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(

Inconsistency between 3G TS 26.104 and 3G TS 26.073
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· LSF values are moved toward their mean in mode 12.2 k/bits differently than on other modes: ALPHA -> ALPHA_122, ONE_ALPHA -> ONE_ALPHA_122

· Saturations added to decoder_amr, dtx_dec, gc_pred_average_limited, d_gain_code, ph_disp and Bgn_scd
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not approved:
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How the code is changed

1. sp_dec.c 

function D_plsf_5
   /* if bad frame */

   if ( bfi != 0 ) {

      /* use the past LSFs slightly shifted towards their mean */

      for ( i = 0; i < M; i += 2 ) {

         /* lsfi_q[i] = ALPHA*st->past_lsf_q[i] + ONE_ALPHA*meanLsf[i]; */

         lsf1_q[i] = ( ( st->past_lsf_q[i] * ALPHA_122 ) >> 15 ) + ( ( mean_lsf_5[i]

               * ONE_ALPHA_122 ) >> 15 );

         lsf1_q[i + 1] = ( ( st->past_lsf_q[i + 1] * ALPHA_122 ) >> 15 ) + ( (

               mean_lsf_5[i + 1] * ONE_ALPHA_122 ) >> 15 );

      }

function dtx_dec
   /* convert exponent and mantissa to Word16 Q12 */

   /* Q12 */

   log_pg = ( log_pg_e - 15 ) << 12;

   /* saturate */

   if (log_pg < -32768) {

      log_pg = -32768;

   }

   log_pg = ( -( log_pg + ( log_pg_m >> 3 ) ) ) >> 1;

   st->log_pg_mean = ( Word16 )( ( ( 29491*st->log_pg_mean ) >> 15 ) + ( ( 3277

         * log_pg ) >> 15 ) );

function gc_pred_average_limited
static void gc_pred_average_limited( gc_predState *st, Word32 *ener_avg_MR122,

      Word32 *ener_avg )

{

   Word32 av_pred_en, i;

   /* do average in MR122 mode (log2() domain) */

   av_pred_en = 0;

   for ( i = 0; i < NPRED; i++ ) {

      av_pred_en = ( av_pred_en + st->past_qua_en_MR122[i] );

   }

   /* av_pred_en = 0.25*av_pred_en */

   av_pred_en = ( av_pred_en * 8192 ) >> 15;

   /* if (av_pred_en < -14/(20Log10(2))) av_pred_en = .. */

   if ( av_pred_en < MIN_ENERGY_MR122 ) {

      av_pred_en = MIN_ENERGY_MR122;

   }

   *ener_avg_MR122 = ( Word16 )av_pred_en;

   /* do average for other modes (20*log10() domain) */

   av_pred_en = 0;

   for ( i = 0; i < NPRED; i++ ) {

      av_pred_en = ( av_pred_en + st->past_qua_en[i] );

      if (av_pred_en < -32768)

         av_pred_en = -32768;

      else if (av_pred_en > 32767)

         av_pred_en = 32767;

   }

   /* av_pred_en = 0.25*av_pred_en */

   av_pred_en = ( av_pred_en * 8192 ) >> 15;

   



*ener_avg = av_pred_en;

}

function d_gain_code
static void d_gain_code( gc_predState *pred_state, enum Mode mode, Word32 index,

                        Word32 code[], Word32 *gain_code )

{

   Word32 g_code0, exp, frac, qua_ener_MR122, qua_ener;

   Word32 exp_inn_en, frac_inn_en, tmp, tmp2, i;

   const Word32 *p;

   /*

    * Decode codebook gain

    */

   gc_pred( pred_state, mode, code, &exp, &frac, &exp_inn_en, &frac_inn_en );

   p = &qua_gain_code[( ( index + index )+ index )];

   /* Different scalings between MR122 and the other modes */

   if ( mode == MR122 ) {

      /* predicted gain */

      g_code0 = Pow2( exp, frac );

      if ( g_code0 <= 2047 )

         g_code0 = g_code0 << 4;

      else

         g_code0 = 32767;

      *gain_code = ( ( g_code0 * *p++ ) >> 15 ) << 1;

      if (*gain_code & 0xFFFF8000)

         *gain_code = 32767;

   }

   else {

      g_code0 = Pow2( 14, frac );

      tmp = ( *p++ * g_code0 ) << 1;

      exp = 9 - exp;

      if ( exp > 0 ) {
         tmp = tmp >> exp;

      
}

      else {

         for (i = exp; i < 0; i++) { 

            tmp2 = tmp << 1;

            if ((tmp ^ tmp2) & 0x80000000) {

               tmp = (tmp & 0x80000000) ? 0x80000000 : 0x7FFFFFFF;

               break;

            }

            else {

               tmp = tmp2;

            }

         }

      }
      *gain_code = tmp >> 16;

      if (*gain_code & 0xFFFF8000)

         *gain_code = 32767;

   }

   /*

    * update table of past quantized energies

    */

   qua_ener_MR122 = *p++;

   qua_ener = *p++;

   gc_pred_update( pred_state, qua_ener_MR122, qua_ener );

   return;

}

function Bgn_scd
static Word16 Bgn_scd( Bgn_scdState *st, Word32 ltpGainHist[], Word32 speech[],

      Word32 *voicedHangover )

{

   Word32 temp, ltpLimit, frame_energyMin, currEnergy, noiseFloor, maxEnergy,

         maxEnergyLastPart, s, i;

   Word16 prevVoiced, inbgNoise;

   /*

    * Update the inBackgroundNoise flag (valid for use in next frame if BFI)

    * it now works as a energy detector floating on top

    * not as good as a VAD.

    */

   s = 0;

   for ( i = 0; i < L_FRAME; i++ ) {

      s += speech[i] * speech[i];

   }

   if ( (s < 0xFFFFFFF) & (s >= 0) )

      currEnergy = s >> 13;

   else

      currEnergy = 32767;

   frame_energyMin = 32767;

…

function ph_disp

…

    * compute total excitation for synthesis part of decoder

    * (using modified innovation if phase dispersion is active)

    */

   for ( i = 0; i < L_SUBFR; i++ ) {

      /* x[i] = gain_pit*x[i] + cbGain*code[i]; */

      temp1 = x[i] * pitch_fac + inno[i] * cbGain;

      temp2 = temp1 << tmp_shift;

      x[i] = ( temp2 + 0x4000 ) >> 15;

      if (labs(x[i]) > 
32767)

      {

         if ((temp1 ^ temp2) & 0x80000000) {

            x[i] = (temp1 & 0x80000000) ? -32768: 32767;

         }

         else {

            x[i] = (temp2 & 0x80000000) ? -32768: 32767;

         }

      }

   }

   return;

}

function decoder_amr
…

        /*

         * copy unscaled LTP excitation to exc_enhanced (used in phase

         * dispersion below) and compute total excitation for LTP feedback

         */

      memcpy( exc_enhanced, st->exc, L_SUBFR <<2 );

      for ( i = 0; i < L_SUBFR; i++ ) {

         /* st->exc[i] = gain_pit*st->exc[i] + gain_code*code[i]; */

         temp = ( st->exc[i] * pitch_fac ) + ( code[i] * gain_code );

         temp2 = ( temp << tmp_shift );

         if (((temp2 >> 1) ^ temp2) & 
0x40000000) {

            if ((temp ^ temp2) & 0x80000000) {

               temp2 = (temp & 0x80000000) ? (-1073741824L) : 1073725439;

            }

            else {

               temp2 = (temp2 & 0x80000000) ? (-1073741824L) : 1073725439;

            }

         }

         st->exc[i] = ( temp2 + 0x00004000L ) >> 15;

      }

…

2. rom_dec.h
…

#define ALPHA     29491

#define ONE_ALPHA 3277

/* LSF means (not in MR122) */

static const Word32 mean_lsf_3[10] =

{

   1546,

   2272,

   3778,

   5488,

   6972,

   8382,

   10047,

   11229,

   12766,

   13714

};

#define ALPHA_122     31128

#define ONE_ALPHA_122 1639

/* LSF means ->normalize frequency domain */

static const Word32 mean_lsf_5[10] =

{

   1384,

   2077,

   3420,

   5108,

   6742,

   8122,

   9863,

   11092,

   12714,

   13701

};

…
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