Page 1

3GPP TSG-SA WG4 Meeting #17
Tdoc S4 (01)0408R

Naantali, Finland, 4 Jun – 8 Jun 2001

CR-Form-v4

CHANGE REQUEST

(

26.104
CR
005
(

rev
1
(

Current version:
3.1.0
(

For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

Proposed change affects:
(

(U)SIM

ME/UE
X
Radio Access Network

Core Network
X

Title:
(

Correction of decoder operation in error consealement of lost frames

Source:
(

Nokia

Work item code:
(

Low bit rate codec for Multimedia Telephony

Date: (

7.6.2001

Category:
(

F

Release: (

R99

Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

Reason for change:
(

Inconsistency between 3G TS 26.104 and 3G TS 26.073

Summary of change:
(

· LSF values are moved toward their mean in mode 12.2 k/bits differently than on other modes: ALPHA -> ALPHA_122, ONE_ALPHA -> ONE_ALPHA_122

· Saturations added to decoder_amr, dtx_dec, gc_pred_average_limited, d_gain_code, ph_disp and Bgn_scd

Consequences if
(

not approved:
Inconsistency between 3G TS 26.104 and 3G TS 26.073
Approximately 6s of NO_DATA frames causes high-level noise.

Clauses affected:
(

sp_dec.c, rom_dec.h

Other specs
(

 Other core specifications
(

affected:

 Test specifications

 O&M Specifications

Other comments:
(

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.
How the code is changed

1. sp_dec.c

function D_plsf_5
 /* if bad frame */

 if (bfi != 0) {

 /* use the past LSFs slightly shifted towards their mean */

 for (i = 0; i < M; i += 2) {

 /* lsfi_q[i] = ALPHA*st->past_lsf_q[i] + ONE_ALPHA*meanLsf[i]; */

 lsf1_q[i] = ((st->past_lsf_q[i] * ALPHA_122) >> 15) + ((mean_lsf_5[i]

 * ONE_ALPHA_122) >> 15);

 lsf1_q[i + 1] = ((st->past_lsf_q[i + 1] * ALPHA_122) >> 15) + ((

 mean_lsf_5[i + 1] * ONE_ALPHA_122) >> 15);

 }

function dtx_dec
 /* convert exponent and mantissa to Word16 Q12 */

 /* Q12 */

 log_pg = (log_pg_e - 15) << 12;

 /* saturate */

 if (log_pg < -32768) {

 log_pg = -32768;

 }

 log_pg = (-(log_pg + (log_pg_m >> 3))) >> 1;

 st->log_pg_mean = (Word16)(((29491*st->log_pg_mean) >> 15) + ((3277

 * log_pg) >> 15));

function gc_pred_average_limited
static void gc_pred_average_limited(gc_predState *st, Word32 *ener_avg_MR122,

 Word32 *ener_avg)

{

 Word32 av_pred_en, i;

 /* do average in MR122 mode (log2() domain) */

 av_pred_en = 0;

 for (i = 0; i < NPRED; i++) {

 av_pred_en = (av_pred_en + st->past_qua_en_MR122[i]);

 }

 /* av_pred_en = 0.25*av_pred_en */

 av_pred_en = (av_pred_en * 8192) >> 15;

 /* if (av_pred_en < -14/(20Log10(2))) av_pred_en = .. */

 if (av_pred_en < MIN_ENERGY_MR122) {

 av_pred_en = MIN_ENERGY_MR122;

 }

 *ener_avg_MR122 = (Word16)av_pred_en;

 /* do average for other modes (20*log10() domain) */

 av_pred_en = 0;

 for (i = 0; i < NPRED; i++) {

 av_pred_en = (av_pred_en + st->past_qua_en[i]);

 if (av_pred_en < -32768)

 av_pred_en = -32768;

 else if (av_pred_en > 32767)

 av_pred_en = 32767;

 }

 /* av_pred_en = 0.25*av_pred_en */

 av_pred_en = (av_pred_en * 8192) >> 15;

*ener_avg = av_pred_en;

}

function d_gain_code
static void d_gain_code(gc_predState *pred_state, enum Mode mode, Word32 index,

 Word32 code[], Word32 *gain_code)

{

 Word32 g_code0, exp, frac, qua_ener_MR122, qua_ener;

 Word32 exp_inn_en, frac_inn_en, tmp, tmp2, i;

 const Word32 *p;

 /*

 * Decode codebook gain

 */

 gc_pred(pred_state, mode, code, &exp, &frac, &exp_inn_en, &frac_inn_en);

 p = &qua_gain_code[((index + index)+ index)];

 /* Different scalings between MR122 and the other modes */

 if (mode == MR122) {

 /* predicted gain */

 g_code0 = Pow2(exp, frac);

 if (g_code0 <= 2047)

 g_code0 = g_code0 << 4;

 else

 g_code0 = 32767;

 *gain_code = ((g_code0 * *p++) >> 15) << 1;

 if (*gain_code & 0xFFFF8000)

 *gain_code = 32767;

 }

 else {

 g_code0 = Pow2(14, frac);

 tmp = (*p++ * g_code0) << 1;

 exp = 9 - exp;

 if (exp > 0) {
 tmp = tmp >> exp;

}

 else {

 for (i = exp; i < 0; i++) {

 tmp2 = tmp << 1;

 if ((tmp ^ tmp2) & 0x80000000) {

 tmp = (tmp & 0x80000000) ? 0x80000000 : 0x7FFFFFFF;

 break;

 }

 else {

 tmp = tmp2;

 }

 }

 }
 *gain_code = tmp >> 16;

 if (*gain_code & 0xFFFF8000)

 *gain_code = 32767;

 }

 /*

 * update table of past quantized energies

 */

 qua_ener_MR122 = *p++;

 qua_ener = *p++;

 gc_pred_update(pred_state, qua_ener_MR122, qua_ener);

 return;

}

function Bgn_scd
static Word16 Bgn_scd(Bgn_scdState *st, Word32 ltpGainHist[], Word32 speech[],

 Word32 *voicedHangover)

{

 Word32 temp, ltpLimit, frame_energyMin, currEnergy, noiseFloor, maxEnergy,

 maxEnergyLastPart, s, i;

 Word16 prevVoiced, inbgNoise;

 /*

 * Update the inBackgroundNoise flag (valid for use in next frame if BFI)

 * it now works as a energy detector floating on top

 * not as good as a VAD.

 */

 s = 0;

 for (i = 0; i < L_FRAME; i++) {

 s += speech[i] * speech[i];

 }

 if ((s < 0xFFFFFFF) & (s >= 0))

 currEnergy = s >> 13;

 else

 currEnergy = 32767;

 frame_energyMin = 32767;

…

function ph_disp

…

 * compute total excitation for synthesis part of decoder

 * (using modified innovation if phase dispersion is active)

 */

 for (i = 0; i < L_SUBFR; i++) {

 /* x[i] = gain_pit*x[i] + cbGain*code[i]; */

 temp1 = x[i] * pitch_fac + inno[i] * cbGain;

 temp2 = temp1 << tmp_shift;

 x[i] = (temp2 + 0x4000) >> 15;

 if (labs(x[i]) >
32767)

 {

 if ((temp1 ^ temp2) & 0x80000000) {

 x[i] = (temp1 & 0x80000000) ? -32768: 32767;

 }

 else {

 x[i] = (temp2 & 0x80000000) ? -32768: 32767;

 }

 }

 }

 return;

}

function decoder_amr
…

 /*

 * copy unscaled LTP excitation to exc_enhanced (used in phase

 * dispersion below) and compute total excitation for LTP feedback

 */

 memcpy(exc_enhanced, st->exc, L_SUBFR <<2);

 for (i = 0; i < L_SUBFR; i++) {

 /* st->exc[i] = gain_pit*st->exc[i] + gain_code*code[i]; */

 temp = (st->exc[i] * pitch_fac) + (code[i] * gain_code);

 temp2 = (temp << tmp_shift);

 if (((temp2 >> 1) ^ temp2) &
0x40000000) {

 if ((temp ^ temp2) & 0x80000000) {

 temp2 = (temp & 0x80000000) ? (-1073741824L) : 1073725439;

 }

 else {

 temp2 = (temp2 & 0x80000000) ? (-1073741824L) : 1073725439;

 }

 }

 st->exc[i] = (temp2 + 0x00004000L) >> 15;

 }

…

2. rom_dec.h
…

#define ALPHA 29491

#define ONE_ALPHA 3277

/* LSF means (not in MR122) */

static const Word32 mean_lsf_3[10] =

{

 1546,

 2272,

 3778,

 5488,

 6972,

 8382,

 10047,

 11229,

 12766,

 13714

};

#define ALPHA_122 31128

#define ONE_ALPHA_122 1639

/* LSF means ->normalize frequency domain */

static const Word32 mean_lsf_5[10] =

{

 1384,

 2077,

 3420,

 5108,

 6742,

 8122,

 9863,

 11092,

 12714,

 13701

};

…

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'Page: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 1

