3GPP TSG-S4 #21, TFO ad hoc
S4-020278
Rennes, France, 13-17 May 2002

S4-02TFO29R
	CR-Form-v6.1

	draft CHANGE REQUEST

	

	(

	TS 28.062
	CR
	019
	(

rev
	-
	(

Current version:
	5.0.0
	(

	
	Spec Title:
	Inband Tandem Free Operation (TFO) of speech codecs
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:
(

	Additional TFO_Message Elements for Immediate Codec Type Optimisation

	
	

	Source:
(

	Ericsson

	
	

	Work item code:
(

	TFO, AMR-WB
	
	Date: (

	2002-05-13

	
	
	
	
	

	Category:
(

	B
	
	Release: (

	REL-5

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	Optimised TFO establishment for alternative codecs, Version Handling.
The procedures defined in TS 28.062-500 are not general enough, but work only for AMR-NB. The corrections here extend this to all codec types.

	
	

	Summary of change:
(

	Addition of new elements in TFO Messages

	
	

	Consequences if
(

not approved:
	The default Codec Type Optimisation has to be used causing increased delay and reduced speech quality during TFO establishment.

	
	

	Clauses affected:
(

	7

	
	

	Other specs
(

	
	 Other core specifications
(

	

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	see accompanying document on " Immediate Codec Type Optimisation"

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

7
TFO Messages

The TFO Messages, introduced in clause 6, follow the generic IS_Message principle defined in annex A.

The following definitions are provided for the Sender side:
TFO_REQ (): Identifies the source of the message as a TFO capable device, using a defined Codec_Type.
TFO_REQ contains the following parameters ():

· the System_Identification of the sender;

· the specific Local_Signature of the sender;

· the Local_Used_Codec_Type at sender side;

· possibly additional attributes for the Local_Used_Codec_Type
· possibly additionally the TFO_Version
· possibly additionally alternative Codec_Types (short form of Codec_List)
· possibly additionally a future TFO_Extension.

TFO_ACK (): Is the response to a TFO_REQ Message.
TFO_ACK contains the corresponding parameters as TFO_REQ, except for the Local_Signature replaced by the Reflected_Signature, copied from the received TFO_REQ Message.
TFO_REQ_L (): Is sent in case of Codec Mismatch or for sporadic updates of information.
TFO_REQ_L contains the following parameters ():

· the System_Identification of the sender;

· the specific Local_Signature of the sender;

· the Local_Used_Codec_Type at sender side;

· the Local_Codec_List of alternative Codec_Types;

· possibly additional attributes for the used and the alternative Codec_Types
· possibly additionally the TFO_Version
· possibly additionally a future TFO_Extension
.

TFO_ACK_L (): Is the response to a TFO_REQ_L Message.
TFO_ACK_L contains the corresponding parameters as TFO_REQ_L, except for the Local_Signature replaced by the Reflected_Signature, copied from the received TFO_REQ_L Message.
TFO_TRANS (): Commands possible IPEs to let the TFO Frames pass transparently within the LSB (8 kbit/s) or the two LSBs (16 kbit/s) or the four LSBs (32kbit/s). TFO_TRANS contains the following parameter ():

· the Local_Channel_Type (8 kbit/s or 16 kbit/s or 32 kbit/s).

TFO_NORMAL: Commands possible IPEs to revert to normal operation.
TFO_NORMAL has no parameters.

TFO_DUP: Informs the distant partner that TFO Frames are received, while still transmitting PCM samples.
TFO_DUP has no parameters.

TFO_SYL: Informs the distant partner (if still possible) that TFO Frames are no longer received.
TFO_SYL has no parameters.

TFO_FILL: Message without specific meaning, used to pre-synchronise IPEs or to bridge over gaps in TFO protocols. TFO_FILL has no parameters.

7.1
Extendibility

A mechanism for future extensions is defined in a way that existing implementations in the field shall be able to ignore future, for them unknown Codec_Types and their potential attributes. The existing implementations shall be able to decode the remainder of the messages (which is known to them) uncompromised. This mechanism allows to extent:

· the number of Local_Used_Codec_Types from 15 (short form) up to 255 (long form) for one System_Identification;

· the Codec_List;

· the Codec_Attributes (if needed).

In case of the TFO_REQ or TFO_ACK messages the attributes of the Local_Used_Codec_Type shall be sent in the codec specific way, without a preceding Codec_Attribute_Head Extension_Block. Existing equipment, that do not know a future Codec_Type and therefore do not know if and how many attribute Extension_Blocks do follow, shall skip these Extension_Blocks, until they find a TFO Message Header again. Similarly, if future Extension_Blocks to a known Codec_Type are detected, existing equipment shall skip these Extension_Blocks, until they find a TFO Message Header again.
In case of the TFO_REQ_L or TFO_ACK_L Messages the simple Codec_List shall be sent immediately after the SIG_LUC and possible Codec_x Extension_Blocks. Then the attributes of all alternative Codec_Types shall follow. Each set of codec attributes shall be preceded by the Codec_Attribute_Head Extension_Block (with Codec_Type Identifier and Length Indicator) followed by the Codec specific attributes.

7.2
Regular and Embedded TFO Messages

A TFO Message is called "regular", if it is sent inserted into the PCM sample stream. A TFO Message is called "embedded", if it is embedded into a TFO Frame. The bit stealing scheme, as defined in Annex A, is identical for regular and embedded TFO Messages. The EMBED bit of the TFO Frames (see clause 5) indicates if the TFO Frame contains an embedded TFO Message. Due to the specific construction of the TFO Messages, they replace some of the synchronisation bits of the TFO Frames. Consequently, the TFO Frame synchronisation pattern will be affected by the presence of an embedded TFO Message, without compromising the synchronisation performances. Data and other control bits of the TFO Frames are not affected by embedded TFO Messages.

7.3
Cyclic Redundancy Check

The Extension_Blocks, defined in the following clauses, shall be protected by three CRC parity bits. These shall be generated as defined in the 3GPP TS 48.060 for the Enhanced Full Rate. For simplicity the present document is reprinted here:

"These parity bits are added to the bits of the subset, according to a degenerate (shortened) cyclic code using the generator polynomial:

g(D) = D3 + D + 1

The encoding of the cyclic code is performed in a systematic form which means that, in GF(2), the polynomial:

d(m)Dn + d(m+1)Dn‑1 ++ d(m + n‑3)D3 + p(0)D2 + p(1)D + p(2)

where p(0), p(1), p(2) are the parity bits, when divided by g(D), yields a remainder equal to:

1 + D + D2

For every CRC, the transmission order is p(0) first followed by p(1) and p(2) successively."

In case of Extension_Blocks, p(0)..p(2) are mapped to bits 16..18.

7.4
TFO_REQ Messages

Symbolic Notation:
TFO_REQ
(Sys_Id, LSig, Local_Used_Codec_Type[, Used_Codec_Attributes])
TFO_REQ_L
(Sys_Id, LSig, Local_Used_Codec_Type, Codec_List [, Alternative_Codec_Attributes])

The TFO_REQ Messages conform to the IS_REQ Message format, defined in the Annex A, with IS_System_Identification, followed by the SIG_LUC Extension_Block, optionally the Codec_x Extension_Block, the Codec_List Extension_Block(s) and the Codec_Attribute Extension_Blocks.

The shortest TFO_REQ takes 140 ms for transmission, see Figure 7.4-1.
The shortest TFO_REQ_L takes 180 ms (Figure 7.4-2).

[image: image1.wmf]Header

REQ

SYS_ID

SIG, LUC, S

20bits

40ms

20bits

40ms

20bits

40ms

10bits

20ms

Figure 7.4-1: Construction of the shortest possible TFO_REQ Message

[image: image2.wmf]Header

REQ

SYS_ID

SIG, LUC,

L

20bits

40ms

20bits

40ms

20bits

40ms

20bits

40ms

10bits

20ms

Codec_List

Figure 7.4-2: Construction of the shortest possible TFO_REQ_L Message

[image: image3.wmf]Header

REQ

SYS_ID

SIG,

Cex

, S

20bits

40ms

20bits

40ms

20bits

40ms

10bits

20ms

U,

Codec_x

Attrib_1

20bits

40ms

20bits

40ms

Attrib_2

Attrib_3

20bits

40ms

20bits

40ms

Figure 7.4-3: Example of a TFO_REQ Message with a Codec with an index higher than 15 and with three Attribute Extension_Blocks (300 ms length)

[image: image4.wmf]Header

REQ

SYS_ID

SIG, LUC,

L

20bits

40ms

20bits

40ms

20bits

40ms

10bits

20ms

Codec_List

Atrib_Head

20bits

40ms

20bits

40ms

Attrib_1

Attrib_2

20bits

40ms

20bits

40ms

Figure 7.4-4: Example of a TFO_REQ_L Message with Codec_List and one alternative Codec with two Attribute Extension_Blocks (300 ms length)
A TFO_REQ (TFO_ACK) may have an additional TFO_Version Extension_Block that contains the TFO_Version.Subversion and a Selector. This Selector may indicate future extensions to TFO_REQ (TFO_ACK), which may require further additional Extension_Blocks following the TFO_Version, see figure 7.4-5
.

[image: image5.wmf]

Header

REQ

SYS_ID

SIG, LUC, S

20bits

40ms

20bits

40ms

10bits

20ms

20bits

40ms

Sel, Ver.Sver

20bits

40ms

addit. Ext.

20bits

40ms

Figure 7.4-5: Construction of a TFO_REQ Message with Selector, TFO_Version.Subversion
and one additional Extension_Block
7.4.1
Definition of the SIG_LUC Extension_Block

The SIG_LUC Extension_Block consists of 20 bits, as defined in Table 7.4.1-1. It shall always follow immediately after the SYS_ID Extension_Block. It differentiates a TFO_REQ from a TFO_REQ_L message and a TFO_ACK from a TFO_ACK_L message.

The Codec_x Extension_Block shall also be used in TFO_REQ or TFO_REQ_L messages if the Local_Used_Codec_Type has a CoID higher than 14.

Table 7.4.1-1: SIG_LUC Extension_Block

	Bit
	Description
	Comment

	Bit 1
	"0"

	normal IS-Message Sync Bit, constant.

	Bit 2
	List_Ind
	Indicates, whether the Codec_List is included in the TFO Message or not

0: S: TFO_REQ or TFO_ACK: Codec_List is not included (short)

1: L: TFO_REQ_L or TFO_ACK_L: Codec_List is included (long)

	Bit 3..10
	Sig
	An 8-bit random number to facilitate the detection of circuit loop back conditions and to identify the message source

	Bit 11

	"0"
	normal IS-Message Sync Bit, constant

	Bit 12.. 15:
	Codec_Type
CoID_s

(short form)
	Identifies the Local_Used_Codec_Type, which is currently used by the sender

0000…1110: reserved for 15 Codec_Types
1111: Codec_x Extension_Block follows immediately

	Bit 16..18:
	CRC
	3 CRC bits protecting Bits 2 to 10 and 12 to 15

	Bit 19..20:
	EX

EX == "0.0"

EX == "1.1"
	The normal 2 bits for IS_Message Extension.

No other extension block follows

An other extension block follows

7.4.2
Definition of the Codec_x Extension_Block

The Codec_x Extension_Block, if present, always follows the SIG_LUC Extension_Block. It consists of 20 bits, as defined in Table 7.4.2-1. It shall follow always immediately after the SIG_LUC Extension_Block, if the Codec_Type field is set to "1111".

Table 7.4.2-1: Codec_x Extension_Block

	Bit
	Description
	Comment

	Bit 1
	"0"

	normal IS-Message Sync Bit, constant.

	Bit 2
	Codec_Sel
	Differentiates the Codec_x Extension_Block
0: U: Used_Codec_Type is defined in Codec_Type_x field

1: Reserved

	Bit 3..10
	Codec_Type_x
CoID

(long form)
	Identifies the Local_Used_Codec_Type, which is currently used by the sender

0000.0000 … 1111.1111 reserved for 255 Codec_Types
0000.1111 is undefined and shall not be used.

	Bit 11
	"0"
	normal IS-Message Sync Bit, constant

	Bit 12.. 15:
	"1010"
	Reserved for future use, set to "1010" to minimise audible effects

	Bit 16..18:
	CRC
	3 CRC bits protecting Bits 2 to 10 and 12 to 15

	Bit 19..20:
	EX
	The normal 2 bits for IS_Message Extension.

00: No other extension block follows

11: An other extension block follows

7.4.3
Definition of the Codec_List_Extension_Block

The Codec_List Extension_Block is used in a TFO_REQ_L, TFO_ACK_L messages to list the supported Codec_Types. It consists of 20 bits, as defined in Table 7.4.3-1. The Codec_List must at least contain the Local_Used_Codec_Type. If a system supports more than 12 Codec_Types, then other Codec_List Extension_Blocks (Table 7.4.3-2) may follow.

Table 7.4.3-1: Codec_List Extension Block

	Bit
	Description
	Comment

	Bit 1
	"0"

	Normal IS-Message Sync Bit, constant.

	Bit 2..10
	Codec_List_1
	First part of Codec_List. For each Codec_Type one bit is reserved.
If the bit is set to "0" then the specific Codec_Type is not supported;
if the bit is set to "1" then the specific Codec_Type could be used.

	Bit 11

	"0"
	Normal IS-Message Sync Bit, constant

	Bit 12.. 14:
	Codec_List_2
	Second part of the Codec_List; All three bits are reserved for future Codec_Types (up to Codec_Type 12)

	Bit 15
	Codec_List_x
	If set to "1" a further Codec_List Extension_Block follows;
otherwise set to "0"

	Bit 16..18:
	CRC
	3 CRC bits protecting Bits 2 to 10 and 12 to 15

	Bit 19..20:
	EX
	The normal 2 bits for IS_Message Extension:

00: No other extension block follows

11: An other extension block follows

Table 7.4.3-2: Further Codec_List Extension Block(s)

	Bit
	Description
	Comment

	Bit 1
	"0"

	normal IS-Message Sync Bit, constant.

	Bit 2..10
	Codec_List_1x
	First part of Codec_List. For each Codec_Type one bit is reserved.
If the bit is set to "0" then the specific Codec_Type is not supported;
if the bit is set to "1" then the specific Codec_Type could be used.

Bit 2: Codec_Type 13 (+ x*12; x=1..2..3)
Bit 4: Codec_Type 14 (+ x*12; x=1..2..3)
and so on

	Bit 11

	"0"
	normal IS-Message Sync Bit, constant

	Bit 12.. 14:
	Codec_List_2x
	Second part of the Codec_List; All three bits are reserved for future Codec_Types (up to Codec_Type 24 (+x*12; x=1..2..3)

	Bit 15
	Codec_List_xx
	If set to "1" a further Codec_List Extension_Block follows;
otherwise set to "0"

	Bit 16..18:
	CRC
	3 CRC bits protecting Bits 2 to 10 and 12 to 15

	Bit 19..20:
	EX
	The normal 2 bits for IS_Message Extension:

00: No other extension block follows

11: An other extension block follows

7.4.4
Definition of the Codec_Attribute_Head Extension_Block

The Codec_Attribute_Head Extension_Block (Table 7.4.4-1) shall precede the Codec Attribute Extension_Blocks of a Codec_Type, if this Codec_Type needs additional attributes. This Codec_Attribute_Head identifies the Codec_Type and the number of additional Extension_Blocks to follow.

Table 7.4.4-1: Codec_Attribute_Head Extension_Block

	Bit
	Description
	Comment

	Bit 1
	"0"

	normal IS-Message Sync Bit, constant.

	Bit 2
	PAR_Sel
	Differentiates this Extension_Block
0: Parameters included in PAR field: Simple Codec_List_Extension
1: Length Indicator (LI) included: Parameters follow in subsequent Extension_Blocks

	Bit 3..10
	CoID
	This field identifies the Codec_Type for which the subsequent attributes are valid. The same coding as in the Codec_x Extension_Block is used (long form)

	Bit 11

	"0"
	normal IS-Message Sync Bit, constant

	Bit 12.. 15:
	LI / PAR
	If Par_Sel==1: LI: Length Indicator:
0000: reserved;
0001: one other Extension_Block follows, etc.
If Par_Sel==0: PAR: Codec specific definition of these four bits

	Bit 16..18:
	CRC
	3 CRC bits protecting Bits 2 to 10 and 12 to 15

	Bit 19..20:
	EX
	The normal 2 bits for IS_Message Extension:

00: No other extension block follows

11: An other extension block follows

NOTE:
This Extension_Block shall be used for the codecs introduced in the future that need attributes. It shall precede the Attribute Extension_Blocks. This allows earlier versions to skip the blocks they do not understand. It shall not be used for the GSM_FR, GSM_HR and GSM_EFR Codec_Types.
7.4.5
Definition of the TFO_Version Extension_Block

The TFO_Version Extension_Block (Table 7.4.5-1) contains the "TFO_Version" (4 bit), the "TFO_Subversion" (4 bit) and a "Selector" (5bit). The TFO_Version Extension Block (and the additional Extension_Blocks indicated by the Selector, if any, see below) shall always be the last of Extension_Blocks of a TFO_REQ or TFO_REQ_L (or TFO_ACK or TFO_ACK_L) message. This is necessary to provide compatibility with older versions, which must be able to skip these Extension_Blocks without being effected negatively.
The TFO_Version and TFO_Subversion are specified in Annex H. A TFO implementation of Release 5 or onwards shall send this TFO_Version. If it is omitted then a TFO_Version lower than 5 shall be assumed by the receiving side.
The Selector is used to indicate the type of extension and the number of additional extension blocks (if any). The Selector code "00000" indicates that no further extension is followig.

The Selector code "10101" is not allowed to provide improved distinction against the TFO_Header.

7.4.5.1
Selector for Alternative Codecs
If the Selector is set to "00001" then this indicates that alternative codec types are supported, which are specified in additional Extension_Blocks following the TFO_Version Extension_Block. This Selector shall not be used in TFO_REQ_L or TFO_ACK_L messages, since equivalent information would then already be provided in the Codec_List Extension_Block. It shall only be used in TFO_REQ or TFO_ACK messages to provide information on alternative codec types in an early stage of the TFO protocol, i.e., before TFO is established. For each alternative Codec_Type that is offered during TFO negotiation, one Codec_Attribute_Head Extension_Block shall be included. If the specified Codec_Type requires additional attributes then the required number of Codec_Attribute Extension_Blocks follow after the Codec_Attribute_Head Extension_Block. The list of alternative Codec_Types is terminated when the EX bits indicate no further Extension_Blocks (00) and the next TFO Message Header is following.
Table 7.4.5-1: TFO_Version Extension_Block

	Bit
	Description
	Comment

	Bit 1
	"0"

	normal IS-Message Sync Bit, constant.

	Bit 2..6
	Selector
	Indicates if and which further extension_blocks are following.
Coding for bits 2.3.4.5.6:

00000: nothing is following after this TFO_Version
00001: One (or more) alternative Codec Type(s) is (are) following, 10101: reserved (used by the IS_Header)
all other codes: reserved for future use.

	Bit 7..10
	Ver
	This field contains the TFO_Version number as specified in Annex H

	Bit 11

	"0"
	normal IS-Message Sync Bit, constant

	Bit 12.. 15:
	Sver
	This field contains the TFO_Subversion number as specified in Annex H

	Bit 16..18:
	CRC
	3 CRC bits protecting Bits 2 to 10 and 12 to 15

	Bit 19..20:
	EX
	The normal 2 bits for IS_Message Extension:

00: No other extension block follows

11: An other extension block follows

7.5
TFO_ACK Messages

Symbolic Notation:
TFO_ACK
(Sys_Id, RSig, Local_Used_Codec_Type [, Used_Codec_Attributes])
TFO_ACK_L
(Sys_Id, RSig, Local_Used_Codec_Type, Codec_List [, Alternative_Codec_Attributes]).

The TFO_ACK Messages conform to the IS_ACK Message, defined in the Annex A, with IS_System_Identification, followed by the SIG_LUC Extension_Block, and optionally the Codec_x Extension_Block, the Codec_List Extension_Block(s) and the Codec_Attribute Extension_Blocks.

TFO_ACK and TFO_REQ Messages differ only in the ACK / REQ Command block and the construction of the Signature: Local_Signature in case of TFO_REQ, Reflected_Signature in case of TFO_ACK. All extension blocks defined for the TFO_REQ are valid as well for TFO_ACK.

The shortest TFO_ACK takes 140 ms for transmission.
The shortest TFO_ACK_L takes 180 ms.

7.6
TFO_TRANS Messages

Symbolic Notation: TFO_TRANS (Channel_Type).

Two TFO_TRANS Messages are defined in conformity to the IS_TRANS Messages in Annex A.
For 8 kbit/s submultiplexing the "TFO_TRANS (8k)" is used and is identical to "IS_TRANS_1_u".
For 16 kbit/s submultiplexing the "TFO_TRANS (16k)" is used and is identical to "IS_TRANS_2_u".

For 32 kbit/s submultiplexing the ”TFO_TRANS (32k)” is used and is identical to ”IS_TRANS_4_u”.

TFO_TRANS() takes 100 ms for transmission.

In most cases the respective TFO_TRANS Message shall be sent twice: once as a regular TFO Message, exactly before any series of TFO Frames, and once embedded into the first TFO Frames, see clause 10.

7.7
TFO_NORMAL Message

Symbolic Notation: TFO_NORMAL.

The TFO_NORMAL Message is identical to the IS_NORMAL Message defined in the Annex A.

It shall be sent at least once whenever an established Tandem Free Operation needs to be terminated in a controlled way.

TFO_NORMAL takes 100 ms for transmission.

7.8
TFO_FILL Message

Symbolic Notation: TFO_FILL.

The TFO_FILL Message is identical to the IS_FILL Message, defined in the Annex A.

TFO_FILL may be used to pre-synchronise IPEs. Since IS_FILL is one of the shortest IS Messages, this is the fastest way to synchronise IPEs, without IPEs swallowing other protocol elements. By default three TFO_FILL messages shall be sent at the beginning; this number may be, however, configuration dependent.

One TFO_FILL takes 60 ms for transmission.

7.9
TFO_DUP Message

Symbolic Notation: TFO_DUP

The TFO_DUP Message is identical to the IS_DUP Message, defined in Annex A.

TFO_DUP informs the distant TFO Partner, that TFO Frames have been received unexpected, e.g. during Establishment. This enables a fast re-establishment of TFO after a local handover.

TFO_DUP takes 60 ms for transmission.

7.10
TFO_SYL Message

Symbolic Notation: TFO_SYL

The TFO_SYL Message is identical to the IS_SYL Message, defined in Annex A.

TFO_SYL informs the distant TFO Partner, that tandem free operation has existed, but suddenly no TFO Frames were received anymore. This enables a fast re-establishment of TFO after a distant handover.

TFO_SYL takes 60 ms for transmission.

7.11
Specification of the TFO Messages

7.11.1
Codec_Types
The Codec_Types are defined according to 3GPP TS 26.103, table 6.3-1.

The short form (CoID_s) exists for all Codec_Types with indices below 15 and consists of the last four bits (LSBs) of the long form (CoID).

7.11.2
Codec_List
The Codec_List is defined according to 3GPP TS 26.103. The mapping into the Codec_List Extension block shall be as follows: bit 1 of octet 1 shall be placed into Bit 2 of the Codec_List Extension block, and so on until bit 4 of octet 2 shall be placed into Bit 14.

If more than 12 Codec Types are contained in the Codec_List, then Bit 15 of the first Codec_List Extension block shall be set to "1" and an further Codec_List Extension block shall be added for the next 12 Codec Types.

7.11.3
Codec_Type Attributes
The Codec_Types GSM Full Rate, GSM Half Rate and GSM Enhanced Full Rate do not need additional attributes. They are fully defined by the System_Identification (see Annex A.5) and the Codec_Type.

7.11.3.1
AMR Codec_Type Attributes

The Adaptive Multi-Rate Codec_Types (FR_AMR, HR_AMR, UMTS_AMR, UMTS_AMR_2) and the Adaptive Multi-Rate Wideband Codec_Types (FR_AMR-WB and UMTS_AMR-WB) need several attributes within the TFO_REQ and TFO_ACK as well as in the TFO_REQ_L and TFO_ACK_L Messages. For Con_Req and Con_Ack frames see Annex C.

There are two major kinds of attributes: the ACS (Active Codec Set) and potentially the SCS (Supported Codec Set).

The ACS is related to the Local_Used_Codec_Type and is part of the Used_Codec_Attributes. One and exactly one ACS shall be sent in all cases where the Local_Used_Codec_Type is FR_AMR, HR_AMR, UMTS_AMR, or UMTS_AMR_2, FR_AMR-WB or UMTS_AMR-WB within one ACS_Extension_Block. This ACS_Extension_Block carries some more parameters, as defined in the next clause, the most important one is the "Full_Sub" flag, indicating whether or not the full set or a sub-set of the AMR (AMR-WB) is supported. In TFO_REQ and TFO_ACK Messages the ACS shall follow immediately after the SIG_LUC_Extension_Block. In TFO_REQ_L and TFO_ACK_L Messages an Attribute_Head_Extension_Block shall follow after the Local_Codec_List, indicating the Codec_Type it specifies, followed by the corresponding ACS_Extension_Block.

The SCS shall be sent in TFO_REQ or TFO_ACK only if the ACS_Extension_Block indicates that the sending side does not support the full set of AMR codec modes, but a subset (Full_Sub flag). In this case the SCS_Extension_Block shall follow immediately after the ACS_Extension_Block.
NOTE 1:
Hence, the TFO_Protocol can decide immediately after the reception of TFO_REQ or TFO_ACK whether TFO is possible or not, and can report the distant TFO parameters to the Control Entity in the Network.

One and only one ACS_Extension_Block is included in TFO_REQ_L and TFO_ACK_L, if the Local_Used_Codec_Type is FR_AMR, HR_AMR, UMTS_AMR or UMTS_AMR_2, FR_AMR-WB or UMTS_AMR-WB. In addition, one SCS_Extension_Block is needed for each AMR Codec_Type flagged in the Local_Codec_List. In that case an Attribute_Head_Extension_Block shall follow after the Local_Codec_List, indicating the Codec_Type it specifies, followed by the corresponding SCS_Extension_Block. If multiple AMR_Codec_Types are flagged, then multiple Attribute_Heads and SCS_Extension_Blocks may be needed. If the full set of AMR Codec Modes is supported, then neither the Attribute_Head nor the SCS_Extension_Block shall be sent for the alternative Codec_Type(s).

The following figures give the examples for the full-set AMR TFO Messages.

[image: image6.wmf]Header

REQ

SYS_ID

SIG, LUC,

S

20bits

40ms

20bits

40ms

20bits

40ms

20bits

40ms

10bits

20ms

ACS, CC,

VER, F

Figure 7.11.3.1-1:
Construction of the shortest possible TFO_REQ Message for any AMR Codec Type

TFO_ACK follows the same construction. Both have a length of 180ms.

[image: image7.wmf]Header

REQ

SYS_ID

SIG, LUC,

L

20bits

40ms

20bits

40ms

20bits

40ms

10bits

20ms

Codec_List

Atrib_Head

20bits

40ms

20bits

40ms

ACS, CC,

VER, F

20bits

40ms

Figure 7.11.3.1-2:
Construction of the shortest possible TFO_REQ_L Message listing an AMR Codec_Type in the Codec_List

TFO_ACK_L follows the same construction. Both have a length of 260ms.

NOTE 2:
In TFO_REQ_L (TFO_ACK_L) at least one Attribute_Head is needed, if the Local_Used_Codec_Type is AMR or AMR-WB, because otherwise a TFO partner that does not know the Local_Used_Codec_Type cannot know how many attributes are needed – if any. Since these longer messages are used only when mismatch is identified or in other situations, where protocol speed is not important, this additional 40ms message length is not important.

In the worst case in GSM, when both AMR Codec_Types and the FR_AMR-WB are flagged in the Codec_List, but none supports the full set, then seven Extention_Blocks need to follow after the Codec_List.

Example: FR_AMR == Local_Used_Codec_Type: Attribute_Head(FR_AMR) – ACS(FR_AMR) – SCS(FR_AMR) – Attribute_Head(HR_AMR) – SCS(HR_AMR) – Attribute_Head(FR_AMR-WB) – SCS(FR_AMR-WB)

7.11.3.1.1
AMR Active_Codec_Set Attributes

One AMR_ACS (AMR-WB_ACS) Extension_Block shall be added in the TFO_REQ and TFO_ACK messages after the SIG_LUC Extension_Block if an AMR (AMR-WB) Codec_Type is used as the Local_Used_Codec_Type.

Table 7.11.3.1.1-1: AMR_ACS Extension_Block

	Bit
	Description
	Comment

	Bit 1
	"0"
	Normal IS-Message Sync Bit, constant.

	Bit 2..9
	Active Codec Set

(NB_ACS)
	Active Codec Set: For each Codec_Mode of the AMR one bit is reserved. If the bit is set to "0" then the specific Codec_Mode is not in the ACS, otherwise it is in and may be used by the adaptation algorithm.
Bit 2: AMR_Mode 12,2 kbit/s (undefined for HR_AMR)
Bit 3: AMR_Mode 10,2 kbit/s (undefined for HR_AMR)

Bit 4: AMR_Mode 7,95 kbit/s

Bit 5: AMR_Mode 7,40 kbit/s

Bit 6: AMR_Mode 6,70 kbit/s

Bit 7: AMR_Mode 5,90 kbit/s

Bit 8: AMR_Mode 5,15 kbit/s

Bit 9: AMR_Mode 4,75 kbit/s

	Bit 10
	Full_Sub
(NB_F/S)
	0: Full Set supported, NB_SCS is not following

1: Subset only supported, NB_SCS is following immediately

	Bit 11
	"0"
	Normal IS-Message Sync Bit, constant

	Bit 12
	spare

	set to "1"

	Bit 13
	Optimisation Mode
(NB_OM)

	ACS Optimisation Mode

 0 No ACS Change supported

 1 ACS change supported

	Bit 14 & 15
	NB_Ver
	Version Number of the AMR-NB TFO Scheme

Bit 15 is equivalent to the ATVN in Configuration Frames, see Annex C

	Bit 16..18
	CRC
	3 CRC bits protecting Bits 2 to 10 and 12 to 15

	Bit 19..20:
	EX
	The normal 2 bits for IS_Message Extension:

00: No other extension block follows

11: An other extension block follows (i.e. SCS)

Table 7.11.3.1.1-2: AMR-WB_ACS Extension_Block

	Bit
	Description
	Comment

	Bit 1
	”0”
	Normal IS-Message Sync Bit, constant.

	Bit 2..10
	Active Codec Set

(WB_ACS)
	Active Codec Set: For each Codec_Mode of the AMR-WB one bit is reserved. If the bit is set to ”0” then the specific Codec_Mode is not in the ACS, otherwise it is in and may be used by the adaptation algorithm.
Bit 2: AMR-WB_Mode 23.85 kbit/s
Bit 3: AMR-WB_Mode 23.05 kbit/s

Bit 4: AMR-WB_Mode 19.85 kbit/s

Bit 5: AMR-WB_Mode 18.25 kbit/s

Bit 6: AMR-WB_Mode 15.85 kbit/s

Bit 7: AMR-WB_Mode 14.25 kbit/s

Bit 8: AMR-WB_Mode 12.65 kbit/s

Bit 9: AMR-WB_Mode 8.85 kbit/s

Bit 10: AMR-WB_Mode 6.60 kbit/s

	Bit 11
	”0”
	Normal IS-Message Sync Bit, constant

	Bit 12
	Full_Sub
(WB_F/S)
	0: Full Set supported, WB_SCS is not following.

1: Subset only supported, WB_SCS is following immediately

	Bit 13
	Optimisation Mode
(WB_OM)

	ACS Optimisation Mode

0: No ACS Change supported

1: ACS Change supported

	Bit 14
	spare

	set to "1"

	Bit 15
	spare

	set to "1"

	Bit 16..18
	CRC
	3 CRC bits protecting Bits 2 to 10 and 12 to 15

	Bit 19..20:
	EX
	The normal 2 bits for IS_Message Extension:

00: No other extension block follows

11: An other extension block follows (i.e. SCS)

7.11.3.1.2
AMR Supported_Codec_Set Attributes

The AMR_SCS (AMR-WB_SCS) Extension_Block contains the information on the AMR (AMR-WB) Supported Codec Set. It shall be omitted, if the full set is supported. Table 7.11.3.1.2-1 gives the description of the SCS Extension_Block.

For the Local_Used_Codec_Type the SCS Extension_Block shall follow immediately after the corresponding ACS Extension_Block. In that case the Full_Sub flag shall be set within the ACS Extension_Block. For alternative Codec_Types, as flagged in the Local_Codec_List, the SCS shall follow immediately after the corresponding Attribute_Head Extension_Block.

NOTE:
The VERsion numbers in ACS and SCS Extension_Blocks shall be identical for one Codec_Type, but may be different for different Codec_Types (e.g. FR_AMR and HR_AMR or FR_AMR-WB).

Table 7.11.3.1.2-1: AMR_SCS Extension_Block

	Bit
	Description
	Comment

	Bit 1
	"0"
	Normal IS-Message Sync Bit, constant.

	Bit 2…9
	Supported Codec Set
(NB_SCS)
	Supported Codec Set: For each Codec_Mode of the AMR one bit is reserved. If the bit is set to "0" then the specific Codec_Mode is not supported; if the bit is set to "1" then the specific Codec_Mode is supported and may be considered for the optimisation of the common ACS.

Bit 2: AMR_Mode 12,2 kbit/s (undefined in SCS(H))
Bit 3: AMR_Mode 10,2 kbit/s (undefined in SCS(H))

Bit 4: AMR_Mode 7,95 kbit/s

Bit 5: AMR_Mode 7,4 kbit/s

Bit 6: AMR_Mode 6,7 kbit/s

Bit 7: AMR_Mode 5,9 kbit/s

Bit 8: AMR_Mode 5,15 kbit/s
Bit 9: AMR_Mode 4,75 kbit/s

	Bit 10
	NB_MACS MSB
	See comment for Bit 12…13

	Bit 11
	"0"
	normal IS-Message Sync Bit, constant

	Bit 12…13
	NB_MACS LSBs
	The maximally supported number of Codec_Modes in this radio leg. Coding for bits 10.12.13:

"0.0.1" 1 Mode

"0.1.0" 2 Modes

"0.1.1" 3 Modes

"1.0.0" 4 Modes

"1.0.1" 5 Modes

"1.1.0" 6 Modes

"1.1.1" 7 Modes

"0.0.0" 8 Modes

	Bit 14…15
	NB_Ver
	Version Number of the AMR TFO Scheme for that Codec_Type

Bit 15 is equivalent to the ATVN in Configuration Frames, see Annex C

	Bit 16..18
	CRC
	3 CRC bits protecting Bits 2 to 10 and 12 to 15

	Bit 19 20
	EX
	The normal 2 bits for IS_Message Extension:

00: No other extension block follows

11: An other extension block follows

Table 7.11.3.1.2-2: AMR-WB_SCS Extension_Block

	Bit
	Description
	Comment

	Bit 1
	”0”
	Normal IS-Message Sync Bit, constant.

	Bit 2…10
	Supported Codec Set
(WB_SCS)
	Supported Codec Set: For each Codec_Mode of the AMR-WB one bit is reserved. If the bit is set to ”0” then the specific Codec_Mode is not supported; if the bit is set to ”1” then the specific Codec_Mode is supported and may be considered for the optimisation of the common WB_ACS.

Bit 2: AMR-WB_Mode 23.85 kbit/s
Bit 3: AMR-WB_Mode 23.05 kbit/s

Bit 4: AMR-WB_Mode 19.85 kbit/s

Bit 5: AMR-WB_Mode 18.25 kbit/s

Bit 6: AMR-WB_Mode 15.85 kbit/s

Bit 7: AMR-WB_Mode 14.25 kbit/s

Bit 8: AMR-WB_Mode 12.65 kbit/s

Bit 9: AMR-WB_Mode 8.85 kbit/s

Bit 10: AMR-WB_Mode 6.60 kbit/s

	
	
	

	Bit 11
	”0”
	normal IS-Message Sync Bit, constant

	Bit 12…14
	WB_MACS
	The maximally supported number of Codec_Modes in this radio leg. Coding:

"0.0.1" 1 Mode

"0.1.0" 2 Modes

"0.1.1" 3 Modes

“1.0.0” 4 Modes

“1.0.1” 5 Modes

”1.1.0” 6 Modes

”1.1.1” 7 Modes

"0.0.0" 8 Modes

	Bit 15
	spare

	set to "1"

	Bit 16..18
	CRC
	3 CRC bits protecting Bits 2 to 10 and 12 to 15

	Bit 19 20
	EX
	The normal 2 bits for IS_Message Extension:

00: No other extension block follows

11: An other extension block follows

7.11.3.1.3
AMR specific Codec_Attribute_Head Extension_Block
The AMR specific Codec_Attribute_Head Extension_Block (Table 7.11.3.1.3-1) shall precede the Codec Attribute Extension_Blocks of any AMR Codec_Type.

If PAR_Sel is set to "0" then one of 16 possible AMR Configurations is indicated in the
PAR field and no additional Codec Attribute Extension_Blocks do follow.
Coding for PAR (bits 12.13.14.15):
0000: AMR_ACS with 10.2 / 6.70 / 5.90 / 4.75, NB_FS set to "0" and OM set to "0".
0001: AMR_ACS with 10.2 / 6.70 / 5.90 / 4.75, NB_FS set to "0" and OM set to "1".
0010: AMR_ACS with 7.4 / 6.70 / 5.90 / 4.75, NB_FS set to "0" and OM set to "0".
0011: AMR_ACS with 7.4 / 6.70 / 5.90 / 4.75, NB_FS set to "0" and OM set to "1".

other: reserved for future use.

If PAR_Sel is set to "1" then the AMR_ACS and potentially AMR_SCS is/are following.
Table 7.11.3.1.3-1: AMR specific Codec_Attribute_Head Extension_Block

	Bit
	Description
	Comment

	Bit 1
	"0"

	normal IS-Message Sync Bit, constant.

	Bit 2
	PAR_Sel
	Differentiates this Extension_Block
0: Parameters included in PAR field: Simple Codec_List_Extension
1: Length Indicator (LI) included: Parameters follow in subsequent Extension_Blocks

	Bit 3..10
	CoID =
HR_AMR or
FR_AMR or
UMTS_AMR or
UMTS_AMR2 or
OHR_AMR
	This field identifies the AMR Codec_Type for which the subsequent attributes are valid. The same coding as in the Codec_x Extension_Block is used (long form)

	Bit 11

	"0"
	normal IS-Message Sync Bit, constant

	Bit 12.. 15:
	LI / PAR
	If Par_Sel==1: LI: Length Indicator:
0000: reserved;
0001: one other Extension_Block follows, etc.
If Par_Sel==0: PAR: Codec specific definition of these four bits

	Bit 16..18:
	CRC
	3 CRC bits protecting Bits 2 to 10 and 12 to 15

	Bit 19..20:
	EX
	The normal 2 bits for IS_Message Extension:

00: No other extension block follows

11: An other extension block follows

7.11.3.1.4
AMR-WB specific Codec_Attribute_Head Extension_Block

The AMR-WB specific Codec_Attribute_Head Extension_Block (Table 7.11.3.1.4-1) shall precede the Codec Attribute Extension_Blocks of any AMR-WB Codec_Type.

If PAR_Sel is set to "0" then one of 16 possible AMR-WB Configurations is indicated in the
PAR field and no additional Codec Attribute Extension_Blocks do follow.
Coding for PAR (bits 12.13.14.15):
0000: AMR-WB_ACS with 12.65 / 8.85 / 6.60.
0001: AMR-WB_ACS with 15.85 / 12.65 / 8.85 / 6.60.
0010: AMR-WB_ACS with 23.85 / 12.65 / 8.85 / 6.60.
other: reserved for future use.

If PAR_Sel is set to "1" then the AMR-WB_ACS and potentially AMR-WB_SCS is/are following.

Table 7.11.3.1.4-1: AMR-WB specific Codec_Attribute_Head Extension_Block

	Bit
	Description
	Comment

	Bit 1
	"0"

	normal IS-Message Sync Bit, constant.

	Bit 2
	PAR_Sel
	Differentiates this Extension_Block
0: Parameters included in PAR field: Simple Codec_List_Extension
1: Length Indicator (LI) included: Parameters follow in subsequent Extension_Blocks

	Bit 3..10
	CoID =
FR_AMR-WB or
UMTS_AMR-WB or
OHR_AMR-WB or
OFR_AMR-WB
	This field identifies the AMR-WB Codec_Type for which the subsequent attributes are valid. The same coding as in the Codec_x Extension_Block is used (long form)

	Bit 11

	"0"
	normal IS-Message Sync Bit, constant

	Bit 12.. 15:
	LI / PAR
	If Par_Sel==1: LI: Length Indicator:
0000: reserved;
0001: one other Extension_Block follows, etc.
If Par_Sel==0: PAR: Codec specific definition of these four bits

	Bit 16..18:
	CRC
	3 CRC bits protecting Bits 2 to 10 and 12 to 15

	Bit 19..20:
	EX
	The normal 2 bits for IS_Message Extension:

00: No other extension block follows

11: An other extension block follows

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� Enter the title of the Spec to be changed (not the title of the CR!) here.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

�PAGE \# "'Page: '#'�'" �� Niko: This point should also be added in 4.3.0 in order to assure that unknown extensions are skipped without making the whole message invalid

�PAGE \# "'Page: '#'�'" �� Niko: This point should also be added in 4.3.0 in order to assure that unknown extensions are skipped without making the whole message invalid

�PAGE \# "'Page: '#'�'" �� Niko: We should try to make the description more general. Otherwise, it may not be clear that AMR-WB is only an example.

_1081102404.doc

Header

REQ

SYS_ID

SIG, LUC, S

20bits

40ms

20bits

40ms

20bits

40ms

10bits

20ms

40ms

20bits

Sel, Ver.Sver

40ms

20bits

addit. Ext.

