3GPP TSG-SA Codec Working Group
Tdoc S4(01)0XXX

TSG-S4#18: September 3 – 7, 2001, Erlangen, Germany

TSG-SA4#20 meeting
Tdoc S4 (02)0034

February 18-22, 2002, Luleå, Sweden

Source:
NTT DoCoMo, Inc.
 and Apple Computer Inc.

Title:
Proposed Release 5 Text Stream Specification
Document for:
Discussion

Agenda Item:
Packet Switched Multimedia (PSM)
1. Introduction and Comments

This format for text tracks is intended as a short-term solution to immediate pressing problems. In the long term we expect to build a format which is richer, and closely aligned to the solutions which may evolve in both ISO (MPEG) and the W3C.

This is presented as sections for insertion into the Release 5 specification.

This text represents substantial clarifications over the previous format, particularly in the area of Unicode handling. A number of features excised in document 91 but present in 496 have been re-added in response to emails received, but we are not sure whether this level of control is required. These features include:

a) the ‘continuouskaraoke’ flag, which specifies the way in which Karaoke highlighting is performed;

b) the optional ‘textbox’ over-ride, which allows the textbox to be positioned within the overall region for the stream;

c) the specification of highlight color and style, a decision previously left to the terminal.

1.1. XML format

Clearly an equivalent XML syntax could be derived for this format, for authoring purposes. This section is in the discussion part of this document as it does not form part of the initial needs assessment.

Each sample in this specification has a duration, and they are played in sequence. This therefore maps well to the kind of sequence construct used in XML. The example below does not use a namespace prefix; however, in general one would expect to import the schema for this text stream format into a document also using the SMIL specification.

In general, in the long-term, we would expect to work with the W3 on the XML syntax of a long-term proposal, and with ISO/SC29/WG11 (MPEG) on a binary syntax. If semantic elements are used here that do not appear in the long-term specification, they can be imported from a 3G-specific schema/namespace into XML, and some of the extensibility openings detailed below be used in the binary syntax. The precise XML syntax should probably not be defined until the longer-term XML syntax is clearer.

Here is a short, not very well formed, example of how an XML syntax could be derived:

<smil>

<head>

<layout>

<region id="j" width="160" height="48" fit="fill" />

</layout>

</head>

<body>

<text region="j" font="Times-Roman" size=12>

<seq>

<textelement dur="2s">

Hello <bold>world!</bold>

</textelement>

<textelement dur="1.7s">

<caption dur="0.2s">The <caption dur="0.2s">last <caption dur="0.4s">rose

<caption dur="0.3s">of <caption dur="0.1s">sum<caption dur="0.5s">mer!

</textelement>

</body>

</smil>

1.2. RTP Format

This section discusses some RTP issues. However, they do not form part of the proposed specification. RTP streaming is not required in this release, and the development of an RTP format for text should be done collaboratively with the IETF.

For RTP use of this format RTP, the sample description information is conveyed ‘out of band’ e.g. within the SDP information. Note that this in turn might consist of URLs which reference the actual data (e.g. a CSS stylesheet), This would include the font-set, the region, and other information needed to set up the stream.

The samples then stand-alone; they are effectively all key samples (I frames, sync points).

Each RTP packet could contain one or more text samples. Each sample would be preceded by a long giving its time-stamp, relative to the time-stamp of the packet. The first sample must have a relative time-stamp of 0. The computed time-stamp of the last sample must be strictly less than the time-stamp of the next RTP packet.

There are serious concerns about error resiliency: a lost text packet might lose information critical to the user (e.g. a legal statement). Various techniques can be used, but download (as used in this specification) is probably the best. If an RTP stream is desired, packets may be repeated in the RTP stream, using the same RTP sequence number and time-stamp, if they are critically important. However, it is recommended that this is not done. Forward error correction is another possible technique, as is the “journaling” used in the proposed MIDI format at the IETF.

1.3. Complexity Analysis

Most of the formatted text functionalities have been implemented on an ARM platform, in order to evaluate the feasibility of the proposed text format. The implementation is basically based on the Tdoc S4-010496, which is the base document for this proposal. The implementation includes Text Sample Description and Sample Modifier Boxes (styl, tbox, hlit, hclr, dlay).

1.3.1. Program Size

The additional instructions necessary for text implementation contains atom parsing, UNICODE handling, initialization and other overhead. In the form of C-source code (before compile, including header definition and etc.), the additional lines needed were 1,300 lines. The proposed simple text format exploits existing MP4 atom structures. Thus, the parser libraries required for A/V media type could be re-used..

1.3.2. Working RAM

The object code on ARM platform required additional 5K Bytes of working RAM for text format handling, mainly for storing Sample Entries and text samples for internal processing. This number does not include display related area necessary for font rendering.

1.3.3. ROM Table

The ARM code required 108 Bytes of static ROM table, mainly for storing newly introduced atom information.

1.3.4. Feasibility for Implementation

The scale of additional program for proposed text format was very small as shown in this section.

2. Add to Release 5 specification body

This section contains the modifications to the specification.

2.1. Various Sections

Section 3.1: add “timed text” as a continuous media type

Section 3.2: add UTF-16.

Section 7.8: The references to UTF-8 (a Unicode concept) and UCS-2 (an ISO concept) may be reversed?

Section 9.2.1: add “timed text”

2.2. Add as section 7.9: Timed Text

Terminals shall support timed text as defined in section [] of this specification. There is no support for packetization of timed text in this release; 3GPP (MP4) files containing timed text may only be downloaded.

3. Insert into Annex D: Timed Text Format

This section defines the format of timed text in downloaded files. In this release, timed text is downloaded, not streamed.

Operators may specify additional rules and restrictions when deploying terminals, in addition to this specification, and behavior that is optional here may be mandatory for particular deployments. In particular, the required character set is almost certainly dependent on the geography of the deployment.

3.1. Unicode Support

Text in this specification uses the Unicode 3.0 [] standard. Terminals must correctly decode both UTF-8 and UTF-16 into the required characters. If a terminal receives a Unicode code which it cannot display, it must display a predictable result. It must not treat multi-byte UTF-8 characters as a series of ASCII characters, for example.

Authors should create fully-composed Unicode; terminals are not required to handle decomposed sequences for which there is a fully-composed equivalent.

Terminals must conform to the conformance statement in Unicode 3.0 section 3.1.

3.2. Bytes, Characters, and Glyphs

This section uses these terms carefully. Since multi-byte characters are permitted (i.e. 16-bit Unicode characters), the number of characters in a string may not be the number of bytes. Also, a byte-order-mark is not a character at all, though it occupies two bytes. So, for example, storage lengths are specified as byte-counts, whereas highlighting is specified using character offsets.

It should also be noted that in some writing systems the number of glyphs rendered may be different again. For example, in English, the characters ‘fi’ are sometimes rendered as a single ligature glyph.

In this specification, the first character is at offset 0 in the string. In records specifying both a start and end offset, the end offset must be greater than or equal to the start offset. In cases where several offset specifications occur in sequence, the start offset of an element must be greater than or equal to the end offset of the preceding element.

3.3. Character Set Support

All terminals must be able to render Unicode characters in these ranges:

a) basic ASCII and Latin-1 (\u0000 to \u00FF), though not all the control characters in this range are needed;

b) the Euro currency symbol (\u20AC)

c) telephone and ballot symbols (\u260E through \u2612)

Support for the following characters is recommended but not required:

a) miscellaneous technical symbols (\u2300 through \u2335)

b) ‘Zapf Dingbats’: locations \u2700 through \u27AF, and the locations where some symbols have been relocated (e.g. \u2605, Black star).

3.4. Font Support

Fonts are specified in this specification by name, size, and style. There are three special names which must be recognized by the terminal: Serif, Sans-Serif, and Monospace. It is strongly recommended that these be different fonts for the required characters from ASCII and Latin-1. For many other characters, the terminal may have a limited set or only a single font. Terminals requested to render a character where the selected font does not support that character should substitute a suitable font. This ensures that languages with only one font (e.g. Asian languages) or symbols for which there is only one form are rendered.

Fonts are requested by name, in an ordered list. Authors should normally specify one of the special names last in the list.

Terminals must support a pixel size of 12 (on a 72dpi display, this would be a point size of 12). If a size is requested other than the size(s) supported by the terminal, the next smaller supported size should be used. If the requested size is smaller than the smallest supported size, the terminal should use the smallest supported size.

Terminals must support unstyled text for those characters it supports. It may also support bold, italic (oblique) and bold-italic. If a style is requested which the terminal does not support, it should substitute a supported style; a character must be rendered if the terminal has that character in any style of any font.
3.5. Fonts and Metrics

Within the sample description, a complete list of the fonts used in the samples is found. This enables the terminal to pre-load them, or to decide on font substitution.

Terminals may use varying versions of the same font. For example, here is the same text rendered on two systems; it was authored on the first, where it just fitted into the text box.

[image: image1.png]
Authors should be aware of this possible variation, and provide text box areas with some ‘slack’ to allow for rendering variations.

3.6. Text rendering position and composition

Text is rendered within a region (a concept derived from SMIL). There is a text box set within that region. This permits the terminal to position the text within the overall presentation, and also to render the text appropriately given the writing direction. For text written left to right, for example, the first character would be rendered at, or near, the left edge of the box, and with its baseline down from the top of the box by one baseline height (a value derived from the font and font size chosen). Similar considerations apply to the other writing directions.

Within the region, text is rendered within a text box. There is a default text box set, which can be over-ridden by a sample.

The text box is filled with the background color, unless the keyed-text flag is set; after that the text is painted in the text color. If highlighting is requested one or both of these colors may vary. ‘Keying’ text over video or pictures can be complex and may require double-buffering, and its support is optional in the terminal. Content authors should beware that if they specify keyed-text, and the content is played on a terminal not supporting it, the entire text box will obscure visual material behind it. If text is keyed, then it is rendered over the track(s) behind with no background fill color. A keyed-text track therefore is layered closer to the viewer than the video over which it is keyed.

Terminals may choose to anti-alias their text, or not.

The text region and layering are defined using structures from the ISO base media file format.

This track header box is used:

aligned(8) class TrackHeaderBox

extends FullBox(‘tkhd’, version, flags){

if (version==1) {

unsigned int(64)
creation_time;

unsigned int(64)
modification_time;

unsigned int(32)
track_ID;

const unsigned int(32)
reserved = 0;

unsigned int(64)
duration;

} else { // version==0

unsigned int(32)
creation_time;

unsigned int(32)
modification_time;

unsigned int(32)
track_ID;

const unsigned int(32)
reserved = 0;

unsigned int(32)
duration;

}

const unsigned int(32)[2]
reserved = 0;

template int(16) layer = 0;

template int(16) alternate_group = 0;

template int(16)
volume = {if track_is_audio 0x0100 else 0};

const unsigned int(16)
reserved = 0;

template int(32)[9]
matrix=

{ 0x00010000,0,0,0,0x00010000,0,0,0,0x40000000 };

// unity matrix

template unsigned int(32) width =

{if track_is_visual 0x01400000 else 0};

template unsigned int(32) height =

{if track_is_visual 0x00F00000 else 0};
}

Visually composed tracks including video and text are layered using the ‘layer’ value. This compares, for example, to z-index in SMIL. More negative layer values are towards the viewer. (This definition is compatible with that in ISO/MJ2).

The region is defined by the track width and height, and translation offset. This corresponds to the SMIL region. The width and height are stored in the track header fields above. The sample description sets a text box within the region, which can be over-ridden by the samples.

The translation values are stored in the track header matrix in the following positions:

{ 0x00010000,0,0, 0,0x00010000,0, tx, ty, 0x40000000 }

These values are fixed-point 16.16 values, here restricted to be integers (the lower 16 bits of each value must be zero). The X axis increases from left to right; the Y axis from top to bottom. (This use of the matrix is conformant with ISO/MJ2.)

So, for example, a centered region of size 200x20, positioned below a video of size 320x240, would have track_width set to 200, track_height set to 20, and tx = (320-200)/2 = 60, and ty=240.

Since matrices are not used on the video tracks, all video tracks are set at the coordinate origin. The following diagram provides an overview:

[image: image2.wmf]
The top and left positions of the text track is determined by the tx and ty, which are the translation values from the coordinate origin (since the video track is at the origin, this is also the offset from the video track). The default text box set in the sample description sets the rendering area unless over-ridden by a 'tbox' in the text sample. The box values are defined as the relative values from the top and left positions of the text track.
It should be noted that this only specifies the relationship of the tracks within a single 3GP (MP4) file. If a SMIL presentation lays up multiple files, their relative position is set by the SMIL regions. Each file is assigned to a region, and then within those regions the spatial relationship of the tracks is defined.

3.7. Marquee Scrolling

Text can be ‘marquee’ scrolled in this specification (compare this to Internet Explorer’s marquee construction). When scrolling is performed, the terminal first calculates the position in which the text would be displayed with no scrolling requested. Then:

a) If scroll-in is requested, the text is initially invisible, just outside the text box, and enters the box in the indicated direction, scrolling until it is in the normal position;

b) If scroll-out is requested, the text scrolls from the normal position, in the indicated direction, until it is completely outside the text box.

The rendered text is clipped to the text box in each display position, as always. This means that it is possible to scroll a string which is longer than can fit into the text box, progressively disclosing it (for example, like a ticker-tape). Note that both scroll in and scroll out may be specified; the text scrolls continuously from its invisible initial position, through the normal position, and out to its final position.

If a scroll-delay is specified, the text stays steady in its normal position (not initial position) for the duration of the delay; so the delay is after a scroll-in but before a scroll-out. This means that the scrolling is not continuous if both are specified. So without a delay, the text is in motion for the duration of the sample. For a scroll in, it reaches its normal position at the end of the sample duration; with a delay, it reaches its normal position before the end of the sample duration, and remains in its normal position for the delay duration, which ends at the end of the sample duration. Similarly for a scroll out, the delay happens in its normal position before scrolling starts. If both scroll in, and scroll out are specified, with a delay, the text scrolls in, stays stationary at the normal position for the delay period, and then scrolls out – all within the sample duration.

The speed of scrolling is calculated so that the complete operation takes place within the duration of the sample. Therefore the scrolling has to occur within the time left after scroll-delay has been subtracted from the sample duration. Note that the time it takes to scroll a string may depend on the rendered length of the actual text string. Authors should consider whether the scrolling speed that results will be exceed that at which text on a wireless terminal could be readable.

Terminals may use simple algorithms to determine the actual scroll speed. For example, the speed may be determined by moving the text an integer number of pixels in every update cycle. Terminals should choose a scroll speed which is as fast or faster than needed so that the scroll operation completes within the sample duration.

Terminals are not required to handle dynamic or stylistic effects such as highlight, dynamic highlight, or href links on scrolled text.

The scrolling direction is set by a two-bit field, with the following possible values:

0x00 – text is vertically scrolled up (‘credits style’), entering from the bottom of the bottom and leaving towards the top.

0x01 – text is horizontally scrolled (‘marquee style’), entering from the right and leaving towards the left.

0x10 – text is vertically scrolled down, entering from the top and leaving towards the bottom.

0x11 – text is horizontally scrolled, entering from the left and leaving towards the right.

3.8. Language

The human language used in this stream is declared by the language field of the media-header atom in this track. It is an ISO 639/T 3-letter code. The knowledge of the language used might assist searching, or speaking the text. Rendering is language neutral. Note that the values ‘und’ (undetermined) and ‘mul’ (multiple languages) might occur.

3.9. Writing direction

Writing direction specifies the way in which the character position changes after each character is rendered. It also will imply a start-point for the rendering within the box.

Terminals must support the determination of writing direction, for those characters they support, according to the Unicode 3.0 specification. Note that the only required characters can all be rendered using left-right behavior. A terminal which supports characters with right-left writing direction must support the right-left composition rules specified in Unicode.

Terminals may also set, or allow the user to set, an overall writing direction, either explicitly or implicitly (e.g. by the language selection). This affects layout. For example, if upper-case letters are left-right, and lower-case right-left, and the Unicode string ABCdefGHI must be rendered, it would appear as ABCfedGHI on a terminal with overall left-right writing (English, for example) and GHIdefABC on a system with overall right-left (Hebrew, for example).

Terminals are not required to support the bi-directional ordering codes (\u200E, \u200F and \u202A through \u202E).

If vertical text is requested by the content author, characters are laid out vertically from top to bottom. The terminal may choose to render different glyphs for this writing direction (e.g. a horizontal parenthesis), but in general the glyphs should not be rotated. The direction in which lines advance (left-right, as used for European languages, or right-left, as used for Asian languages) is set by the terminal, possibly by a direct or indirect user preference (e.g. a language setting). Terminals must support vertical writing of the required character set. It is recommended that terminals support vertical writing of text in those languages commonly written vertically (e.g. Asian languages). If vertical text is requested for characters which the terminal cannot render vertically, the terminal may behave as if the characters were not available.

3.10. Text wrap

Automatic wrapping of text from line to line is complex, and can require hyphenation rules and other complex language-specific criteria. For these reasons, text is not wrapped in this specification. If a string is too long to be drawn within the box, it is clipped. The terminal may choose whether to clip at the pixel boundary, or to render only whole glyphs.

Terminals must start a new line for the Unicode characters line separator (\u2028), paragraph separator (\u2029) and line feed (\u000A). It is recommended that terminals follow Unicode Technical Report 13 []. Terminals should treat carriage return (\u000D), next line (\u0085) and CR+LF (\u000D\u000A) as new line.

3.11. Highlighting, Closed Caption, and Karaoke

Text may be highlighted for emphasis. Since this is a non-interactive system, solely for text display, the utility of this function may be limited.

Dynamic highlighting, used for Closed Caption and Karaoke highlighting, is an extension of highlighting. Successive contiguous sub-strings of the text sample are highlighted at the specified times.

3.12. Media Handler

A text stream is its own unique stream type. For the 3GPP file format, the handler-type within the ‘hdlr’ atom shall be ‘text’.
3.13. Media Handler Header

The 3G text track uses an empty null media header (‘nmhd’), called Mpeg4MediaHeaderAtom in the MP4 specification, in common with other MPEG streams.

aligned(8) class Mpeg4MediaHeaderAtom

extends FullAtom(’nmhd’, version = 0, flags) {
 }

3.14. Style record

Both the sample format and the sample description contain style records, and so it is defined once here for compactness.

aligned(8) class StyleRecord {

unsigned int(16)
startChar;

unsigned int(16)
endChar;

unsigned int(16)
font-ID;

unsigned int(8)
face-style-flags;

unsigned int(8)
font-size;

unsigned int(8)
text-color-rgb[3];

unsigned int(8)
reserved;
// for alignment
}

startChar:

character offset of the beginning of this style run (always 0 in a sample description)

endChar:

first character offset to which this style does not apply (always 0 in a sample description); must be greater than or equal to startChar.
font-ID:

font identifier from the font table; in a sample description, this is the default font
face style flags: in the absence of any bits set, the text is plain

1
bold

2 italic

4 underline

font-size:

font size (nominal pixel size, in essentially the same units as the width and height)
text-color-rgb:

rgb color, 8 bits each of red, green, blue

Terminals must support plain text, and underlined horizontal text, and may support bold, italic and bold-italic depending on their capabilities and the font selected. If a style is not supported, the text must still be rendered in the closest style available.
3.15. Sample Description Format

The sample table box ('stbl') contains sample descriptions for the text track. Each entry is a sample entry box of type ‘tx3g’. This name defines the format both of the sample description and the samples associated with that sample description. Terminals must not attempt to decode or display sample descriptions with unrecognized names, nor the samples attached to those sample descriptions.

It starts with the standard fields (the reserved bytes and the data reference index), and then some text-specific fields. Some fields can be overridden or supplemented by additional boxes within the text sample itself. These are discussed below.

There can be multiple text sample descriptions in the sample table. If the overall text characteristics do not change from one sample to the next, the same sample description is used. Otherwise, a new sample description is added to the table. Not all changes to text characteristics require a new sample description, however. Some characteristics, such as font size, can be overridden on a character-by-character basis. Some, such as dynamic highlighting, are not part of the text sample description and can be changed dynamically.

The TextDescription extends the regular sample entry with the following fields.

class FontRecord {

unsigned int(16)
font-ID;

unsigned int(8)
font-name-length;

unsigned int(8)
font[font-name-length];
}

class FontTableBox() extends Box(‘ftab’) {

unsigned int(16) entry-count;

FontRecord
font-entry[entry-count];
}

class BoxRecord {

signed int(16)
top;

signed int(16)
left;

signed int(16)
bottom;

signed int(16)
right;
}

class TextSampleEntry() extends SampleEntry (‘tx3g’) {

unsigned int(32)
displayFlags;

signed int(8)

justification;

unsigned int(8)
background-color-rgb[3];

BoxRecord

default-text-box;

StyleRecord

default-style;

FontTableBox

font-table;
}

displayFlags:

scroll In

0x00000020

scroll Out

0x00000040

continuous karaoke
0x00000800
scroll direction

0x00001800

/ see above for values

key text

0x00004000

/ note that support is optional

write text vertically
0x00020000
horizontal and vertical justification:
/ an eight-bit value from the following table

	
	left
	horizontally centred
	right

	top
	0x00
	0x01
	0x0F

	vertically centred
	0x10
	0x11
	0x1F

	bottom
	0xF0
	0xF1
	0xFF

background-color-rgb:

rgb color, 8 bits each of red, green, blue

Default text box: the default text box is set by four values, relative to the text region; it may be over-ridden in samples;
style record of default style: startChar and endChar must be zero in a sample description

The text box is inset within the region defined by the track translation offset, width, and height. The values in the box are relative to the track region, and are uniformly coded with respect to the pixel grid. So, for example, the default text box for a track at the top left of the track region and 50 pixels high and 100 pixels high is {0, 0, 50, 100}.

A font table must follow these fields, to define the complete set of fonts used. The font table is an atom of type ‘ftab’. Every font used in the samples is defined here by name. Each entry consists of a 16-bit local font identifier, and a font name, expressed as a string, preceded by an 8-bit field giving the length of the string in bytes. The name is expressed in UTF-8 characters, unless preceded by a UTF-16 byte-order-mark, whereupon the rest of the string is in 16-bit Unicode characters. The string should be a series of font names, in preference order. The special names “Serif”, “Sans-serif” and “Monospace” may be used. The terminal should use the first font in the list which it can support; if it cannot support any for a given character, but it has a font which can, it should use that font. Note that this substitution is technically character by character, but terminals are encouraged to keep runs of characters in a consistent font where possible.
3.16. Sample Format

Each sample in the media data consists of a string of text, optionally followed by sample modifier boxes.
For example, if one word in the sample has a different size than the others, a 'styl' box is appended to that sample, specifying a new text style for those characters, and for the remaining characters in the sample. This overrides the style in the sample description. These boxes are present only if they are needed. If all text conforms to the sample description, and no characteristics are applied that the sample description does not cover, no boxes are inserted into the sample data.

class TextSampleModifierBox(type) extends Box(type) {
}

class TextSample {

unsigned int(16)

text-length;

unsigned int(8)

text[text-length];

TextSampleModifierBox
text-modifier[];
// to end of the sample
}

The initial string is preceded by a 16-bit count of the number of bytes in the string. The sample size table provides the complete byte-count of each sample, including the trailing modifier boxes; by comparing the string length and the sample size, you can determine how much space, if any, is left for modifier boxes.

Terminals must support text samples up to XXXX characters, YYYY lines, and ZZZZ characters per line. Authors should keep their content within these values to be assured of display on any terminal.
Each text sample shall be uniformly coded in UTF-8, or start with a UTF-16 BYTE ORDER MARK (\uFEFF) and by that indicate that the string which starts with the byte order mark is in UTF-16. Terminals must recognized the byte-order mark in this byte order; they are not required to recognize byte-reversed UTF-16, indicated by a byte-reversed byte-order mark..
Any unrecognised box found in the text sample should be skipped and ignored, and processing continue as if it were not there.

3.16.1. Sample Modifier Boxes
3.16.1.1. Text Style

'styl'

This specifies the style of the text. It consists of a series of style records as defined above, preceded by a 16-bit count of the number of style records. Each record specifies the starting and ending character positions of the text to which it applies. The styles must be ordered by starting character offset, and the starting offset of one style record must be greater than or equal to the ending character offset of the preceding record; styles records must not overlap their character ranges.

class TextStyleBox() extends TextSampleModifierBox (‘styl’) {

unsigned int(16)
entry-count;

StyleRecord

text-styles[entry-count];
}

3.16.1.2. Highlight

'hlit' - Specifies highlighted text: the atom contains two 16-bit integers, the starting character to highlight, and the first character with no highlighting (e.g. values 4, 6 would highlight the two characters 4 and 5). The second value may be the number of characters in the text plus one, to indicate that the last character is highlighted.

class TextHighlightBox() extends TextSampleModifierBox (‘hlit’) {

unsigned int(16)
startcharoffset;

unsigned int(16)
endcharoffset;
}

class TextHilightColorBox() extends TextSampleModifierBox ('hclr') {

unsigned int(8)
highlight_color_rgb[3];
}
highlight_color_rgb:

rgb color, 8 bits each of red, green, blue
The TextHilightColor Box may be present when the TextHighlight Box is present in a text sample. It is recommended that terminals use the following rules to determine the displayed effect when highlight is requested:
a) if a highlight color is not specified, then the text is highlighted using a suitable technique such as inverse video: both the text color and the background color change.

b) if a highlight color is specified, and keyed text is not being displayed by the terminal, the background color is set to the highlight color for the highlighted characters; the text color does not change.

c) if a highlight color is specified, and keyed text is being displayed by the terminal, the text color is set to the highlight color for the highlighted characters; there is no background color displayed when text is keyed.

Terminals do not need to handle text that is both scrolled and either statically or dynamically highlighted. Content authors should avoid specifying both scroll and highlight for the same sample.

3.16.1.3. Dynamic Highlight

'krok' – Karaoke, closed caption, or dynamic highlighting. The number of highlight events are specified, and each event is specified by a starting and ending character offset and an end time for the event. The start time is either the sample start time or the end time of the previous event. The specified characters are highlighted from the previous end-time (initially the beginning of this sample’s time), to the end time.

The atom starts with a 16-bit count of the event count, and then that number of 8-byte records. Each record contains the time as a 32-bit number, and the text start and end values, each as a 16-bit number. These values are specified as in the highlight record – the offset of the first character to highlight, and the offset of the first character not highlighted. The records must be ordered and not overlap, as in the highlight record. The time in each record is the end time of this highlight event; the first highlight event starts at the start time of the sample. It is in the units expressed by the timescale of the track. The end time values must not exceed the duration of the sample.

The continuouskaraoke flag controls whether to highlight only those characters (continuouskaraoke = 0) selected by a karaoke entry, or the entire string from the beginning up to the characters highlighted (continuouskaraoke = 1) at any given time.

The precise way in which the highlighting is achieved may follow the rules given above; however, Karaoke highlighting is often achieved by using the highlight color as the text color, without changing the background..

At most one dynamic highlight (‘krok’) atom may occur in a sample.

class TextKaraokeBox() extends TextSampleModifierBox (‘krok’) {

unsigned int(16)
entry-count;

for (i=1; i<=entry-count; i++) {

unsigned int(32)
highlight-end-time;

unsigned int(16)
startcharoffset;

unsigned int(16)
endcharoffset;
}

3.16.1.4. Scroll Delay

'dlay' - Specifies a delay after a Scroll In and/or before Scroll Out. A 32-bit integer specifying the delay, in the units of the timescale of the track. The default delay, in the absence of this box, is 0.

class TextScrollDelayBox() extends TextSampleModifierBox (‘dlay’) {

unsigned int(32)
scroll-delay;
}

3.16.1.5. HyperText

'href' – HyperText link. The existence of the hypertext link is visually indicated in a suitable style (e.g. underlined blue text).

This box contains these values:

startCharOffset: – the start offset of the text to be linked

endCharOffset: – the end offset of the text (start offset + number of characters)

URLLength:– the number of bytes in the following URL

URL: UTF-8 characters – the linked-to URL

altLength:– the number of bytes in the following “alt” string

altstring: UTF-8 characters – an “alt” string for user display

The URL should be an absolute URL, as the context for a relative URL may not always be clear.

The “alt” string may be used as a tool-tip or other visual clue, as a substitute for the URL, if desired by the terminal, to display to the user as a hint on where the link refers.

Hypertext-linked text should not be scrolled; not all terminals can display this or manage the user interaction to determine whether user has interacted with moving text. It is also hard for the user to interact with scrolling text.
class TextHyperTextBox() extends TextSampleModifierBox (‘href’) {

unsigned int(16)
startcharoffset;

unsigned int(16)
endcharoffset;

unsigned int(8)
URLLength;

unsigned int(8)
URL[URLLength];

unsigned int(8)
altLength;

unsigned int(8)
altstring[altLength];
}

1.1.13.1. Textbox
‘tbox’ – text box over-ride. This over-rides the default text box set in the sample description.

class TextboxBox() extends TextSampleModifierBox ('tbox') {

BoxRecord
text-box;
}
1.1.13.2. Blink
‘blnk’ – Blinking text. This requests blinking text for the indicated character range. Terminals are not required to support blinking text, and the precise way in which blinking is achieved, and its rate, is terminal-dependent.

class BlinkBox() extends TextSampleModifierBox ('blnk') {

unsigned int(16)

startcharoffset;

unsigned int(16)

endcharoffset;
}
3.17. Combinations of features

Two modifier boxes of the same type must not be applied to the same character (e.g. it is not permitted to have two href links from the same text).

The following table details the effects of multiple options:

	
	
	Sample description
	First sample

modifier atom

	
	
	key text
	style record
	styl
	hlit
	krok
	href
	blnk

	Sample description
	background color
	1
	
	
	
	
	
	

	Second sample

modifier atom

	styl
	
	2
	4
	
	
	
	

	
	hlit
	
	
	
	4
	
	
	

	
	krok
	
	
	
	5
	4
	
	

	
	href
	
	3
	3
	
	6
	4
	

	
	blnk
	
	
	7
	7
	7
	7
	4

1. No background color is displayed if keyed text is requested

2. The sample description provides the default style; the style records over-rides this for the selected characters.

3. The terminal over-rides the chosen style for HREF links.

4. Two records of the same type cannot be applied to the same character.

5. The characters specified by the highlight record are highlighted all the time; the Karaoke highlighting is applied at the selected times. This may be visually confusing and is not recommended.

6. Dynamic highlighting .and linking must not be applied to the same text.

7. Blinking text is optional, particularly when requested in combination with other features.

� Tomoyuki Ohya (� HYPERLINK "mailto:ohya@spg.yrp.nttdocomo.co.jp" ��ohya@spg.yrp.nttdocomo.co.jp�)		Multimedia Labs., NTT DoCoMo Inc.

� David W Singer (� HYPERLINK "mailto:singer@apple.com" ��singer@apple.com�)			Quick Time, Apple Computer Inc.

1/13
Page 4/13

