S4-010495

S4-010495

Source:
PacketVideo

Title:
Revised Proposal on AMR Storage Format
Document for:
Discussion / action

Agenda Item:

1. Introduction

3GPP Release 4 describes a file interchange format for the MMS application (see TS 26.234). In a previous submission (S4-010372, Naantali), we pointed out several problems with the way AMR is stored in the file,

namely:

1. Storing the table of contents (TOC) info along with the AMR media requires the media server to do too much manipulation in order to construct the RTP packets. Such operations do not scale well at the streaming server.

2. The current specification has a frames_per_sample field. However, allowing multiple AMR frames per access unit (AU) violates the file format’s definition of AU. It also requires the server to be media aware in order to form RTP packets; this also does not scale well.

3. The current specification does not signal whether the AMR content is NB or WB.

 To address these problems, we proposed a new storage method with the following features:

1. Frame type is not stored along with the media, but rather specified in the DecoderSpecificInfo of multiple AMRSampleEntries. This allows TOC information to be retrieved efficiently by reference from the SampleToChunk table. This reduces the amount of manipulation required at packetization time, and allows a much more efficient server design.

2. Each AMR frame is a single access unit (AU) in the file.

3. A band_mode flag is added to the DecoderSpecificInfo for AMR in order to distinguish NB from WB.

In the discussion in Naantali, two objections were raised. First, it was pointed out that the proposal did not accommodate storage of the Q-bit, for use when relaying AMR from one point to another. Second, there were concerns that frequent mode switching might increase the size of the SampleToChunk atom, and result in an overall increase in file size. This might happen if silence detection were used.

In this proposal, we address these points. First, the AMR DecoderSpecificInfo is modified to store the Q-bit. Second, we provide data to show that file size does not increase significantly under frequent mode switching. We believe this proposal fixes problems in the existing specification, and so should be incorporated as soon as possible. It should be considered for a change to Release 4, as well as for incorporation into Release 5.

2. Why Multiple Sample Entries?
Before describing the details, we motivate the advantage of the current proposal.

Figure 1 shows the existing storage format, which is specified in TS 26.235. The original specification is taken from the IETF payload draft for AMR. In this format, TOC info (i.e. FrameType and Q-bit) is interleaved with speech bits on a frame-by-frame basis. To construct each RTP packet, it is first necessary to seek to the locations of all relevant TOC entries and copy these into the TOC header area. We must then locate and copy the speech bits for each frame in order to assemble the remainder of the packet. The amount of copying and rearranging required is a burden on the server, and will cause problems when scaling to thousands of streams.

Figure 2 shows how storage and packetization differ under the current proposal. In the proposed storage format, the media data atom (mdat) only contains speech bits. TOC information is accessed by reference from the SampleToChunk atom. This atom maps chunks of AMR frames to specific AMRSampleEntries, inside which the decoderSpecificInfo provides the TOC information. In the typical case, a long run of AMR frames will have the same TOC, and so the TOC header in the RTP packet is generated very efficiently by the server. Once the TOC header is constructed, the server may complete the packet by doing a single contiguous copy of the speech bits. RTP Packetization is greatly simplified, and a highly scalable streaming server may be constructed.

[image: image1.wmf]SB-1

TOC-2

SB-2

TOC-3

SB-3

TOC-4

SB-4

TOC-1

...

Current Storage Forma

t

 (by ref to TS26.235 / IETF)

TOC = Table of Contents

SB = Speech Bits (w/padding)

HEADER

TOC-1

TOC-2

TOC-3

TOC-4

SB-1

SB-2

SB-3

SB-4

RTP

Packetization

1

2

3

1

Construct payload header

2

3

Find and copy all TOC's

for current packet to

construct overall TOC

Find and copy all speech

bits to complete the

packet.

Problem: Too much copy/manipulation

(doesn't scale)

Figure 1: Current AMR storage and resulting packetization method.

[image: image2.wmf]SB-1

SB-2

SB-3

SB-4

...

Proposed AMR Storage Forma

t

TOC = Table of Contents

SB = Speech Bits (w/padding)

HEADER

TOC-1

TOC-2

TOC-3

TOC-4

SB-1

SB-2

SB-3

SB-4

RTP

Packetization

1

2

3

1

Construct payload header

2

3

Construct TOC efficiently

from SampleToChunk refs.

Copy all speech bits as a

single memory range.

Solution: less manipulation, server scales well.

SB-5

SB-6

TOC info is stored in AMRDecoderSpecificInfo, referenced via the SampleToChunk table.

Figure 2: Proposed AMR storage, resulting in simplified packetization.
3. Details of Proposal
We now discuss the details of the proposal. Note that the main difference from our previous submission is that space is now reserved for the Q-bit, as described in Section 3.3.

3.1 AMR Access Units

According to the MP4 file format specification, “an access unit (AU) is the smallest data entity to which timing information can be attributed.” An AMR AU must thus consist of a single AMR speech frame. In our proposal, each access unit consists of the speech bits from a single frame. Storage of these access units was illustrated earlier in Figure 2. TOC information is not included within the AU, but rather is accessed by reference to the AMRSampleEntry, as described in the next few sections.

The current specification in TS 26.234 allows multiple AMR frames per AU. This should not be allowed, since it creates problems at packetization time. To construct RTP packets, the server must be able to find the start of the speech bits for each AMR frame. However, MP4 metadata provides only the start of each AU. If multiple frames are contained within an AU, the server would be required to parse the AMR data within the AU in order to locate the speech bits for each frame. It is undesirable to require such media awareness at the server, since the added complexity does not scale as the number of streams increases.

The problem caused by multiple frames per AU is illustrated in Figure 3.

[image: image3.wmf]SB-1

SB-2

SB-3

SB-4

SB-5

SB-6

SB-7

SB-8

SB-9

AU

AU

...

Figure 3a: If each AU contains multiple frames, the server must parse within an AU to locate the data for each frame.

[image: image4.wmf]SB-1

SB-2

SB-3

SB-4

SB-5

SB-6

AU

AU

AU

AU

AU

AU

...

Figure 3b: With one AU per frame, MP4 metadata tells the server where the data for each frame begins, and no AMR-aware parsing is needed.

3.2 AMR Sample Entries

The definition of AMRSampleEntry in our proposal is identical to that currently specified in TS 26.234. However, multiple AMRSampleEntries are used, one for each combination of frame type and Q-bit used in the file. This means that a maximum of 16 AMRSampleEntries would occur in each file. However, for the typical case where only a single AMR mode is used for pre-coded content, there would be only a single AMRSampleEntry. If the speech content were coded with a single AMR rate plus silence detection, two AMRSampleEntries would be required.

The frame type and Q-bit associated with a particular AMRSampleEntry is stored in the enclosed DecoderSpecificInfo field. The mapping from AU to AMRSampleEntry is described in Section 3.4.

3.3 AMR DecoderSpecificInfo

The proposed DecoderSpecificInfo field for AMR is shown below. Bold fields indicate differences from the current specification in TS 26.234.

aligned(8) class AMRDecoderSpecificInfo extends DecoderSpecificInfo

: bit(8) tag=DecSpecInfoTag {

unsigned int(32) vendor;

unsigned int(8) decoder_version;

unsigned int(16) mode_set;

unsigned int(8) mode_change_period;

// (frames_per_sample removed; multiple frames per AU not allowed)

unsigned int(8) TOC; // Contains frame type and Q-bit

unsigned int(8) band_mode; // Signal AMR-NB or AMR-WB

}
TOC:
Table of contents information, formatted as follows:

[image: image5.wmf]P

FT

Q

P

P

FT = Frame Type (4 bits)

Q = Quality bit

P = Padding bit (set to 0)

Note that this format matches the TOC field required for packetization. The first ‘P’ will be replaced by the ‘F’ (data to follow) bit at packetization time.
band_mode:
AMR band mode: 0 signals AMR-NB, 1 signals AMR-WB.

3.4 Retrieval of AMR Access Units

This section discusses the retrieval of AMR frames from the MP4 file and how to use the SampleToChunkAtom to determine the TOC information for each frame. In MP4, audio frames are logically grouped into chunks, and information about these chunks is stored in the SampleToChunkAtom. The SampleToChunkAtom is essentially a lookup table. Each row in the table corresponds to a run of chunks, and specifies the following three values:

First Chunk:

the first chunk in a run of chunks that all have the same characteristics

Samples/Chunk:
the number of samples per chunk for the current run

Description Index:
the AMRSampleEntry associated with the speech data in the current run
If the audio frames are stored in a continuous block, the logical grouping into chunks is not purely arbitrary, but rather is regulated by changes in frame_type and Q-bit. The example shown in Figure 4 shows the case where an attempt is made to group four frames per chunk, but mode switching limits some chunks to two or three frames. The third chunk shown consists of bad frames, as indicated by Q=0. Notice that all frames in a chunk must have the same TOC information, and a new AMRSampleEntry is required for each combination of frame_type and Q-bit. The server uses the SampleToChunk atom and the referenced AMRSampleEntries to derive the TOC information for each chunk, and so construct the TOC header at packetization time.

For typical cases, we expect long runs of chunks with identical frame_type and with Q=1. For this case, the proposed method saves space in the file, since TOC is no longer stored with the media at the cost of 1 byte per frame (50 bytes/second). In such cases, it is also extremely simple for the server to generate the TOC headers. The efficiency under other cases (frequent mode switching and silence detection) is examined in Section 4.

[image: image6.wmf]SampleDescriptionAtom

AMRSampleEntry

FT=0, Q=1

AMRSampleEntry

FT=0, Q=0

AMRSampleEntry

FT=7, Q=1

SampleToChunkAtom

1

FIRST

CHUNK

SAMPLES/

CHUNK

SAMPLE

DESCR

INDEX

4

1

3

4

2

4

3

1

5

4

3

6

2

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

7

CHUNK 1

CHUNK 2

CHUNK 3

CHUNK 4

7

7

7

7

7

0

0

0

0

CHUNK 5

CHUNK 6

CHUNK 7

AMR

MODE

7

4

1

A

B

C

D

A

B

C

D

Normal 4.75 kbit/s AMR frames (FT=0, Q=1).

A few "bad" frames (FT=0, Q=0).

Rate switches to 12.2 kbit/s (FT=7, Q=1).

Rate switches back to 4.75 kbit/s (FT=0, Q=1).

Figure 4: Using SampleToChunk atom to determine TOC information.
4. Storage Efficiency
In this section, we comment on the expected change in file size due to the new proposal. We visit two cases, one in which the AMR content is coded without mode switching, and a second in which frequent mode switching is used.

4.1 Single-Mode AMR

If there is no mode-switching, then the new proposal has two effects on file size:

1. Each AMR AU is no longer required to contain the TOC. This saves 1 byte per AU, or 50 bytes per second of content.

2. There is still a single AMRSampleEntry, but its DecoderSpecificInfo field is 2 bytes larger than in the existing specification. (This is negligible and will be ignored).
Suppose a file contains 2 minutes of content. A file under the new proposal would thus be about 6000 bytes smaller than in the original specification (120 seconds * 50 bytes/second).
4.2 AMR with Mode Switching

Suppose the AMR content does utilize mode switching, or signals bad frames via the Q-bit. In this case, the new proposal has 3 significant effects on file size:

1. We still save 50 bytes per second of content due to not storing TOC along with the media.

2. There are now multiple AMRSampleEntries. There are at most 16 of these, with the exact number depending on the number of modes used in the presentation, and on whether the Q-bit is signaled. For each additional AMRSampleEntry, the file size increases by 43 bytes (27 for AMRSampleEntry, and 14 for DecoderSpecificInfo). The maximum increase due to this effect is 688 bytes, and this maximum is independent of the length of the clip.

3. Each mode change adds about 16 bytes to the file. The breakdown is as follows:

(One additional entry in the SampleToChunk atom (12 bytes)

(One additional offset in the ChunkOffsetAtom (4 bytes)

Note that a transient change (e.g. a single “bad” frame with Q=0) would count as two mode changes for the purpose of computing the change in file size.

Given this information, we may compute the change in file size due to mode switching. Assume the file contains a 2 minute clip with 4 AMRSampleEntries. We will provide numbers for frequent mode switching at R mode switches per second. In this case, the change in file size due to the new proposal is summarized in the following table:

	R
	Change in file size

	0
	-5828 bytes

	1
	-3908 bytes

	2
	-1988 bytes

	3
	-68 bytes

	4
	1852 bytes

	5
	3772 bytes

	6
	5692 bytes

We see from the table that up to a sustained rate of 3 mode switches per second, the file under the new proposal is always smaller than that of the original specification. At a sustained rate of 6 mode switches per second, the file has increased by less than 6 kbytes. To get some idea of what this means in terms of overall file size, we note that 2 minutes of AMR audio (speech bits only) would consume between 72,000 and 186,000 bytes, depending on the distribution between modes. This means that the added overhead of 6 mode switches per second would effectively add between 3 and 8 percent to the size of the AMR media. The percentage change in the overall file size would naturally be less since the file contains additional overhead and possibly other media types. If the file contains a video track, the overall percentage increase would be much less.

This suggests that even under sustained frequent mode switching, the impact on file size is small. For the more typical case of single-mode encoding or occasional mode switches, the proposal actually reduces the file size. However, the motivation of this proposal is not file size reduction, rather it simplifies packetization in the streaming server and so increases the scalability of the server. For this reason, the proposal should be considered to replace the current AMR storage method in TS 26.234.

Page: 1/6

Page: 6/6

_1060519790.vsd

_1060586576.vsd

_1060590710.vsd

_1060593128.vsd

_1060586556.vsd

_1060519679.vsd

