	3GPP SA4 #23

Montreal, Canada

30 September – October 4 2002
	S4-020503

Agenda Item:
Media formats and codecs: Synthetic video
Source:

Vimatix (representative of IAEI)

Title:

VIM Codec for Synthetic Video
Document for:

Discussion and approval

Additional documents:

A presentation to be shown at the meeting, named “Synthetic video: a new media type for the 3GPP”, Tdoc S4-020504.

Contact Person:
Ehud Spiegel, ehuds@vimatix.com

__
1 Executive Summary

Vimatix’ technology provides synthetic videos for photorealistic videos at a very low bitrate, much smaller than a natural video. The format is called VIM.

The main differences between VIM and other technologies is that while they are concentrating in transferring general video content or dynamic graphics, VIM uses a new way of representing color information in an image, suitable for photorealistic results. It is extremely more efficient for photo-realistic animations and synthetic video clips. The technology has the abilities to capture original content and even compose in real time personalized content. VIM brings to the users photo-realistic experience on mobile applications. The size of VIM clips is few Kbytes only. Size details and comparison to other technologies may be found in other Tdocs already submitted to the 3GPP [7] [8], as well as at Tdoc S4-020504. Decoding (playing) VIM files can be made in real-time on mobile devices having standard CPUs. This allows creating MMS applications having photo-realistic dynamic content. Vimatix is cooperating with market leaders in the areas of MMS infrastructures and applications for bringing VIM-based applications to the MMS market.

An overview of the core technology is given in Annex A.
The synthetic video technology was proposed by Vimatix and has been approved by MPEG-4 as part of its MPEG-4 Systems Amendment 4 [1].

The VIM technology has already presented to the 3GPP at the SA4#22 [7] and at the T2#18 [8] meetings. T2 have sent LS T2-020767, now numbered as S4-020519 to SA4 asking whether it is needed to define a new media type for Synthetic Video. Tdoc S4-020504 also submitted to the SA4#23 meeting present the justifications for doing so.

In the current document we propose to add VIM as a new format to the 3GPP MMS supported file formats, preferably under a new supported Synthetic Video media.
2 Definitions

continuous media: media with an inherent notion of time. In the present document speech, audio, video and timed text

discrete media: media that itself does not contain an element of time. In the present document all media not defined as continuous media

scene description: description of the spatial layout and temporal behavior of a presentation. It can also contain hyperlinks

natural video: consists of a sequence of images from video sources such as a camera or a computer and images consists of color information at every of its pixels.

synthetic video: consists of synthetic objects whose combination creates a photorealistic video. Synthetic objects are comparable to vectored objects and photo-realistic color and spatial information apply to regions defined by the objects, not for every pixel of the image.

3 VIM Player Performance

There are two versions of the VIM player, based on the two phases in the playing process as described in amendment A.4:

a- VIM player for messaging:

The animation elements reconstruction of all VIM elements is done prior to the animation rendering. This is suitable for messaging applications, and allows implementing VIM on handsets having a relatively slow CPU.

Foot-print:

Code: 140K, Ram: 120K per 160 x 120 resolution or 70K per 101 x 80.

Playing speed: More than 10 frames/second on ARM-7 90 MHz
b- VIM player for messaging and interactive applications:

The animation rendering of elements starts when the relevant elements reconstruction is finished. This allows using VIM for streaming and interactive applications.

Foot-print:

Code: 100K, Ram: 200K per 160 x 120 resolution or 150K per 101 x 80, or 50K less in case the display is gray-scaled and not full color.

Playing speed: More than 8 frames/second on ARM-7 200 MHz

The above foot-print figures considers rendering of 11 layers simultaneously (2 objects each having five layers, and a background), on 200 frames synthetic video clip. The figures do not vary much for more simpler/shorter or complex/longer clips. Using modified buffering technique, we expect that the foot-print would be significantly reduced within few months (targeting less than 150K)
4 3GPP architecture considerations

Synthetic Videos can be thought as another vector graphic representation suitable for photorealistic rendering. However, and compared to SVG [2], describing a synthetic video using XML would consume too much bandwidth and specific compression algorithms are used for optimal file size. Since synthetic video clip is target to carry a photo-realistic experience, which is based on natural behavior of the objects in the scene, it uses intuitive skeletons and skeletons animation to easily create this experience.

Synthetic videos are discrete media and a user agent can access them via HTTP. The VIM player provides VCR-like controls (start, pause, fast forward, fast rewind and stop) as well as hyper linking capabilities to other web pages or synthetic videos.

3GPP PSS [5] recommends the support of three types of URLs for session establishment: rtsp:// for continuous media, file:// for locally stored files, and http:// for discrete media. For streaming sessions, RTSP shall be used and the scene description may use SMIL for contents with complex layouts and synchronization constraints. The usage of SMIL might not be necessary for simple synchronization where RTSP timestamps suffice

[image: image1.emf]Image decoder

video decoder

Vector graphics

decoder

Text / Timed text

decoder

Audio decoder

Speech decoder

Synthetic Audio

decoder

Scene description

Session control

Session establishment

Capability exchange

Spatial layout

Synchronization

Graphics

Display

Sound

Output

User interface

Terminal capabilities

Packet based network interface

Synthetic video

decoder

Figure 1 – 3GPP architecture with Synthetic Video decoder.

A synthetic video is part of a MIME multipart message. The recommended MIME type for synthetic video is "video/x-synthetic".

This scenario is ideal for a multimedia messaging service where low bitrate photorealistic videos can be sent to a mobile terminal and allow a user to interact with visual objects. The interaction may vary from hyperlinks to other contents to interactive animation and deformation of objects. All these functionality are described in the VIM format for synthetic videos.

Moreover, synthetic videos can be used for MMS as part of non-streamable contents or as part of streamable contents if an SDP refers to a synthetic video content. Using SMIL, complex scenes can be created mixing synthetic videos with text, vector graphics, audio, and video.

5 Proposal

We proposed to add the VIM format for the 3GPP release 6 supported formats, preferably under a new media-type called synthetic video which we also propose to add. The new media type and format, target for very low bitrate synthetic videos and photo-realistic animations for MMS, would be included into 3GPP supported formats as defined by 26140-510, 26234-510 and other applicable specifications for release 6. Synthetic videos are handled by a synthetic video decoder and, like a video, are rendered in a region of the graphic display.

Annex A
SEQ aaa \h

SEQ table \r0\h

SEQ figure \r0\h
Synthetic video overview

A.1 Overview

The Synthetic video representation main element is Synthesized Texture, represents animated photo-realistic textures using vector approach to describe photo-realistic color and spatial information. These vector based parameters can be animated over time, producing very low-bit-rate movies suitable for terminals and networks with limited resources and narrow bandwidth.

Synthesized textures are made of 3 base elements and 3 animation-enabling elements (Figure 1):

SynthesizedTexture Base Elements:

· Characteristic Lines made of line segments and line color profiles. Line segments are defined as symmetrical parabolas. A line color profile is associated with each line segment. There are two types of Lines: Edges and Ridges.

· Patches are defined as ellipsoids of few pixels long whose color is significantly different from their surrounding.

· Area Color Points describe the low-scale (background) color changes in the areas between Lines.

SynthesizedTexture Animation-enabling elements:

· Sub-textures define a high-level structure enclosing entire regions of the texture. A sub-texture is completely enclosed by lines. It contains Lines, Area Color Points and Patches. A Sub-Texture may belong to an Object or not. A Sub-Texture cannot belong to more than one object.

· Skeletons are invisible curves that affect the animation of Sub-Textures. Skeletons are the control points of the Objects.
· Objects (layers) are an aggregation of Sub-Textures that are subject to animation. Rigid transformations applied to an Object result in transforming of all its sub-textures.
It is important to note that although the result is a 2D image, the SynthesizedTexture scene is described using 3D elements. The third dimension is used to define layering information that a content creator can use to create overlapping sub-textures. The color information associated with curves is applied after projection of elements to the 2D image plane. The SynthesizedTexture rendering algorithm uses the combination of the 3 base elements to interpolate colors between the elements.
[image: image2.png]
Figure 1 — SynthesizedTexture elements

	[image: image3.png]
	Line (LN), bounded by 2 Terminal Points (TP)

	[image: image4.png]
	Line Segment (LS), bounded by 2 Line Points (LP)

	[image: image5.png]
	Line marked as control line (Skeleton)

	[image: image6.png]
	Line Color Profile (LC)

	[image: image7.png]
	Area Color Point (AC)

	[image: image8.png]
	Color Patch (PA)

	[image: image9.png]
	Sub-Texture (ST)

Table 1\IF >= 1 "A."

SEQ aaa \c * ALPHABETIC
A
.

SEQ Table
1
 — SynthesizedTexture elements

[image: image10.png]
Figure 2 — SynthesizedTexture sample enlarged with overlaying Edge and Ridge Lines, Patches and Color Area points

[image: image11.png]
Figure 3 — SynthesizedTexture sample shown in normal size

A.2 Transformations of the VIM images and VIM objects

Geometric transformations of the VIM images:

Geometric transformations of VIM images and objects comprise transformations of the characteristic lines and their cross-sections, of the background points and of the patches. In turn, the splines, representing the characteristic lines are transformed just by transforming their control points. The cross-sections are rescaled by the factor equal to the derivative of the transformation in the orthogonal direction to the line.

The background points and the centers of the patches are transformed directly, while the elliptic bases of the patch’s paraboloids are transformed by the differential of the original transformation at their centers.

Geometric transformations of VIM images and objects which appear in animations, result from the 3D motion of the viewer position (the camera) and from the proper motion of the image elements.

The Skeleton:

The main tool for defining proper geometric transformations (of a VIM object relative to itself) is given by a skeleton attached to the VIM object.

A skeleton is a collection of spline curves (possibly with crossings) roughly describing the object's general "mechanical" shape and structure, and capturing the repertoire of its possible motions. A skeleton is equipped with a “motion extension block” which imposes the skeleton motion to the VIM objects. On a higher level, the skeleton can be equipped with a “kinematics scheme”, restricting its possible motions and simplifying creation of complicated behaviors.

A.3 Synthetic Video and Animation

Animation is an evolution of the VIM image components over time, optionally using keyframes and motion vectors. On the basic level, any parameter of the VIM representation can be gradually changed over time. A convenient way of creating object-animated motion uses the skeleton.

Interpolating consequent keyframes of the object skeleton along time creates the object animation. The sequence of the skeleton keyframes forms the animation scenario of the object. On a higher level, animation scenarios can be represented in a compact form using generalized motion vectors and high-level motion primitives.

Choosing the right keyframes and objects, and animating them over time to match the source video objects' dynamics, is the basis for the creation of synthetic video.

VIM objects, equipped with their skeletons and animation scenarios, can be further combined in animated 3D virtual worlds. Their structure is essentially compatible to the structure of MPEG4 scenes.

A.4 VIM players

A.4.1 Playing algorithm

The playing (rendering) algorithm is straightforward:

[image: image12]
It can be seen that the playing process is composed of two main phases:

Phase#1: Animation elements reconstruction

Phase#2: Animation rendering

The following diagram describes the layers reconstruction algorithm:

[image: image13]
A.4.2 Examples
Below three examples are given of VIM animations.

A.4.2.1 Example 1
The first one has screen size 720x480 pixels (we chose large image size in order to demonstrate the technology will serve the mobile world through the evolution of displays), it is 15 seconds long and its file size is 13.5 KB. It combines a photo-realistic character, and a cartoon–like one, each character produced from a single still image. The next image demonstrates symbolically the VIM representation (the yellow lines denote edges and the red ones ridges). The full run of the animation is illustrated by 20 small-size sample frames.

[image: image14.png]
VIM animations can be scaled to any screen size. In particular, the above animation, scaled to 144x176 screen, takes about 3 KB.

A.4.2.2 Example 2

The second example is a 128x192 pixels screen 10 seconds long animation, showing a “salto” by a photo-realistic character, prepared from a single image. Its file size is 4.2 KB. It is represented below by two sample frames.
[image: image15.png]
A.4.2.3 Example 3

The third animation is a 65x96 pixels screen 10 seconds long animation, representing a motion of a dog, combined with a text animation. It illustrates one of possible multimedia cellular messaging applications. Its file size is 1.35 KB. It is represented below by two sample frames.

[image: image16.png]
We believe that the file size of the above colored photo-realistic animations is much smaller than in any other available format.

A.5 Synthetic videos in MPEG-4

MPEG-4 BIFS provides support for synthetic videos in its Amendment 4 [1]: specific nodes have been defined corresponding to the elements overviewed in the previous section.

While this gives content creators control over all the elements of the synthetic video, a study shows that many of them need not be used for user interaction. Moreover, compression efficiency between BIFS and Vimatix' formats shows that Vimatix' format leads in average to 36 times more compression than BIFS.

Following these results, it was decided to use a dedicated bitstream for synthetic videos, as defined by Vimatix.

Annex B SEQ aaa \h

SEQ table \r0\h

SEQ figure \r0\h
Bibliography

[1] ISO/IEC 14496-1:2002/FPDAM4, Coding of Audio-Visual Objects: Systems. Amendment 4: Animation Framework eXtension and Multi-User Worlds. http://mpeg.telecomitalialab.com/working_documents/mpeg-04/systems/amd4.zip

[2] SVG 1.0. http://www.w3.org/TR/SVG

[3] SMIL 2.0. http://www.w3.org/TR/smil20

[4] Vimatix Inc. http://www.vimatix.com.

[5] Transparent end-to-end packet switched streaming service (PSS); Protocols and codecs. 3GPP TS 26.234 V5.1.0, June 2002.

[6] Multimedia Messaging Service (MMS); Media formats and codecs. 3GPP TS 26.140 V5.1.0, June 2002.

[7] S4-020379 and S4-020340

[8] T2-020639 and T2-020640

Annex C
Ehud: cut it, it's the SVG backup plan (
Interactivition with synthetic video elements

C.1 Overview

3GPP recommends SMIL for the scene description. SMIL defines the scene layout, the media in the scene, and their synchronization. SMIL defines regions where media will be rendered; such media include video, bitmaps, text (XHTML), vector graphics (SVG), and synthesized videos proposed in this document.

Interaction between elements in a scene is provided by using events. Vector graphics format like SVG provides animation features and each surface may receive or emit events. By connecting elements (event producers and event listeners), simple interactive applications can be created. For more complex applications, events can trigger JavaScript functions that in turn can send events to multiple elements in the scene description. Sophisticated contents with programmatic logic can be created.

As synthetic videos are made of objects, we propose new SVG elements to interact with them. The synthetic video decoder that renders the content at the URI specified in the <syntheticVideo> element in the area defined by this element. Alternatively, a JavaScript could be used to resize the content to the user agent's screen that could consequently resize the synthetic video area. Being synthetic enables synthetic videos to be resizable. For example, a full screen button could make a synthetic video better viewable for a user and another button could shrink it so to see the rest of the presentation.

For example, a content might have buttons defined in SVG that control animation of objects in a synthetic video. JavaScript is used to define event listener of buttons' "click" and to send events to the synthetic video objects.

[image: image17.emf]startstop

This is a frog!

SVG

Synthetic video

Figure 1 - Example of mix SVG/Synthetic video content.

We define <syntheticVideo> and <syntheticObject> elements (see C.2 for the DTD) as new extensions to SVG for interacting with synthetic video objects.

· The <syntheticVideo> element launches the Synthetic Video decoder that loads and decodes content. The content loading can be controlled by sending begin and end events to the <syntheticVideo> element.

· The <syntheticObject> element defines a synthetic video object that can be animated in response to events from other objects in the scene and that can trigger events when it changes. Interaction with other elements in the scene follows SVG scripting specification.

The content shown in Figure 1 would be defined as:

<script type="text/ecmascript">

<![CDATA[

function setMessage(visStatus)

{

var message=svgDocument.getElementById("message");

message.setAttribute("visibility", visStatus);

}

//]]>

</script>

<g onclick="startButton">

<rect id="start" x="0" y="0" width="20" height="10" fill="blue" stroke="black" />

<text x="4" y="4" text-anchor="middle">Start</text>

</g>

<g onclick="stopButton" >

<rect id="stop" x="30" y="0" width="20" height="10" fill="blue" stroke="black" />

<text x="34" y="4" text-anchor="middle">Stop</text>

</g>

<syntheticVideo x="0" y="20" width="50" height="80" type="video/x-synthetic" url="content.vim" >

<syntheticObject id="frog"

begin="startButton.click" end="stopButton.click" dur="5s"

onbegin="setMessage('visible')"

onend="setMessage('hidden')" />

</syntheticVideo>

<text id="message" x="0" y="90" text-anchor="middle" visibility="hidden">This is a frog!</text>

When the user click on start button, the message "This is a frog!" appears and when she clicks on the stop button, it disappears. Clicking on the start button informs the synthetic video decoder to start rendering the animation for the frog and when the user clicks on the stop button or if 6s has elapsed, the animation stops.

C.2 Synthetic Video DTD

The proposed DTD in this section extends SVG 1.0 DTD. It reuses the graphic elements events and animation events attribute modules.

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

 "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

<!ENTITY % syntheticVideoExt "" >

<!ELEMENT syntheticVideo

 (%descTitleMetadata;,(syntheticObject;%syntheticVideoExt;)*) >

<!ATTLIST syntheticVideo

 %stdAttrs;

 %xlinkRefAttrsEmbed;

 xlink:href %URI; #REQUIRED

 %testAttrs;

 %langSpaceAttrs;

 externalResourcesRequired %Boolean; #IMPLIED

 class %ClassList; #IMPLIED

 style %StyleSheet; #IMPLIED

 %PresentationAttributes-Color;

 %PresentationAttributes-Graphics;

 %PresentationAttributes-Images;

 %PresentationAttributes-Viewports;

 transform %TransformList; #IMPLIED

 %graphicsElementEvents;

 x %Coordinate; #IMPLIED

 y %Coordinate; #IMPLIED

 width %Length; #REQUIRED

 height %Length; #REQUIRED >

<!ENTITY % syntheticObjectExt "" >

<!ELEMENT syntheticObject (%descTitleMetadata;%syntheticObjectExt;) >

<!ATTLIST syntheticObject

 %stdAttrs;

 %testAttrs;

 %animationEvents;

 %animTimingAttrs; >

Attribute definitions:

<syntheticVideo> follows the definition of <image>, see SVG 1.0 section 5.7.

<syntheticObject> follows the definition of <animate>, see SVG 1.0 section 19.2.10.

<syntheticVideo> defines the Synthetic Video context and its xlink:href attribute defines where the content is located.

<syntheticObject> defines objects in the Synthetic Video scenes that can be animated in response to timing events or that can trigger animation event handlers.

VIM file decoding

Layers reconstruction

Skeletons reconstruction

Animations sequence reconstruction

Skeletons animation

Layers animation

Animation elements reconstruction

Animation rendering

Reconstruction of Characteristic Lines and their Cross-sections

Reconstruction of Geometric Partition of the Background and of the Background Representing Points

Reconstruction of Patches

Fine Aggregation of the Core VIM elements

�Ehud, as the recommended architecture is MIME multipart (see 23.140 or RFC 2046) and Vimatix doesn't want any interaction with other streams, then it is suffisant.

If more interactivity is needed then, we'll propose the link with SVG. See the last annex that you can cut.

This document is copyright of Vimatix Inc.

