TSG-SA4#20 meeting
Tdoc S4 (02)0084

February 18-22, 2002, Luleå, Sweden

Source:
Nokia

Title:
Implementation of a CVG decoder:

requirements and simulation results
Document for:
Discussion and approval

Agenda Item:
media formats and codecs: vector graphics

1. Introduction

In [1], we proposed the CVG format as a binary encoding of SVG Tiny content. This document describes the Nokia implementation results of a CVG decoder on an ARM platform, and evaluates the suitability of the CVG format for low-end devices.

The document gives details on a Nokia implementation of CVG aimed at low-end mobile devices. First, we give detailed memory, CPU requirements of our research CVG implementation, and the compression ratios for test data. Then, we list the requirements of each sub-component of the CVG implementation.

	Memory

	Size of ROM for storing CVG decoder code
	8482 bytes

	Size of ROM for storing data (SVG Syntax)
	382 bytes

	Maximum size of RAM use
	44 bytes

	Maximum size of stack use
	

	
	Content
	Maximum Stack Size (bytes)

	
	AroundTheSunAnimation.svg
	230

	
	EuroFlagAnimation.svg
	146

	
	FlowerAnimation.svg
	122

	
	clown.svg
	105

	
	fish.svg
	105

	
	kimono.svg
	105

	
	lion.svg
	105

	Compression Efficiency

	Compression Rate
	

	
	Content
	Compressed Size (bytes)
 / Compression ratio

	
	AroundTheSunAnimation.svg
	299 / 0.134367

	
	EuroFlagAnimation.svg
	282 / 0.162903

	
	FlowerAnimation.svg
	406 / 0.177186

	
	clown.svg
	4210 / 0.137369

	
	fish.svg
	4524 / 0.147787

	
	kimono.svg
	5791 / 0.149493

	
	lion.svg
	2885 / 0.184446

	Decoder Complexity

	Parsing Complexity
	

	
	Content
	Time to decode
 CVG content (seconds)

	
	AroundTheSunAnimation.svg
	0.080

	
	EuroFlagAnimation.svg
	0.081

	
	FlowerAnimation.svg
	0.140

	
	clown.svg
	0.111

	
	fish.svg
	0.123

	
	kimono.svg
	0.108

	
	lion.svg
	0.104

2. CVG Decoder Interfaces

The current CVG Decoder implementation accepts as input a pointer to the binary stream of CVG content, e.g. stored in terminal's MMS data memory, Flash ROM, or any other resource. The output of the decoder can be in two ways, depending on the implementation architecture:

1. CVG used as an SVG Transport Format: CVG content is decoded to a temporary SVG file in XML format. Then, this XML file can be delivered to a generic SVG viewer, which can be developed by a third party and which is not necessarily aware of the existence of the CVG transport. Thus, CVG encoding is totally transparent to the SVG viewer.

2. CVG used as an SVG Transport and Presentation Format: CVG content is decoded to the SVG model in local memory directly, using the SVG DOM interfaces by an SVG viewer. Thus, the CVG codec is integrated with an SVG viewer. The SVG Viewer can also decode XML representation of SVG content.

As the goal of this document is to measure the CVG decoder requirements, independent from which vendor's SVG viewer is used, the figures in this document represent the requirements for CVG as an SVG Transport Format.

This CVG implementation was also integrated with an SVG Tiny viewer on the ARM platform. The SVG Tiny implementation uses the SVG Document Object Model (DOM) interfaces subset for SVG Tiny, as described in the W3C SVG Specification (http://www.w3.org/TR/SVG).

3. Conclusions

These figures show that the CVG format provides a suitable solution to compress SVG content efficiently with low memory footprint.

Therefore, we recommend that CVG be mandatory encoding format of SVGT content in 3GPP Release 5.

4. References

[1] A compression method for SVG content, Nokia, Ericsson, Siemens, Zoomon, S4-AHP056, SA Meeting, Helsinki

[2] Draft report PSM SWG meeting during S4#19, PSM chairman, SA4-010689, S4 #19 Meeting, Tokyo

[3] SVG format for 2D vector graphic content in MMS and PSS, Nokia, Ericsson, Siemens, Zoomon, S4-AHP057, SA Meeting, Helsinki.

Appendix A: detailed report on cvg implementation on Arm Platform

The following is an output of an ARM compiler that was used for this test, for a stand-alone CVG decoder:

(CVG decoder)

UNSORTED .text .cinit .const .no_init .bss ROM RAM TOTAL

cvg_attribute.obj 4032 0 276 0 0 4308 0 4308

cvg_data.obj 3144 34 106 0 28 3284 28 3312

cvg2svg.obj 1116 0 0 0 0 1116 0 1116

cvg_util.obj 190 36 0 0 16 226 16 242

SUM 8482 70 382 0 44 8934 44 8978

The module cvg_attribute includes core decoding module for attribute decoding.It also includes SVGT specific element and attribute data structure.

The module cvg_data includes SVGT specific data type decoders.

The module cvg2svg includes core decoding module for header and element decoding.

The module cvg_util includes CVG file parsing module.

The columns of this table are as follows (all values are in bytes):

· .text: corresponds to ROM memory required to store program code.

· .cinit: refers to ROM memory required to store static OS-related values.

· .const: denotes ROM memory required to store constants.

· ROM: denotes total ROM required to store both program code and data constants.

· .bss/RAM: denotes the minimum RAM required by the program (global variables of the decoder)

· TOTAL: denotes the total (ROM+RAM) memory required by the program.

� During compression, the SVG content’s structure is kept, and SVG file is not manually edited. Although a manual improvement of the content could achieve better results, this would lose the structure information of the SVG content and thus it was not done. As agreed within the core experiment conditions, the following quantization values were used: spatialResolution = 1.0; angleResolution = 10; scaleResolution = 0.1; timeResolution = 0.1; colorDepth = 8 bit/component.

� Time to decode content includes time both for parsing input CVG stream and creating SVG content in terminal’s local memory, thus all computations required before rendering the first frame. Time to decode content depends on the CPU power. In this platform, it is presumed that SVG viewer renders sample content at 10 frames/second.

