easily result in receiver buffer overflow unless the server is notified about the actual buffering parameters.

3.3 There is an overlap between some of the parameters in UAProf and the proposal.

In the updated proposal the client-to-server RTSP header fields "x-receiverbufsize" and "x-initreceiverbufperiod", have no corresponding parameters in the capability exchange (CE) attributes.

The receiver buffer size value signaled in "x-receiverbufsize" can only be equal or greater that the minimum of the pre-decoder buffer size value in the "VideoPreDecoderBufferSize" CE attribute, the "x-predecbufsize" SDP field and the optional "x-predecbufsize" RTSP header field in the response to the PLAY request.

3.4 The benefit of the possibility to do dynamic updates of the parameters was not fully understood.

The receiver buffer at the client can under some circumstances underflow. The underflow can happen due to unexpectedly long packet transfer delays or incorrect server operation that introduces too long server delay for packets to arrive on time for playout.

The client thus has to be able to handle receiver buffer underflow situations. One approach that the client can choose, is to stop playing back the multimedia presentation, rebuffer (i.e. wait for incoming packets until a given buffer level or delay threshold is reached) and resume playing without notifying the server at all. Such rebuffering in effect shifts the playout timer ahead in time.

Such scheme could be called "adaptive buffering". In doing this, the client relies on the assumption that buffer underflow is only temporary and the receiving curve will afterwards recover. An example such case is when some exceptionally long packet transfer delays occur due to EGPRS/GERAN handover. Future such temporary packet transfer delay increases can then be tolerated without new rebuffering. See figure for illustration of the adaptive buffering scheme.

[image: image2.emf]0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

0510152025303540

Time (sec)

Cumulative data (bytes)

Sampling curve Transmitter curve Receiver curve Playout curve

When playout timer realignment happens, actually the receiver buffering delay changes. Having established the importance of knowing the exact buffering parameters in the server (see section 3.2), the new parameters should be informed to the server whenever such playout timer realignment happens.

3.5 Is there any impact on other codecs (audio) if this is introduced?

The audio-video synchronization now works like this:

· With the video buffering model (Annex G) in use, the playout time of video frames is determined.

· Audio buffering model is not defined.

· So the video buffering takes control of the playout timer and audio is synchronized to video. The synchronization is an implementation issue, and is aided by the RTP timestamps of the two media.

This means that adding an "extra buffering" for video will not cause any problems audio and will only require synchronization of audio as before.

3.6 Do we want a solution considering also other media types or a video specific solution?

Because of the lack of a buffering model for audio, it is proposed that the audio-only streaming case is dealt with separately. It is proposed to delay the audio only streaming use case consideration for later (i.e. PSS Rel-6).

3.7 Is this CR really a correction or an addition of new capabilities/feature to PSS rel-5?

The target for this "enhancement" is Release 5. This is a small change that is required to support more advanced usage of PSS Rel-5, especially in variable throughput environment (e.g. GERAN).

There seems to be no technical problem in Rel-5 to add this signaling, as it would not break other Rel-5 systems.

4 Conclusion and recommendation

Based on the above discussion it is proposed to draft and approve an updated CR 26.234-33 during SA4#23, which CR should be based on the updated proposal as in section 2.2.

5 Appendix: Notes to the figures

The graphs were generated in a real simulation with the following settings and parameters.

Only video RTP stream was transmitted by a PSS server to a PSS client. Video frame size QCIF, video frame rate 15 fps fixed frame rate. Bitstream switching between 3 bitstreams with ~3sec Intra frame interval encoded using "Long Window Rate Control for Video Streaming" [8]. Switching is done only at Intra-frames.

High bitrate stream (bits/sec)
60000

Low bitrate stream (bits/sec)
36000

Mid bitrate stream (bits/sec)
48000

RTCP interval (sec)
2

Initial receiver buffering delay (sec)
3

Network is EGPRS (Rel-4) with the following parameters: MCS-7, Typical Urban radio conditions, 50 kmph moving mobile (i.e. having regular handovers), RLC Ack-Mode, guaranteed bitrate is requested to be 48000 bps (the bitrate target is met by the network through dynamic timeslot allocation).

The horizontal axis in the graphs denotes time in seconds; the vertical axis denotes cumulative amount of data in bits. The playout curve shows the cumulative amount of data that the decoder has processed by a given time from the receiver buffer. The sampling curve indicates the progress of data generation if the media encoder was run real-time (it is the counterpart of the playout curve, and is actually a time shifted version of it). The transmitter curve shows the cumulative amount of data sent out by the server at a given time. The receiver curve shows the cumulative amount of data received and placed into the client buffer at a given time.

The "end-to-end" delay is represented by the x-axis difference between the sampling curve and playout curve. The x-axis difference between the sampling curve and transmitter curve shows the "server buffering delay". The varying "transfer delay" (i.e. channel buffering delay) is represented by the x-axis difference between the receiver curve and the transmitter curve. The "client buffering delay" is represented by the x-axis difference between the playout curve and the receiver curve.

6 References

[1]
S4-020414, “CR 26.234-33 Correction to PSS Video Buffering Verifier (Annex G)”, 3GPP SA4#22 contribution from Nokia, July 2002

[2]
S4-020476, "Report on TSG-S4 PSM SWG during SA4#22 meeting", 3GPP SA4#22 report from PSM AHG chairman, July 2002

[3]
S4-020409, "UMTS video streaming - Use case example for PSS video buffering model", 3GPP SA4#22 contribution from Ericsson, July 2002

[4]
S4-010607, "Multi-level Video Scalability using Bridging Streams", 3GPP SA4#19 contribution from Emblaze Systems, December 2001

[5]
S4-AHP092r, "Video streaming traffic characteristics - Application modeling in the RTP usage model", 3GPP SA4 PSM AHG contribution from Nokia, January 2002

[6]
Allen A. D. "Optimal Delivery of Multi-Media Content over Networks", Proceedings of ACM Multimedia '01, Ottawa, Canada, September 2001

[7]
Feng W., et. al. "Proactive Buffer Management for the Streamed Delivery of Stored Video", Proceedings of ACM Multimedia '98, Bristol, UK, 1998

[8]
Viktor Varsa, Marta Karczewicz, "Long Window Rate Control for Video Streaming", Proceedings of the 11th International Packet Video Workshop, Kyungju, Korea, 30 April – 1 May 2001

