	3GPP SA4 #22

Tampere, Finland

22 -26 Jul 2002
	S4-020379

Agenda Item:
Media formats and codecs: Photo-realistic vector representation
Source:

Vimatix (representative of IAEI)

Title:

VIM Codec for Synthetic Video and Photo-Realistic 2D Animation
Document for:

Discussion

Attachment:

The presentation to be shown at the meeting, named “S4-020379 presentation.zip” can be download from ftp, at address: ftp.vimatix.com using username vimatix3 and password SA4#22.

Contact Person:
Ehud Spiegel, ehuds@vimatix.com

__
1. Executive Summary

Vimatix is established on almost a decade of research into high quality vectored image technology. Vimatix’ technology provides high quality photo-realistic animations and synthetic video in an ultra-compressed format, called VIM.

The data size of VIM files is few Kbytes only, compared to 10-200 times larger files when using MPEG-4 video, GIF, Flash or SVG (for photo realistic dynamic content). This allows creating MMS applications having photo-realistic dynamic content. Vimatix is cooperating with market leaders in the areas of MMS infrastructures and applications for bringing VIM0based applications to the MMS market; trials has began already in the end of 2001. Examples for VIM files are given at the 2 Mbytes presentation named “S4-020379 VIM examples.zip” which can be download from ftp, at address ftp.vimatix.com, using username: vimatix3 and password: SA4#22. The full VIM presentation, which I intend to show at the meeting, can be found at the same location under the name “S4-020379 presentation.zip”.

The object-based structure of VIM provides full interactivity and easy and intuitive customized content creation by the end users. This is enabled by a Vimatix new approach to preserving an image’s visual quality using a minimal set of generic elements, and the essence of the VIM vector presentation, which allows composing content in real time. The resulting VIM content is easy to play, interact with, and manipulates using modest computing resources. Decoding (playing) VIM files is proved to be working in real-time speed on mobile devices having standard CPUs.

The main differences between VIM and SVG is that while SVG is very efficient for simple graphics animations, VIM is extremely more efficient for photo-realistic animations and synthetic video clips, including the abilities to compose in real time personalized content.
The VIM format is currently at advanced process (expected to be officially published in MPEG-4 Amendment 4, due at December 2002) to be accepted by the ISO MPEG-4 as it’s representation for Synthetic Representation, as part of the AFX operation within the SNHC group.

In this document we suggest to add the VIM format to the 3GPP world of official MMS file formats. For that purpose, Vimatix is willing to reveal the details regarding the VIM file format and how to play it. Vimatix suggest having two profiles of VIM, targeting the range of devices from those having a week CPUs, up to those capable of having interactive applications.

2. Motivation

Vectored image compression techniques are well known for their high efficiency, especially for animations. Furthermore, vectored images can easily be scaled, manipulated and interacted with, due to the ability to manipulate the vectors themselves. An well-known example for such technology is SVG (Scalable Vector Graphics) adopted by the 3GPP.

On the other hand, since conventional vectored images such as SVG are mainly line or standard shape-based, either they can’t reconstruct photo-realistic images faithfully, or efficiency is drastically compromised due to the need to add many artificial components in order to describe all the color gradients, textures, and other details. Please view addendum A for detailed comparison between SVG and VIM.

Thus, a strong motivation exists to find a compression algorithm that will offer the great advantages of vectored representation, without compromising the photo-realistic quality of the image. This will allow creating ultra-compressed photo-realistic animations, and motion pictures like synthetic video clips. This is especially needed for the MMS age, wherein new handsets are equipped with color screens, while the message size limitations permits carrying of only few frames using current formats such as GIF or JPEG.

Referring specifically to vimatix, the motivation to bring VIM into the 3GPP offerings is boosted by the fact that leading content and infrastructure providers are in the process of integrating the VIM technology and creating VIM-based applications, and they would like the phones to support VIM directly, and not only by J2ME player or transcoding to other formats.

3. Overview of the Technology

3.1 General Description

The core technology called ‘VIM’ (Vectored IMaging) is based on a mathematical model, representing all possible geometric and color distinct entities in an image. It uses only a few spanning element types, each having its own parameters. The various types, ordered by their relevant contribution to the visual quality of the image, represent different aspects regarding shapes and color behavior. Therefore, the full set of elements of an image, composes a vectored representation accurately expressing its visual content. VIM representation of images reduces their data size dramatically.

The core technology includes a “vectorization” tool, which automatically transforms raster images into VIM images, and various automatic and interactive processing tools.

Visual layers are simply composed of the VIM elements, and VIM oblects and background are composed of the layers. Skeletons having Animation sequences (defined by keyframes) are used to create the scene dynamics; actually, each object layer is optionally attributed with depth, skeleton and motion vectors. In such cases the objects become ‘characters’ or 'actors', which have animation scenarios. This allows options such as easily creating complex 3D representations or/and high quality animations or synthetic video with a very small data volume. The scene structure is similar to that of MPEG4 BIFS or other scene-composite scripts. The final information is efficiently coded to create the VIM file itself. Therefore the VIM file combines the data of the Layers and their depth, Skeletons, and Animation sequences (both spatial and color).

Since each type of the image elements has a known contribution to the visual quality of the entire image, an intelligent elimination of elements can be performed, in order to reduce the total data size of the image representation.

The player is doing the reverse operation: First the VIM file is decoded, than the layers and skeletons are reconstructed, after which the skeletons are animated by the animations sequence, and the animated skeletons animate the layers.

3.2 Advantages

- Suitable for advanced applications for mobile phones, such as games involving personalization of characters by assigning different skins (sometimes even the player figure itself as captured by a mobile phone camera!) to predefined libraries of skeletons and behaviors

- Photo-realistic quality

- Ultra compressed file size

- Skeleton attachment for intuitive manipulations, animation, and interactivity

- Suitable for powerful authoring tools, including easy separation of objects, motion tracking etc

-Inherent transcoding features for high-quality adaptation to various displays capabilities:

- Size scalability

- Color space adaptation

- Flexible frame-rate without losing motion quality

3.3 Examples

 Below three examples are given of VIM animations.

The first one has screen size 720x480 pixels (we chose large image size in order to demonstrate the technology will serve the mobile world through the evolution of displays), it is 15 seconds long and its file size is 13.5 KB. It combines a photo-realistic character, and a cartoon–like one, each character produced from a single still image. The next image demonstrates symbolically the VIM representation (the yellow lines denote edges and the red ones ridges). The full run of the animation is illustrated by 20 small-size sample frames.

[image: image1.png]

[image: image2.png]

[image: image3.png]

VIM animations can be scaled to any screen size. In particular, the above animation, scaled to 144x176 screen, takes about 3 KB.

The second example is a 128x192 pixels screen 10 seconds long animation, showing a “salto” by a photo-realistic character, prepared from a single image. Its file size is 4.2 KB. It is represented below by two sample frames.

[image: image4.png]

The third animation is a 65x96 pixels screen 10 seconds long animation, representing a motion of a dog, combined with a text animation. It illustrates one of possible multimedia cellular messaging applications. Its file size is 1.35 KB. It is represented below by two sample frames.

[image: image5.png]. Al Y

We believe that the file size of the above colored photo-realistic animations is much smaller than in any other available format.

4. Details of the Technology

4.1 Components of the VIM Image
VIM representation of images comprises:

1. Main representation level, including

· Characteristic lines (the lines, along which the image's visual pattern consistently repeats itself)

· “Crossings” and “splittings” of characteristic lines

· “Slow-scale” component (background)

· “Patches” which capture fine-scale textures

2. Aggregation level, including

· Aggregation of geometric data (according to the mutual position of curves and points in the basic level)

· Aggregation of brightness data (along the characteristic lines and inside the background components)

· Multi-scale representation of geometric and brightness and color data

3. Encoding level, including

· Quantization of all the parameters of the aggregated data

 - Loss-less statistical compression of the quantized parameters

Below we describe in detail the main representation level of VIM images.

Characteristic lines:

Characteristic lines are represented by their “central lines” and “brightness cross-sections”. The central line captures in the most accurate way the geometric shape of the characteristic line, while the brightness cross-section describes the brightness (color) behavior in the orthogonal sections of the line. The central line is given by a second or third order spline curve (preferably a second order). Cross-sections are given by a small number of model shape types, each characterized by a small number of parameters. Cross-sections are stored at some predefined “cross-section control points” on the central line, and interpolated between these control points. See Fig.2.

[image: image6.png]Fig. 2

Edges and ridges give the most important example of characteristic lines. The shape of their cross-sections is shown on Fig.1, A and B, respectively.

[image: image7.png]Edge Gross - Soction Ridgo Cross - Section

Fig. 1A Fig. 18

Crossings and Splittings:

Crossings of characteristic lines are represented by crossings of their central lines and by blending of their brightness values near the crossings. See Fig. 3.

[image: image8.png]Fig. 3

Splitting is a special type of crossing, where the characteristic line splits into two or more new characteristic lines, according to a splitting of the cross-section into the corresponding sub-pieces. See Fig. 4, A and B.

[image: image9.png]=
Fo. 4a o

g
==

Background:

(This term is used in many different situations. Below we use it to denote the part of the VIM image, “complementary” to the characteristic lines. It can be called also the “slow scale image component”).

Background is defined by the following elements:

1. Some of characteristic lines are defined as “separating” ones.

2. Some of the image components, completely bounded by separating characteristic lines or/and the image borders, are associated with their (single) background brightness (color) value. See Fig. 5.

[image: image10.png]Brightness 2

Fig. 5

3. A certain number of “background representing points” may be defined, each point carrying its brightness value. These values are further interpolated between the background representing points in such a way that the interpolation does not “cross” the separating characteristic lines. See Fig. 6.

[image: image11.png]FiQ. 6 neprecemion o
evien Pt

 The cross-section margin brightness values of the characteristic lines are blended with the background brightness values along the margins of the characteristic lines.

Patches:

Patches capture fine scale brightness maxima and minima. They are represented by Gaussian-shaped or parabolic-shaped mathematical models, blended with the background along their margins.

4.2 VIM Objects

VIM objects are composed of a single or several layers. Each layer is a complete VIM image or a part of a VIM image, bounded by a closed characteristic line (acting as its contour).

A 3D depth function can be associated to the layers comprising the VIM object, mapping them to the Z axis. A skeleton can be attached to every VIM object.

4.3 Transformations of the VIM images and VIM objects

Geometric transformations of the VIM images:

Geometric transformations of VIM images and objects comprise transformations of the characteristic lines and their cross-sections, of the background points and of the patches. In turn, the splines, representing the characteristic lines are transformed just by transforming their control points. The cross-sections are rescaled by the factor equal to the derivative of the transformation in the orthogonal direction to the line.

The background points and the centers of the patches are transformed directly, while the elliptic bases of the patch’s paraboloids are transformed by the differential of the original transformation at their centers.

Geometric transformations of VIM images and objects which appear in animations, result from the 3D motion of the viewer position (the camera) and from the proper motion of the image elements.

The Skeleton:

The main tool for defining proper geometric transformations (of a VIM object relative to itself) is given by a skeleton attached to the VIM object.

A skeleton is a collection of spline curves (possibly with crossings) roughly describing the object's general "mechanical" shape and structure, and capturing the repertoire of its possible motions. A skeleton is equipped with a “motion extension block” which imposes the skeleton motion to the VIM objects. On a higher level, the skeleton can be equipped with a “kinematics scheme”, restricting its possible motions and simplifying creation of complicated behaviors.

Fig. 7 represents a typical structure of the skeleton.

[image: image12.png]Fig. 7

4.4 Synthetic Video and Animation

Animation is an evolution of the VIM image components over time, optionally using keyframes and motion vectors. On the basic level, any parameter of the VIM representation can be gradually changed over time. A convenient way of creating object-animated motion uses the skeleton.

Interpolating consequent keyframes of the object skeleton along time creates the object animation. The sequence of the skeleton keyframes forms the animation scenario of the object. On a higher level, animation scenarios can be represented in a compact form using generalized motion vectors and high-level motion primitives.

Choosing the right keyframes and objects, and animating them over time to match the source video objects' dynamics, is the basis for the creation of synthetic video.

VIM objects, equipped with their skeletons and animation scenarios, can be further combined in animated 3D virtual worlds. Their structure is essentially compatible to the structure of MPEG4 scenes.

5. VIM players

5.1 Playing algorithm

The playing (rendering) algorithm is straightforward:

It can be seen that the playing process is composed of two main phases:

Phase#1: Animation elements reconstruction

Phase#2: Animation rendering

The following diagram describes the layers reconstruction algorithm:

5.2 Profiles

We suggest having the following profiles, based on the above two main phases of the VIM playing process:

VIM simple profile:

The animation elements reconstruction of all VIM elements is done prior to the animation rendering. This is suitable for messaging applications, and allows implementing VIM on handsets having a relatively slow CPU.

VIM direct profile:

The animation rendering of elements starts when the relevant elements reconstruction is finished. This allows using VIM for streaming and interactive applications, but needs more processing power at the handset.

6. Proposal

We propose to add the VIM format to 3GPP supported formats as defined by 26140-510 and other applicable specifications, to allow creating highly efficient synthetic video and photo-realistic animations for MMS.

7. References

M. Briskin, Y. Elichai, Y. Yomdin, “How can Singularity Theory help in Image Processing?”, In “Pattern Formation in Biology, Vision and Dynamics”, A. Carbone, M. Gromov and P. Prusinkiewitcz, Editors, World Scientific Publishers, 1999., pp. 392 – 423.

Addendum A: VIM and SVG

Below is a comparison table between SVG and VIM:

	Attribute
	VIM
	SVG

	Capturing and describing photo-realistic images
	+
	-

	Capturing animations
	+
	-

	2D graphics
	+
	+

	3D graphics
	Feasible (1)
	-

	Graphics libraries
	Feasible (2)
	+ (3)

	Photo-realistic compact background layer
	+
	-

	Text
	+
	+

	Keyframes animation
	+
	+

	Skeleton animation
	+
	-

	Procedural animation
	- (2)
	+

	Natural layered object support for natural animation
	+
	-

	Photo-realistic animation authoring tools
	+
	-

	Interactivity
	+
	+

	Translation
	To SVG (4)
	To VIM (4)

	Data Compactness
	Good
	Good

(1) VIM 3D along with photo realistic texture mapping would supply unmatched compactness for virtual photo-realistics 3D scenes

(2) Expected on future VIM version

(3) On mobile SVG, the graphics library is very limited

(4) Feasible by Vimatix, not implemented yet

A simple test case:

We have created a scene of a jet-plane flaying across a photo-realistic background. We have used Plazmic for the SVG clip authoring. Since Plazmic does not have the means to include a photo-realistic image over a background, we had to re-draw the jet-plan from simple graphics primitives. The resulted file sizes are:

Plazmic -

98.5 Kbytes

VIM -

5.7 Kbytes

Plazmic / VIM size ratio

17.3

Even in this simple example, VIM file size is about 6% of the SVG one. In case figures with internal dynamic would be used, the ratio is expected to be much higher; actually, we took the same background and added an animated text over it – while VIM was about the same in size, Plazmic resulted in over 400Kbytes file!

Summary:

Although SVG is a proven technology for simple animations, the VIM technology carries inherent elements fulfilling key needs for high quality photo-realistic animations.

VIM file decoding

Layers reconstruction

Skeletons reconstruction

Animations sequence reconstruction

Skeletons animation

Layers animation

Animation elements reconstruction

Animation rendering

Reconstruction of Characteristic Lines and their Cross-sections

Reconstruction of Geometric Partition of the Background and of the Background Representing Points

Reconstruction of Patches

Fine Aggregation of the Core VIM elements

This document is copyright of Vimatix Inc.

