3G TS 28.062 Annexes V0.0.5 (2000-11)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services & System Aspects;

In-band Tandem Free Operation (TFO) of Speech Codecs;

Stage 3 - Service Description – Annexes;

(Release 2000)

[image: image1.png]K ey

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organisational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organisational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organisational Partners' Publications Offices.

Keywords

<keyword[, keyword]>

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2000, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA,TTC).

All rights reserved.

Contents

5Scope of Annex A and Annex B:

Annex A (Normative): In-band Signalling Protocol: Generic Structure
6
A.1
Generic Structure of Inband Signalling Messages
6
A.1.1
Frequency and Order of Bit Transmission
6
A.1.2
IS_Header
7
A.1.3
IS_Command_Block
7
A.1.4
IS_Extension_Block(s)
8
A.2
Detailed Specification of IS Messages
8
A.2.1
IS_REQ Message
8
A.2.2
IS_ACK Message
8
A.2.3
IS_IPE, IS_TRANS and IS_NORMAL Messages
9
A.2.4
IS_FILL Message
10
A.2.5
IS_DUP Message
10
A.2.6
IS_SYL Message
10
A.3
Keep_Open_Indication
11
A.4
Rules for Sending of IS Messages
11
A.5
IS_System_Identification_Block
12
Annex B (Informative): In Path Equipment: Generic Rules and Guidelines
14
B.1
Types of In Path Equipment
14
B.2
IS_Compliant IPEs
14
B.2.1
Typical IPEs are IS_Passive
14
B.2.2
IS Message_Transparency
15
B.2.2.1
First IS Message
15
B.2.2.2
IS Messages within a Sequence
15
B.2.2.3
Isolated IS Message
16
B.2.2.4
Check if IS Message is following
16
B.3
IPE State Representation
16
B.3.1
IPE in Sync_Not_Found
18
B.3.2
IPE in Sync_Found
18
B.3.3
IPE in Sync_Lost
18
B.3.4
IPE in Keep_Open_Sync
18
B.3.5
IPE in Keep_Open_Lost
19
B.4
IPE Error Handling
19
B.5
IPE Transmission Delay
19
B.5.1
IPE Transmission Delay in Normal_Mode
19
B.5.2
IPE Transmission Delay in Transparent_Mode
20
B.6
Compliance to IS Messages
20
B.6.1
Compliance to IS_REQ and IS_ACK Messages
20
B.6.2
Compliance to IS_NORMAL Message
20
B.6.3
Compliance to IS_TRANS_x Messages
20
B.6.4
Compliance to IS_TRANS_x_u Messages
21
B.6.5
Compliance to IS_FILL Message
21
B.6.6
Compliance to IS_DUP Messages
21
B.6.7
Compliance to IS_SYL Messages
21
Annex C (Normative): Processes for Tandem Free Operation in GSM
23
Annex D (Normative): Processes for Tandem Free Operation in 3G
24
Annex E (Normative): Detailed TFO Protocol Description Tables
25
Annex F (Informative): Call flows for AMR TFO setup & HO and Implementor’s Guide
26
F.1
Call flows for AMR TFO setup and HO
26
F.1.1
Call flows for AMR TFO setup and HO in GSM
26
F.1.1.1
Immediate TFO establishment without codec mode optimisation
26
F.1.1.2
Immediate TFO establishment with codec mode optimisation
27
F.1.1.3
Optimal AMR FR – AMR HR TFO setup
28
F.1.1.3
AMR TFO setup with immediate change to OACS
29
F.1.1.4
AMR TFO Handover with drop out from TFO
30
F.1.1.5
AMR TFO handover with contiguity
30
F.1.2
Call flows for AMR TFO setup and HO in UMTS
31
F.2
Guide for AMR configuration in TFO environment
31
F.2.1
Avoid codec type optimisation
32
F.2.2
Establish TFO as soon as possible
33
F.2.2.1
Rules for immediate TFO establishment without codec mode optimisation (optimal AMR TFO setup)
33
F.2.2.2
Rules for immediate TFO establishment with codec mode optimisation
33
F.2.3
Prefer AMR tandem situation to tandem free with FR or HR
33
F.2.4
Balance constraints between speech quality and capacity
33
Annex G (Informative): TFO Decision Algorithm C-Code and OACS Table
34
G.1
Brief Description of the Program ‘tfo_decision’
34
G.1.1
Input
34
G.1.2
Output
34
G.1.3
Short Introduction to the Source Code
35
G.1.3.1
Data structure
35
G.1.3.2
Some important functions
35
G.1.4
Files
36
G.1.4.1
tfo_main.c
36
G.1.4.2
tfo_decision.c
40
G.1.4.3
tfo_decision.h
46
G.1.4.4
Oacs.c
47
G.1.4.5
Oacs.h
54
G.2
OACS Table
55

Scope of Annex A and Annex B:

Inband Signalling Messages (IS Messages) can be used to construct a specific IS Protocol for the communication between telecommunication entities for various purposes. The original purpose was to establish Tandem Free Operation of Mobile-to-Mobile calls in GSM networks. The IS Messages provide communication channels inside the speech signal paths between the speech transcoders.

In addition IS Messages allow the control of equipment within the speech signal paths between these telecommunication entities (e.g. speech transcoders). These equipments are termed "In Path Equipments“ (IPEs).

Annex A defines the generic structure of these IS Messages and rules for the IS_Sender.

Annex B defines the generic rules with respect to these IS Messages for the IPEs.

Annex A is mandatory for TFO–capable Transcoder Equipment and informative for IPEs.

Annex B is informative for TFO–capable Transcoder Equipment.

Annex B shall be followed by IPEs, which want to be compatible to IS Messages.

Annex A (Normative):
In-band Signalling Protocol: Generic Structure

A.1
Generic Structure of Inband Signalling Messages

All IS Messages follow a set of design rules, or a generic structure, which allow to identify and bypass them by IPEs without detailed knowledge of the IS Protocol served. The principle of the IS Protocol shall in that sense be future proof: it can be enhanced and extended to other applications without modifying the IPEs.

The IS Messages replace some of the LSBs of the PCM samples of the Speech, Audio or Modem signal.

By construction the introduced signal distortion is practically inaudible in case of Speech signals.

Modem signals will in most cases not be affected with respect to their data transmission performance.

A.1.1
Frequency and Order of Bit Transmission

IS Messages are transferred within the Least Significant Bit (LSB) of PCM samples on 64 kbit/s links, by replacing the LSB of every 16th consecutive PCM sample with one bit of the IS Message (16_PCM_Sample_Grid).

This is equivalent to an average bit rate of 10 bit per 20 ms or 500 bits per second. See Figure A-1:

[image: image2.wmf]

1

2

…

N*16

1

…

32

33

…

16

17

18

One IS

-

Message or a series of IS_Messages

next IS

-

Message

PCM sample

125

m

s

 8

7

2

1

Bit

Figure A-1: Inband Signalling Structure

A vertical bar denotes an 8-bit PCM sample, the shadowed box in bit 1 (LSB) represents an inserted bit of the IS-Message.

By definition each IS Message "occupies" an integer multiple of 16 PCM samples. Especially the 15 PCM samples after the last inserted bit of an IS Message "belong" still to that IS Message.

All IS Messages, whichever type, have by construction “0”-Bits at every 10th position, starting with position 1, 11, 21 and so on. This “0”-Bits occur therefor regularly every 20 ms and may be used for synchronization purposes.

Each IS Message consists of an IS_Header followed by an IS_Command_Block. Most IS Messages have a number of further IS_Extension_Blocks. Figure A-2 shows an example with two IS_Extension_Blocks.

[image: image3.wmf]

20

Bits

Header

Command

Extension 1

10

Bits

Extension 2

20

Bits

20

Bits

60

ms

40

ms

40

ms

Figure A-2: Example for IS Message with two IS_Extension_Blocks

The MSB of each constituent field is transmitted first. The IS_Header is transmitted first, followed by the IS_Command_Block and - if applicable - any further IS_Extension_Block(s).

By construction all IS Messages do have lengths of integer multiples of 10 bits, thus occupying integer multiples of 160 PCM samples, thus lasting integer multiples of 20 ms. The shortest IS Message has a length of 60 ms.

A.1.2
IS_Header

The IS_Header consists of a 20-Bit long sequence, as defined in Figure A-3:

[image: image4.wmf]

0

 1 0 1 0 1 1 0 1 0

0

 1 1 0 1 0 1 0 0 1

hexadecimal notation

binary notation

Number of bits in sub

-

fields

10 Bits

 1 5

A

1 A

9

10 Bits

Figure A-3: Structure of the 20 bit IS_Header

A.1.3
IS_Command_Block

The IS_Command identifies the IS Message and/or serves for the control of IPEs. The names of the IS_Commands and their codes in hexadecimal notation in the IS_Command_Block are given in the Table A-1

Table A-1: Defined IS_Commands

Index
Command
Code
Meaning / Action

hexadecimal
Nibble 1-3

0
Reserved
0x000
no extension

1
REQ
0x05D
Denotes an IS_REQ Message, with extension

2
ACK
0x0BA
Denotes an IS_ACK Message, with extension

3
IPE
0x0E7
Denotes an IS_IPE Message, with extension,
 i.e. an IS_TRANS or the IS_NORMAL Message

4
FILL
0x129
Denotes the IS_FILL Message, no extension

5
DUP
0x174
Denotes the IS_DUP Message, no extension

6
SYL
0x193
Denotes the IS_SYL Message, no extension

7
reserved
0x1CE
no extension

All other values are reserved for future use.

Each IS_Command is protected by the binary, systematic (9,3) block code with generator polynomial
g(x) = x^6 + x^4 + x^3 + x^2 + 1. The minimum Hamming distance of this code is dmin = 4, which allows the correction of up to one bit error within each code word of length 9 bits.

The first bit (MSB) of the IS_Command_Block is defined to be "0", for synchronisation purposes, see Figure A-4.

Table A-1 gives the hexadecimal notation of the complete IS_Command_Block.

[image: image5.wmf]10 Bits

C3 C2 C1 C0

 C7 C6 C5 C4

C8

0

Nibble 2

 Nibble 3

Nibble 1

0 0

Figure A-4: General Construction of an IS_Command_Block

A.1.4
IS_Extension_Block(s)

Most IS Messages have one or more IS_Extension_Block(s). Each IS_Extension_Block is 20 bits long and shall consist of two "0"-Synchronization_Bits at position 1 (MSB) and 11, a 16-bit Information_Field (split into two fields of 9 and 7 bits, respectively) and a 2-bit Extension_Field (EX), see Figure A-5:

Figure A-5: General Construction of an IS_Extension_Block

The Extension_Field indicates if an other IS_Extension_Block is following (EX :="1.1") or not (EX := "0.0").

All other codes are reserved. This may be used to detect transmission errors within the Extension_Field.

A.2
Detailed Specification of IS Messages

A.2.1
IS_REQ Message

With the IS_REQ Message an IS_Sender can test, if there is an IS Partner and indicates that it is willing to negotiate.

IS_REQ is used to initiate the IS Protocol or to indicate changes in the configuration, etc.

IS_REQ has at least one IS_Extension_Block, containing the IS_System_Identification. (see sub-clause A.5).

Other IS_Extension_Blocks may follow, see Figure A-6.

[image: image6.wmf]20 Bits

Header

REQ

System_Identification

10 Bits

 Possible Extension(s)

 20 Bits

 20 Bits

60 ms

40 ms

 40 ms

Figure A-6: General Construction of an IS_REQ Message

In general an IS_REQ Message shall be as short as possible. Special care must be taken in the design of the IS_Extension_Blocks to avoid audible effects, since sometimes an IS_REQ Message may be transmitted for quite some time (several seconds).

A.2.2
IS_ACK Message

With the IS_ACK Message an IS Partner typically answers an IS_REQ Message or an IS_ACK Message. It can also be used to submit further information to the other IS Partner. IS_REQ and IS_ACK are the main message types between IS Partners.

The IS_ACK has at least an IS_Extension_Block containing the IS_System_Identification (see sub-clause A.5).

Other IS_Extension_Blocks may follow, see Figure A-7.

[image: image7.wmf]20 Bits

Header

ACK

System_Identification

10 Bits

 Possible Extension(s)

 20 Bits

 20 Bits

60 ms

40 ms

 40 ms

Figure A-7: General Construction of an IS_ACK Message

No specific design constraints with respect to audibility exist, since IS_ACK is typically not sent very often.

A.2.3
IS_IPE, IS_TRANS and IS_NORMAL Messages

The IPE command denotes IS_IPE Messages. An IPE shall always look for this type of message and follow the instruction. An IS_Sender shall use this IS_IPE Message to command all IPEs into a specific mode of "Bit Transparency".

This Message has one IS_Extension_Block, indicating the requested IPE_Mode. See Figure A-8.

Figure A-8: General Construction of an IS_IPE Message

No specific design constraints with respect to audibility exist, since IS_IPE is typically not sent very often.

Table A-2 defines 16 out of 32 possible IPE_Commands. The other codes are reserved for future extensions.

Table A-2: Defined IPE_Modes

Index
IPE_Mode
Code
MEANING / ACTION

hexadecimal
Nibble 1 - 5

0
Normal
0x00000
Normal Operation

1
Trans_1_u
0x044DC
pass 1 LSB; 7 upper Bits are used

2
Trans_2_u
0x089B8
pass 2 LSBs; 6 upper Bits are used

3
Trans_3_u
0x0CD64
pass 3 LSBs; 5 upper Bits are used

4
Trans_4_u
0x11570
pass 4 LSBs; 4 upper Bits are used

5
Trans_5_u
0x151AC
pass 5 LSBs; 3 upper Bits are used

6
Trans_6_u
0x19CC8
pass 6 LSBs; 2 upper Bits are used

7
Trans_7_u
0x1D814
pass 7 LSBs; 1 upper Bit is used

8
Transparent
0x22CE0
Full Transparent Mode for all eight bits

9
Trans_1
0x2683C
pass 1 LSB; 7 upper Bits are free and unused

10
Trans_2
0x2A558
pass 2 LSBs; 6 upper Bits are free and unused

11
Trans_3
0x2E184
pass 3 LSBs; 5 upper Bits are free and unused

12
Trans_4
0x33990
pass 4 LSBs; 4 upper Bits are free and unused

13
Trans_5
0x37D4C
pass 5 LSBs; 3 upper Bits are free and unused

14
Trans_6
0x3B028
pass 6 LSBs; 2 upper Bits are free and unused

15
Trans_7
0x3F4F4
pass 7 LSBs; 1 upper Bit is free and unused

16
reserved
0x41D1C
reserved

17..31
reserved
Reserved
reserved

The IPE_Mode is protected by the binary, systematic (16,5) block code with generator polynomial g(x) = x^11 + x^7 + x^5 + x^4 + x^2 + x + 1. The minimum Hamming distance of this code is dmin=7, which allows the correction of up to 3 bit errors within each code word of length 16 bits.

Bits 1 (MSB) and 11 are the synchronisation bits and set to "0", see Figure A-9. The EX field is set to "0.0" in all currently defined IPE_Modes, i.e. no further IS_Extension_Block is following.

Table A-2 defines the coding in hexadecimal notation for the complete IPE_Mode_Extension_Block, with EX := 00.

Figure A-9: IPE_Mode_Extension_Block for the IS_IPE Message

An IS_ IPE Message containing the NORMAL command is termed IS_NORMAL Message.

An IS_ IPE Message containing a TRANS_x command is termed IS_TRANS_x Message.

An IS_ IPE Message containing a TRANS_x_u command is termed IS_TRANS_x_u Message.

The latter two are sometimes also termed IS_TRANS Message, if the details are not important.

The behaviour of IPEs, when receiving such commands, is described in Annex B.

The first IS Message in a series is often "swallowed" by IPEs (see Annex B). An IS_IPE Message must therefore never be the first message of a series of IS Messages, i.e. it shall be sent as an isolated IS Message or after a (sufficiently long) uninterrupted IS Protocol.

A.2.4
IS_FILL Message

The IS_FILL Message has no IS_Extension_Block and no specific meaning. An IS_ Sender can use the IS_FILL Message to fill a temporary gap in the protocol flow. This may be important to keep all IPEs in synchronization and open for further IS Messages, see Figure A-10. An IS_FILL Message shall also be used by the IS_Sender to resynchronize all IPEs in case of a phase shift of the Keep_Open_Indication.

Figure A-10: Construction of the IS_FILL Message

IS_FILL is designed in a way that multiple repetitions cause minimal audible effects.

A.2.5
IS_DUP Message

The IS_DUP Message may be used between IS Partners to indicate an half duplex mode. The IS_DUP Message has no IS_Extension_Block, see Figure A-11.

Figure A-11: Construction of the IS_DUP Message

A.2.6
IS_SYL Message

The IS_SYL Message may be used between IS Partners to indicate the loss of synchronisation. The IS_SYL Message has no IS_Extension_Block, see Figure A-12.

Figure A-12: Construction of the IS_SYL Message

A.3
Keep_Open_Indication

In Transparent_Mode, i.e. after properly receiving an IS_TRANS Message, all IPEs shall monitor the bypassing bit stream for the Keep_Open_Indication. If this Keep_Open_Indication is not seen for some time, then the IPEs shall fall automatically back into normal operation, i.e. the mode of operation before the IS_TRANS Message.

This automatic fall back shall have the same effect as the IS_NORMAL Message would have.

By definition the Keep_Open_Indication is a continuous bit stream of one "0"-Bit in the LSB of every 160th PCM sample, i.e. every 20 ms. At least one "1"-Bit must be present within the LSBs of the other 159 PCM samples, see Figure A-13.

[image: image8.wmf]0

1

2

…

159

1

0

…

n

n+1

…

16

17

18

One Period of the Keep_Open_Indication

Next Period

PCM sample

125

m

s

 8

7

2

1

Bit

20ms

1

Figure A-13: Keep_Open_Indication

The "0"-Bit stream of the Keep_Open_Indication shall always be present as long as the IPEs need to be in Transparent_Mode.

The Keep_Open_Indication shall be in phase with the preceding IS Messages., i.e. the first bit of the Keep_Open_Indication shall be in the position of the first bit of the (hypothetical) next IS Message. In fact, the IS Messages themselves contain this Keep_Open_Indication by definition.

In case of a known phase shift of the Keep_Open_Indication, the IS_Sender has to send at least one IS Message, which defines the new phase position of the Keep_Open_Indication. If no other IS Message is to be sent, then the IS_FILL Message shall be used. If an IS Message longer than 160 ms is scheduled for transmission, then an IS_FILL Message should be inserted before, to guarantee fast resynchronization of the IPEs.

A.4
Rules for Sending of IS Messages

IS Messages replace some bits of the PCM samples and therefor cause a minimal signal distortion. Therefore IS Messages shall be used with care and not longer than necessary. The IS Protocol is kept to a minimum to avoid unnecessary complexity. One basic assumption is that only one IS Protocol is active at a time between two IS Partners.

Only specific telecommunication entities shall be allowed to initiate IS Protocols. They are called IS_Active or active IS Partners. In principle these shall only be terminal devices or their "representatives" within the network. Examples are ISDN-Terminals, Speech-Servers and Transcoders (as representatives of the MSs).

Other telecommunication entities shall only react on IS Protocols. They are called IS_Passive. Most IPEs are of this type. They bypass the IS Messages, they obey the IS_IPE Messages, but they never initiate IS Messages.

Other telecommunication entities are IS_Passive by default. But if they receive IS Protocols that they can understand, then they may become IS_Active and start to initiate IS Protocols. They thus become active IS Partners and shall take care that only one IS Protocol is active on both of their sides. They are called IS_Responsive. TCMEs are examples of such entities.

Active IS Partners shall send

-
either continuous sequences of IS Messages without interruption of the 16_PCM_Sample_Grid:

-
or isolated IS Messages with same message lengths;

-
or isolated IS Messages with sufficient distance between them, if shorter IS Messages follow longer IS Messages.

The latter case is important, because shorter isolated IS Messages travel faster through IPEs than longer ones, see Annex B.

As said above, after initialisation of an IS Message sequence, no interruption of the 16_PCM_Sample_Grid shall occur within the sequence. Adjustments of the phase position of the Keep_Open_Indication shall be done only after the IS_TRANS Message by inserting the necessary number n (with 0 (n (160) of "1" Bits (termed "T_Bits") into the LSBs of the PCM samples that have to be skipped. The first PCM sample for this insertion of T_Bits is the one where the next regular IS Message or next regular Keep_Open_Indication would begin. At the new phase position the next IS Message or the IS_FILL Message shall be sent, to allow IPEs to resynchronize fast, see Figure A-14.

[image: image9.wmf]0

1

2

…

N

1

0

3

4

…

959

960

1

1

IS_TRANS Message

e.g. IS_FILL

PCM sample

125

m

s

 8

7

2

1

Bit

2

1

1

1

1

Phase Shift by inserting

n

T_Bits

Normal Mode

Transparent Mode

Figure A-14: Phase Shift of the 16_PCM_Sample_Grid by inserting T_Bits

Similarly, the adjustment of the phase between two Keep_Open_Indications shall be done by inserting the necessary number of T_Bits and by sending an IS Message - preferably, but not necessarily - the IS_FILL.

Finally a "negative" phase adjustment between two Keep_Open_Indications shall be allowed by shortening the cycle by a maximum of 2 PCM samples and sending an IS Message (see above) at the new phase position.

A.5
IS_System_Identification_Block

The IS_System_Identification_Block is a mandatory IS_Extension_Block for the IS_ACK and IS_REQ messages with the 16-bit Information_Field containing the IS_System_Identification. It identifies the system within which the message is generated. Table A-3 shows the defined IS_System_Identification codes (see also Figures A-15 and A-16).

Table A-3: Defined IS_System_Identification Codes

System
Code (in hex)

GSM
either 0x53948, if EX == "0.0"
or 0x5394B, if EX == "1.1"

UMTS
either 0x51C80, if EX == "0.0"
or 0x51C82, if EX == "1.1"

Reserved

[image: image10.wmf]20 Bits

1 0 1

1 0

E X

1 0

E X

0 0 1 1

1 0 1

0 1 0 0

0

0

Figure A-15: IS_System_Identification for GSM

[image: image11.wmf]20 Bits

1 0 1

0 0

E X

0 0 0 1

1 1 0

1 0 0 0

0

0

20 Bits

1 0 1

0 0

E X

0 0

E X

0 0 0 1

1 1 0

1 0 0 0

0

0

Figure A-16: IS_System_Identification for UMTS

All other codes are reserved. Further IS_System_Identification Codes for other systems shall be defined in a way that the audibility is minimal and the Hamming distance to the already defined once is maximal.

The IS_System_Identification is protected by the binary, systematic (16,8) block code with generator polynomial g(x) = x^8 + x^7 + x^6 + x^4 + x^2 + x + 1. The minimum Hamming distance of this code is dmin=5, which allows the correction of up to 2 bit errors within each code word of length 16 bits.

Code word 0x0000 is per definition used for GSM.

The resulting 16 bits are placed into the reserved positions of the IS_System_Extension_Block and then the whole 20 bit word is additionally EXORed with the fixed code word 0x53948 to minimise audible effects. The final results are reported in Figures A-15 and A-16.

Annex B (Informative):
In Path Equipment: Generic Rules and Guidelines

B.1
Types of In Path Equipment

The term "In Path Equipment" (IPE) is used for any telecommunication equipment within the (64 kbit/s) transmission path for the speech signal between two entities, which want to communicate via IS Messages, i.e. the IS Partners.

In modern telecommunication networks most of these IPEs are digitally transparent for the complete 64 kbit/s data stream all the time after call establishment until call release. These IPEs are optimal and need no consideration here.

Some IPEs are most of the time digitally transparent, but disturb the link every now and then. Examples are:

-
switches, which interrupt the link during Handover;

-
switches, which insert a kind of conference bridge for a short while during Handover;

-
links, which do octet deletions or insertions (octet slips);

-
DTMF generators, which insert DTMF tones sometimes for a short while.

Other IPEs are digitally transparent in one direction, but not in the other. Examples are:

-
DTMF generators, which insert the DTMF tones only in one direction;

-
Network Echo Cancellers (NECs), which let the signal pass unaltered towards the PSTN, but cancel the echo.

Other IPEs are semi-transparent, i.e. let most or some of the bits pass, but not all. Examples are:

-
A/(_Law converters;

-
(/A_Law converters; and

-
especially the tandem connection of A/(_Law and (/A_Law converters, or vice versa.

-
links, which insert inband signalling by bit stealing (T1 links).

Other IPEs are not transparent at all to the digital bit stream, although the speech signal pass more or less unaltered. Examples:

-
level shifters, which adjust the signal levels, e.g. between national networks;

-
DCMEs (Digital Circuit Multiplication Equipment), which compress the bit stream by encoding/decoding the speech signal for cost efficient transmission.

Many of these IPEs - for some time - will be not compliant with the IS Message principle described in Annex A. The IS Messages will not pass these non-compliant IPEs or not in both directions, or not always. Care must be taken to identify situations where IPEs are part-time-transparent or semi-transparent, when applying IS Messages. Other IPEs - at some point in time in the future - will be compliant to the IS Message principle. The rules they have to fulfil are described below.

B.2
IS_Compliant IPEs

B.2.1
Typical IPEs are IS_Passive

In general, an IPE shall never actively initiate the exchange of IS Messages. The active initiation is only done by terminals or their "representatives". This avoids uncontrolled and unnecessary fluctuation of IS Messages within the network.

Most IPEs shall never actively respond to IS Messages by sending other IS Messages. Such equipment are called IS_Passive.
They need not and do not understand the IS Protocol, but let it just pass unaltered and obey the relevant IS_IPE Messages.

Some IPEs may, however, respond on received IS Messages, modify these and/or respond with own IS Messages, if they understand the IS Protocol and can take or bring advantage to the overall system performance or system quality. These IPEs are called IS_Responsive. Examples are GSM-specific Digital Circuit Multiplication Equipments (TCMEs), which reduce transmission costs without degrading the speech quality. These IPEs may be able to step into the IS Protocol, interpret and respond to it and modify the speech signal in a system compliant way. Thus they become IS_Active Partners themselves.

B.2.2
IS Message_Transparency

When commanded into a Transparent Mode, the IPEs are fully transparent at least for the LSBs in all PCM samples. Therefore the following rules are needed only and only do apply for the IPEs, when in Normal_Mode:

-
IPEs shall let the IS Messages bypass, or re-insert them, from their input to their respective output.

-
They shall not alter them, nor do any kind of error correction. Exceptions are the IS_Responsive IPEs.

B.2.2.1
First IS Message

During its Normal_Mode an IS_Compliant IPE shall always monitor the incoming PCM data stream for the occurrence of the IS_Header sequence. If the IS_Header is detected after a period without IS Messages, the IPE shall store the following IS_Command and IS_Extension_Block(s). During reception of this first IS Message, the normal operation of the IPE is maintained with the consequence that the first IS Message may not appear at the output of the IPE.

B.2.2.2
IS Messages within a Sequence

All further IS Messages which follow directly after the first detected IS Message in the same phase position shall be passed unaltered to the output of the IPE with exactly that delay the IPE would later introduce when commanded into Transparent_Mode by one of the IS_TRANS commands, see Figure B-1.

[image: image12.wmf]Delay

for

speech

Header1

C1

Extension1

Extension2

Header2

C2

Header3

C3

Header2

C2

Header3

C3

(nearly) no Delay for 2

nd

 and 3

rd

IS_Messages !

I

n

p

u

t

O

u

t

p

u

t

Figure B-1: Transparency and Delay for first and following IS Messages

The upper row symbolizes the speech signal at the input of the IPE, with the PCM samples drawn vertically and the IS Messages inserted into the LSBs. The lower row symbolizes the speech signal at the output of the IPE. The vertical lines denote the boundaries of the IS Message elements.

Figure B-1 shows an example where the first IS Message is detected, but not passed through. The distortion caused by the first IS Message is still "somehow" there (indicated by the empty dashed boxes in the LSB), but the message is destroyed. The second and third IS Messages are passed through unaltered. Note, however, that the delay of the speech signal is (in this example) substantially higher than the delay of the IS Messages. They travel faster than the speech signal through this IPE.

B.2.2.3
Isolated IS Message

In cases where the first detected IS Message is not immediately followed by further IS Messages, the IPE shall insert this first IS Message (which the IPE has stored) into its output PCM bit stream, with exactly the delay and phase position a second IS Message would have, see Figure B-2, which shows an example where an isolated IS Message is travelling through an IPE.

[image: image13.wmf]Delay

for

speech

Header1

C1

Extension1

Extension2

Delay for this isolated

IS_Message !

Header1

C1

Extension1

Extension2

Header2

Same phase position as

IS_Message 2 would have

I

n

p

u

t

O

u

t

p

u

t

Figure B-2: Transparency and Delay for an isolated IS Message

Note that the delay of an isolated IS Message is depending on its own length! Longer IS Messages will have more delay, shorter less. It could, in principle, happen that a second, shorter isolated IS Message would "bypass" the first longer IS Message - with the consequence that the first one would be destroyed. This is especially important when there are several IPEs in the path, since the delay effects accumulate. Therefore it is not allowed to send shorter isolated IS Messages too close after longer IS Messages. IS Messages with same length have no restriction.

In summary, the first IS Message in a series of IS Messages is "swallowed" by an IPE, while all the following IS Messages pass unaltered and with minimal delay. If an IS Message occurs isolated, then it is not swallowed, but delayed by exactly its own length. The latter mechanism ensures that isolated IS Messages can pass through an unlimited number of IPEs.

B.2.2.4
Check if IS Message is following

The checking, whether an other IS Message is following or not is done "on the fly", i.e. bit by bit. This is possible due to the fact that all messages begin with exactly the same IS_Header. The decision, whether an IS Message is an isolated message or the first message in a series, can be done latest after the last bit of the (next) IS_Header, see Figure B-2.

Consequently, after detection of the first IS Message, the IS_Header is in any case inserted at the output in the correct position, regardless, whether a second message follows or not.

B.3
IPE State Representation

Concerning the IS Protocol, an IPE can be described with five major States in two main Modes, where the States describe the IPE with respect to the IS Protocol and the Modes describe the IPE with respect to the operation on PCM data. Figure B-3 shows a graphical representation of the State diagram of an IPE.

[image: image14.wmf]Sync_Not_Found

Normal_Mode

IS_NORMAL

IS_TRANS

Sync_Found

Sync_Lost

Keep_Open_Sync

Keep_Open_Lost

Transparent_Mode

Figure B-3: Principle of a State Diagram of an IPE

Some Definitions:
An IS Message shall be recognized as "error-free", if no error can be detected, neither within the IS_Header, nor in the IS_Command nor in any IS_Extension_Block.

An IS Message shall be recognized as "single-error", if no more than one bit position differs in the IS_Header or the IS_Command_Block or the IPE_Mode_Block or one EX-field or one Sync bit.

An IS Message shall be recognized as "correctable", if the phase position is as in preceding IS Messages and:

-
no more than 2 bit position differs in the IS_Header; and

-
no more than 1 error is detected within the IS_Command_Block; and

-
no more than 3 errors are detected within the IPE_Mode_Block; and

-
no more than 0 error is detected within the EX-field(s); and

-
no more than 1 error is detected within the Sync-Bit(s); and

-
the total number of detected errors is not higher than 3.

IS Messages, which are error-free, single-error or correctable are also called "valid" IS Messages.

An IS Message shall be recognized as "present", if the phase position is as in preceeding IS Messages and:

-
no more than 4 bit position differs in the IS_Header and

-
no more than 2 errors are detected within the IS_Command_Block; and

-
no more than 3 errors are detected within the IPE_Mode_Block; and

-
no more than 1 error is detected within the EX-field(s); and

-
no more than 2 errors are detected within the Sync-Bit(s); and

-
the total number of detected errors is not higher than 4.

Sequences, which differ in more than "present" are not recognized as IS Messages at all , i.e. "not_present".

Note that the insertion of T_Bits may change the phase position of an IS Message. The IS Message shall in that case be classified after the removal of the T_Bits.

An octet slip may also change the phase position of an IS Message. If an error-free or a single-error IS Message can be found after considering a hypotetical octet slip ((1 sample), then it may be regarded as error-free or single-error and the new phase position shall be regarded as valid, if no valid or present IS Message can be found at the old phase position.

B.3.1
IPE in Sync_Not_Found

After start-up or after a long interruption of the IS Protocol an IPE is in Normal_Mode, performing its normal operation. IS Messages have not been found and consequently no bypassing of IS Messages is performed.

The algorithm for initial synchronization shall be able to detect each single IS Message, especially the first or an isolated one. An IPE shall always, during Normal_Mode and during Transparent_Mode, search for the IS_Header and consequently for complete IS Messages. When found, it can be assumed that with high probability the following IS Messages and the Keep_Open _Indication will stay within the found "grid"or "phase" of every 16th PCM sample, the 16_PCM_Sample_Grid.

An IPE transits from Sync_Not_Found into Sync_Found, if and only if an error_free IS Message is detected. Then the IPE lets the following IS Messages bypass, as described above.

If the first IS Message is an error_free IS_TRANS Message, then the IPE transits directly into the Transparent_Mode.

B.3.2
IPE in Sync_Found

The IPE continues its normal operation, but opens an IS_Door every 16th LSB for the bypassing IS Messages.

An IPE shall regard sync as continued, i.e. stay in Sync_Found, if after each IS Message another valid IS Message follows within the same phase position, i.e. within the 16_PCM_Sample_Grid.

For any deviations from a valid IS Message, the IPE transits to Sync_Lost.

If an error_free or correctable IS_TRANS is received in Sync_Found, then the IPE transits into the Transparent_Mode.

B.3.3
IPE in Sync_Lost

In Sync_Lost, an IPE shall search for IS Messages on all positions as for initial synchronisation. In parallel, an IPE shall bypass not_valid, but present IS Messages at the found phase position for a maximum of one second. An IPE shall close the IS_Door after that, if no valid IS Message is following, i.e. transit into Sync_Not_Found.

A single valid IS Message brings the IPE back into Sync_Found.

As soon as the IPE detects in Sync_Found or in Sync_Lost a single or more deviations from an error_free IS Message, then the IPE may optionally open the IS_Door also at positions (1 around the present (0) phase position for a maximum of one second (to allow other IPEs in the path for parallel re-synchronization, see Figure B-4. The IPE may try to find a continuation of the disturbed IS Message at these 3 positions. If the IPE can detect an error-free or a single-error IS Message in this way, then it shall accept the new phase position, if no IS Message can be found at the old phase position anymore.

[image: image15.wmf]IS_Door and IS_Bits fit together

Octet Slip: IS_Door does not fit anymore

IS_Door is widened to pass IS_Bits

All IPE can find this in parallel

All IPEs can search in parallel

Figure B-4: Handling of octet slip for fast and parallel re-synchronization of all IPEs (optional)
B.3.4
IPE in Keep_Open_Sync

The IPE enters this State by receiving a valid IS_TRANS Message. This is the main State of the Transparent_Mode.

It depends on the specific IPE, if this Transparent_Mode is active only for the commanded direction (that is the default assumption) or in both directions (because for a specific IPE it might be useless or impossible to maintain Normal_Mode in one direction and Transparent_Mode in the other one).

The IPE shall bypass the commanded LSBs and handle the upper bits accordingly (IPE specific).

The IPE shall search in parallel for IS_IPE Messages (IS_TRANS, IS_NORMAL) and

transit - if necessary - to Normal_Mode or an other Transparent_Modes (other number of transparent LSBs).

The IPE shall monitor the bypassing bit stream for the Keep_Open_Indication and accept the Keep_Open_Indication only at the phase position defined by the preceding IS Message.

If the Keep_Open_Indication is not seen anymore then the IPE transits into Keep_Open_Lost.

B.3.5
IPE in Keep_Open_Lost

The IPE shall continue its operation in Transparent_Mode and Keep_Open_Lost for a maximum of one second before it shall return to Normal_Mode.During that time the IPE shall try to resynchronize either by finding an IS Message or by finding the Keep_Open_Indication at positions (1 and 0 around the present phase position (handle of Octet Slip).

The IPE may take advantage of the fact that T_Bits are inserted or deleted by the IS_Sender in case of an intentional phase adjustment.

An IS Message at any arbitrary phase position followed by a valid Keep_Open_Indication is accepted as re-defining the Keep_Open phase position, if and only if the Keep_Open_Indication is no longer present at the old phase position.
A Keep_Open_Indication at a phase position (1 PCM sample interval around the old phase position is accepted as re-defining the Keep_Open phase position, if and only if the Keep_Open_Indication is no longer present at the old phase position.

The Keep_Open_Indication is "valid", as long as at least 40 "0"-Bits are seen at the correct positions within a sliding window of length of one second. At least one "1"-Bit must be seen in between each pair of the expected "0"-Bits.

B.4
IPE Error Handling

The first IS_Message shall only be accepted, if there is no detectable error.

For all following IS_Messages it shall apply:

Errors in IS Messages shall be passed unaltered through the IPEs. This shall hold for all IS Messages.

Only error-free or correctable IS_IPE Message shall be applied by the IPE to its own operation. Other IS_IPE Messages shall be ignored, but bypassed.

B.5
IPE Transmission Delay

The transmission delay introduced by an IPE for the speech, audio or modem signal is in general different in Normal_Mode and Transparent_Mode. Some IPEs may have several different Normal_Modes with possibly different signal delays. IS Messages are transmitted within the regular 16_PCM_Sample_Grid. It is important that this regularity is not disturbed. Therefor care must be taken at the transition between these modes.

The transmission delay of a specific IPE is in general lower for IS Messages than for speech, audio or modem signals.

B.5.1
IPE Transmission Delay in Normal_Mode

The delay for IS Messages in Normal_Mode shall be identical to the delay in that Transparent_Mode, that follows after the first IS_TRANS Message. If different Transparent_Modes with different delays could follow, then the shortest delay of all possible Transparent Modes shall be selected for IS Messages in Normal_Mode.

If an IPE in Normal_Mode has to change its transmission delay, then this shall not affect the delay of the IS Messages.

B.5.2
IPE Transmission Delay in Transparent_Mode

In the majority of all cases the IPE will keep the transmission delay for the IS Messages in Normal_Mode also in Transparent_Mode for the transmission of the commanded transparent LSBs. IPEs which do not understand the IS Protocol shall never modify the transparent bits, so they are also not allowed to change delay.

Some IPEs, which understand a specific IS Protocol, may have even different Transparent_Modes and also here the transmission delays may differ. TCMEs are an examples of such equipment.

If an IPE has to change its transmission delay at the transition from Normal_Mode to Transparent_Mode, then the IPE shall readjust the phase of the Keep_Open_Indication after transition into the Transparent_Mode with higher delay by inserting the relevant number of T_Bits after the first IS_TRANS Message and before the next IS Message. If no other IS Message is following, then the IS_FILL shall be inserted, obeying all other relevant rules of the specific IS Protocol (e.g. EMBED bit C5 in TFO Frames).

If an IPE has to change from one Transparent_Mode to an other one with a different transmission delay, then the IPE shall readjust the phase of the Keep_Open_Indication after transition into the new Transparent_Mode by inserting the relevant number of T_Bits. If no other IS Message is following, then the IS_FILL shall be inserted at the new phase position to mark the new grid position of the 16_PCM_Sample_Grid and to allow other IPEs to resynchronize, obeying all other relevant rules of the specific IS Protocol (e.g. EMBED bit C5 in TFO Frames).

B.6
Compliance to IS Messages

An IS_Compliant IPE shall be capable of interpreting and obeying the IS_IPE Messages.

It depends on the intelligence and task of an IPE, how many and which of the other IS Messages it needs to understand.

The IPEs shall synchronise to all IS Messages, especially to find or refind the Keep_Open_Indication. All IPEs shall resynchronize, if they see an IS Message in a new phase position, and if the synchronization can not be found in the old phase position anymore.

B.6.1
Compliance to IS_REQ and IS_ACK Messages

Most IPEs need not and do not understand these messages. They just synchronise to them and let them pass unaltered.

Only IS_Responsive IPEs may take advantage. This is system specific and IPE specific.

B.6.2
Compliance to IS_NORMAL Message

The IPE shall act in response to the receipt of an IS_NORMAL Message such that:

-
The IPE shall synchronise to it. The message shall appear unchanged at the output of the IPE.

-
The IPE shall resume its Normal_Mode of operation for all data received subsequent to the IS_NORMAL Message, until a different command is received.

It depends on the type and operation of the specific IPE, whether the Normal_Mode is resumed in both directions, or only in the direction in which the IS_NORMAL Message flows. It must be assumed that in general only this one direction is affected.

B.6.3
Compliance to IS_TRANS_x Messages

The IPE shall act in response to the receipt of an IS_TRANS_x Message (x in the range 1 to 8) such that:

-
The IPE shall synchronise to it. The IS_TRANS_x Message shall appear unchanged at the output of the IPE.

-
The IPE shall be transparent in all x LSBs of all PCM samples received subsequent to the IS_TRANS Message.

-
The transparency shall persist as long as the Keep_Open_Indication persists, or until a different command is received.

-
The (8-x) upper bits of the PCM samples are not of interest and may be modified arbitrarily by the IPE.

It depends on the type and operation of the specific IPE, whether the Transparent_Mode is resumed in both directions, or only in the direction in which the IS_TRANS Message flows. It must be assumed that in general only this one direction is affected.

B.6.4
Compliance to IS_TRANS_x_u Messages

The IPE shall act in response to the receipt of an IS_TRANS_x_u Message (x in the range 1 to 7) such that:

-
The IPE shall synchronise to it. The messages shall appear unchanged at the output of the IPE.

-
The IPE shall be transparent in all x LSBs of all PCM samples received subsequent to the IS_TRANS Message.

-
The transparency shall persist as long as the Keep_Open_Indication persists, or until a different command is received.

The (8-x) upper bits of the PCM samples are important and in general shall not be modified by the IPE, but shall be bypassed transparently in exactly the same manner and delay as the x LSBs. It is important that this transparency for the upper bits is provided by IPEs that do not understand the specific IS Protocol (e.g. do not understand the IS_System_Identification or the protocol of the transmitted parameters).

Only IPEs which do exactly understand the specific IS Protocol shall take advantage of the opportunities given with the IS_TRANS_x_u Messages. An example is the TCME, which transmits internally only the coded speech parameters and re-generates the upper x bits at its output (termed here as "first solution"). The resulting delay in the upper 8-x bits shall be identical to the delay in the x LSBs.

If this transparency of the upper (8-x) bits or their re-generation can not be established, then the upper bits shall contain a constant pattern, giving the least output energy (PCM_Silence). This "second solution" may cause temporary interruptions of the speech signal in some transition cases (e.g. hand over in some tandem free GSM mobile-to-mobile calls). Therefore the first solution is the preferred one.

IPEs, which implement the second solution shall switch to the full transparent 64 kbit/s channel as soon as they lose synchronisation with the protocol of the transmitted parameters (e.g. the "TFO Frames" in GSM Systems). The full transparency shall be executed for both directions. The near side shall be fully transparent in less than 60 ms and the other side the one way delay of that IPE later.

It depends on the type and operation of the specific IPE, whether the Transparent_Mode is resumed in both directions, or only in the direction in which the IS_TRANS Message flows. It must be assumed that in general only this one direction is affected.

B.6.5
Compliance to IS_FILL Message

The IS_FILL Message has no specific meaning, but may serve for two purposes.

First of all, it can be used to close the gap in an IS Protocol to keep all IPEs synchronized. Otherwise - in case of an interruption - the n IPEs in the path would swallow the next n IS Messages again.

Second, an IS_FILL Message can be used to resynchronize all IPEs to a new grid position, if necessary.

B.6.6
Compliance to IS_DUP Messages

The IS_DUP Message is sent by an IS Partner to the distant IS Partner to inform about a specific Half_Duplex reception.

Most IPEs need not and do not understand this message. They just synchronize to it and let it pass unaltered.

Only IS_Responsive IPEs may take advantage. This is system specific and IPE specific.

B.6.7
Compliance to IS_SYL Messages

The IS_SYL Message is sent by an IS Partner to the distant IS Partner to inform about a specific Sync_Lost Situation.

Most IPEs need not and do not understand this message. They just synchronize to it and let it pass unaltered.

Only IS_Responsive IPEs may take advantage. This is system specific and IPE specific.

Annex C (Normative):
Processes for Tandem Free Operation in GSM

I’m still working on it (A.O.)

Annex D (Normative):
Processes for Tandem Free Operation in 3G

To be completed.
Annex E (Normative):
Detailed TFO Protocol Description Tables

In separate file.

Annex F (Informative):
Call flows for AMR TFO setup & HO and Implementor’s Guide

F.1
Call flows for AMR TFO setup and HO

F.1.1
Call flows for AMR TFO setup and HO in GSM

F.1.1.1
Immediate TFO establishment without codec mode optimisation

[image: image16.wmf]BSC (distant)

BTS (distant)

BSC (local)

TRAU (distant)

Operation

Connect

Contact

TRAU (local)

Operation

Connect

First Try

Not active

Wake up

BTS (local)

TA is stopped

Speech/

config frame

TFO_FILL

TFO_ACK (RSIG, DUC, DACS)

TFO_REQ (SIG, LUC, LACS)

PCM samples

PCM samples

LACS=DACS LUC=DUC TFO possible

TFO Frame

TFO Frame

Config frame (TFO Soon)

Config

ack

TFO On

Remote

codec

config report (

dist

parms, TFO On)

Channel activation

Exchange of TFO frames

TFO_REQ_L (local

parms)

TFO_ACK_L

Config frame (Distant

params)

TFO Trans

TFO Trans

F.1.1.2
Immediate TFO establishment with codec mode optimisation

[image: image17.wmf]BSC

(local)

BTS (local)

TRAU (local)

TRAU (distant)

BTS (distant)

BSC

(distant)

Channel activation

Speech /

config

frame

Not Active

Wake Up

PCM samples

PCM samples

First try

TFO_FILL

TFO_REQ (SIG, LUC, LACS)

Contact

TFO_REQ (SIG, LUC, LACS)

Contact

LACS != DACS, LUC=DUC

Config

 frame (

dist

.

Param

.)

TFO_ACK

TFO_ACK

OACS acceptable

CACS, OACS acceptable

=>

TA is stopped

codec

mode is steered to CACS

ACS on radio unchanged

Config

 frame (new CACS)

Config

Ack

TFO_ACK (LUC, new CACS)

TFO_TRANS

Connect

TFO_TRANS

Connect

TFO frames

TFO frames

Operation

Operation

TFO on

Change to OACS

Config

 frame (new ACS)

Config

 frame (new ACS)

Config

 frame (new ACS)

Config

Ack

Config

Ack

Config

Ack

Exchange of TFO frames

All the new modes can now be used

F.1.1.3
Optimal AMR FR – AMR HR TFO setup

[image: image18.wmf]BSC

(local)

BTS (local)

TRAU (local)

TRAU (distant)

BTS (distant)

BSC

(distant)

Channel activation

Speech /

config

frame

Not Active

Wake Up

PCM samples

PCM samples

First try

TFO_FILL

TFO_REQ (SIG, LUC, LACS)

Contact

TFO_REQ (SIG, LUC, LACS)

Contact

LACS != DACS, LUC=AMR FR, DUC= AMR HR

Config

 frame (

dist

.

Param

.)

TFO_ACK

TFO_ACK

OACS acceptable

CACS, OACS acceptable

=>

TA is stopped

codec

mode is steered to CACS

ACS on radio unchanged

Config

 frame (new CACS)

Config

Ack

TFO_ACK (LUC, new CACS)

TFO_TRANS

Connect

TFO_TRANS

Connect

TFO frames

TFO frames

Operation

Operation

TFO on

Change to OACS

Config

 frame (new ACS)

Config

 frame (new ACS)

Config

 frame (new ACS)

Config

Ack

Config

Ack

Config

Ack

Exchange of TFO frames

All the new modes can now be used

F.1.1.3
AMR TFO setup with immediate change to OACS

[image: image19.wmf]BSC

(local)

BTS(local)

TRAU (local)

TRAU (distant)

BTS (distant)

BSC

(distant)

Channel activation

Speech /

config

frame

Not Active

Wake Up

PCM samples

PCM samples

First try

TFO_FILL

TFO_REQ (SIG, LUC, LACS)

Contact

TFO_REQ (SIG, LUC, LACS)

Contact

LACS != DACS, LUC=DUC

Config

 frame (

dist

.

Param

.)

TFO_ACK

TFO_ACK

CACS NOT acceptable

Config

 frame (new CACS)

Config

Ack

TFO_ACK_L (

codec

list)

TFO_TRANS

TFO_TRANS

Connect

TFO frames

TFO frames

Operation

Operation

TFO on

DACS = LACS

Rem

.

Codec Config

Rep

Exchange of TFO frames

Mismatch

TFO_REQ_L (

codec

 list)

Determination of new

codec

/

 OACS

Change to new

codec

/

 OACS

TFO_REQ (SIG, LUC, LACS)

TFO_ACK (SIG, LUC, LACS)

Mismatch

Determination of new

codec

/

 OACS

Change to new

codec

/

 OACS

TFO report

F.1.1.4
AMR TFO Handover with drop out from TFO

[image: image20.wmf]local new BTS

distant BTS

distant TRAU

Continuous retry

Stop TFO

local TRAU

Stop TFO

Wakeup

local old BTS

local BSC

Pre-handover notification (target ACS, TFO_Disable)

TFO active, exchange of TFO frames

Config frame (TFO_Disable)

Config frame (TFO_Disable)

Config frame (TFO_Disable)

Config ack

Config ack

Config ack

Channel activation (TFO_Enable)

Handover complete

Speech/config frame (TFO_Enable)

AMR TFO setup (worst case)

TFO_REQ

TFO_REQ (repeated)

F.1.1.5
AMR TFO handover with contiguity

[image: image21.wmf]local new BTS

distant BTS

distant TRAU

local TRAU

local old BTS

The codec mode is steered down to a

common mode on both uplink and downlink

local BSC

Pre-handover notification (target ACS, TFO_Enable)

TFO active, exchange of TFO frames

Config frame (Handover_Soon)

Config frame (Handover_Soon)

Config frame (Handover_Soon)

Config ack

Config ack

Config ack

Channel activation (TFO_Enable)

Handover complete

Speech/config frame (TFO_Enable)

Optimisation of ACS within TFO

F.1.2
Call flows for AMR TFO setup and HO in UMTS

-- to be included --
F.2
Guide for AMR configuration in TFO environment
This section presents several rules, which should be followed to optimise the establishment of TFO with AMR, and avoid unnecessary handovers once TFO is established.

The rules can be classified into following families :

· Avoid codec type optimisation

· Establish TFO as soon as possible

· Prefer AMR tandem situation to tandem free with FR or HR

· Balance constraints between speech quality and capacity

The rules are valid for a complete PLMN. They can be extended to inter-PLMN calls, to extend their benefits. They can also be restricted to a part of a PLMN, which would lower their benefits.

The picture below shows in the flowchart for TFO establishment which branches the rules are referring to. Note that R1 is out of the scope of this flowchart.

(Note from the editor : should that stay in the rec. ?)

[image: image22.wmf]Immediate

TFO

Establishment

(see 11.3)

LACS ==

DACS ?

yes

no

TFO

Establishment

on OACS

Both

radio legs

use AMR

no

Codec

Mismatch

Resolution

(see 11.6)

IACS ==

OACS ?

Immediate

TFO

Establishment

(see 11.3)

yes

yes

no

Immediate

TFO

Establishment

(see 11.3)

yes

no

no

Immediate

TFO

Establishment

(see 11.3)

yes

IACS

sub-set of

OACS?

FR – HR –

Optimization

(see 11.4)

Codec Mode

Optimization

(see 11.5)

Calculate OACS

and IACS

(

see section 12)

Change ACS

to OACS

(

if supported)

FR – HR –

Matching?

 (

see 12.6)

OACS

acceptable?

(

see 12.5)

R2

R3

R6

R4

R5

R7

R8

F.2.1
Avoid codec type optimisation

Once TFO is established, if codec type optimisation is possible (see sub-section 11.5 and 11.6), a handover will be triggered to change the codec type.

If TFO is already established with AMR, it is believed that the gain of optimisation will be minor compared to the cost of the handover. Moreover, this would force at least one side to go from a HR channel to a FR channel, with direct consequences on capacity.

This leads to following rule :

R1 :
When TFO with AMR is established, and codec mode optimisation has been done (if necessary), the supported codec list should contain only the active codec type, to avoid any further codec type optimisation.

F.2.2
Establish TFO as soon as possible

The speech quality is improved by TFO, it is then important to establish TFO as soon as possible. This can be achieved by reducing / simplifying the negotiation.

This leads to two categories of rules :

1. Rules for immediate TFO establishment without codec mode optimisation

2. Rules for immediate TFO establishment with codec mode optimisation

F.2.2.1
Rules for immediate TFO establishment without codec mode optimisation (optimal AMR TFO setup)

R2 :
Use of MACS = 4 and of the default set (10.2, 6.7, 5.9, 4.75 for FR; 7.4, 6.7, 5.9, 4.75 for HR). This applies only to AMR FR – AMR FR and AMR HR – AMR HR cases.

R3 :
Homogeneity of the ACS in the PLMN (same ACS used in all BSS of a given PLMN for a given codec type : AMR UMTS, AMR FR, AMR HR). This rule does not apply to TFO between AMR FR and AMR HR.

R4 :
Choose ACSs so that CACS is acceptable and CACS = OACS (see section 11). This rule does not apply to TFO between AMR FR and AMR HR.

F.2.2.2
Rules for immediate TFO establishment with codec mode optimisation

R5 :
Choose ACSs so that CACS is acceptable and CACS is a subset of OACS (see section 11). This rule does not apply to TFO between AMR FR and AMR HR.

R6 :
Choose compatible ACS for AMR FR and AMR HR : CACS is contiguous and fulfills the acceptability rule. Note : default subsets for AMR FR and AMR HR fulfill R6.

F.2.3
Prefer AMR tandem situation to tandem free with FR or HR

It is believed that any tandeming situation involving AMR is better, from the speech quality point of view, than a tandem free with FR or HR. This goes against TFO algorithm, which will try to establish TFO to the best common codec, which may be FR or HR.

R7 :
Do not include FR, HR in the codec list if AMR is used

F.2.4
Balance constraints between speech quality and capacity

The preference order for codec type optimisation / codec mismatch resolution is based on speech quality criterias, and does not take into account the load in the RAN.

R8 : if the RAN is high loaded, only include codec types using HR channels in the supported codec list.

Annex G (Informative):
TFO Decision Algorithm C-Code and OACS Table

G.1
Brief Description of the Program ‘tfo_decision’

The program ‘tfo_decision’ implements the TFO decision algorithm described in sections 11 & 12 of TS 28.062. With the help of this program, the TFO decision algorithm can be run for different codec configurations in order to check and illustrate the TFO decision algorithm.
This program implements the rules of chapters 11 & 12. Unfortunately, it has only a very simple user interface: it reads lines from standard input and writes to standard output.

This code should run on Unix platforms and Windows NT as well. (E. g. you can compile the sources on Solaris using 'cc -o tfo_decision tfo_main.c tfo_decision.c oacs.c'.
The files oacs.h, oacs.c, tfo_decision.h and tfo_decision.c serve as reference implementation of the TFO decision algorithm.

G.1.1
Input

The program tfo_decision reads from stdin. Each line is separated by spaces into 10 fields that contain the input data for a TFO decision. For example:

XXXXXXXX -X--XX-X 4 AMR_FR y --XXXXXX ---X-X-X 3 AMR_HR y

1. field:
LSCS
XXXXXXXX
all modes supported

2. field:
LACS
-X--XX-X
modes 10.2, 6.7, 5.9, 4.75

3. field:
LMACS
4
local MACS 4

4. field:
LUC
AMR_FR
local used codec type AMR_FR

5. field:
LOM
y
(‘y’ or ‘n’) local optimization mode yes

6. field:
DSCS
--XXXXXX
modes 7.95, 7.4, 6.7, 5.9, 5.15, 4.75

7. field:
DACS
---X-X-X
modes 7.4, 6.7, 5.9, 4.75

8. field:
DMACS
3
distant MACS 3

9. field:
DUC
AMR_HR
distant used codec type AMR_HR

10. field:
DOM
y
(‘y’ or ‘n’) distant optimization mode yes

The fields LSCS, LACS, DSCS, DACS must consist of 8 characters ‘X’ or ‘-‘ indicating the 8 AMR modes. The LUC and DUC may be AMR_FR, AMR_HR, AMR_UMTS, GSM_EFR, GSM_FR, or GSM_HR. The LOM and DOM fields must be ‘y’ or ‘n’.

G.1.2
Output

The program tfo_decision prints directly to stdout. The output is believed to be self-explaining, e.g.:

AMR_FR

AMR_HR

MACS = 4

MACS = 3

OM = yes

OM = yes

SCS
ACS
IACS
OACS
CSCS
ACS
 SCS

12.2
X
-
-
-
-
-
-

10.2
X
X
-
-
-
-
-

7.95
X

-
X
X
-
X

7.40
X
-
-
-
X
X
X

6.70
X
X
-
X
X
-
X

5.90
X
X
X
-
X
X
X

5.15
X
-
-
-
X
-
X

4.75
X
X
X
X
X
X
X

Change ACS to OACS and establish TFO on OACS.

G.1.3
Short Introduction to the Source Code

G.1.3.1
Data structure

The struct ‘Data’ , which is defined in tfo_decision.h, contains all necessary information about the TFO decision process. The function ‘int getInputData(Data* data)’ (file tfo_main.c) reads the input data from stdin and fills the corresponding members of this struct. The TFO decision functions update this data struct while performing the TFO decision process.

G.1.3.2
Some important functions

It is out of the scope of this brief description to comment all functions. Here, only a few important functions are mentioned in order to give a rough overview. Further comments are provided directly in the source code files.

int main()

(location: tfo_main.c)

This main function reads input data from stdin and calls the routines for the TFO decision algorithm.

int tfo_decision_main(Data* data)

(location: tfo_decision.c)

This function implements the main TFO decision prodecure described in section 11.1.

int tfo_decision_AMR (Data* data)

(location: tfo_decision.c)

This function implements the TFO decision algorithm for AMR codec types described in section 12.2.

int determine_OACS(Data* data)

(location: tfo_decision.c)

This function is used to determine the OACS. It distinguishes between the following three cases depending on the local and distant optimization modes.

CodecSet calc_OACS(CodecSet aCscs, int cmacs, CodecType codecType)
(location: oacs.c)

This function calculates the OACS for the case that both sides support an ACS change.

int calc_OACS_case1(Data* data)

This function calculates the OACS if no side supports an ACS change.

int calc_OACS_case2(Data* data)

This function calculates the OACS for the case that only one side supports an ACS change.

G.1.4
Files

Source code files: tfo_main.c, tfo_decision.c, tfo_decision.h, oacs.c, oacs.h,

G.1.4.1
tfo_main.c

/***

*

* Description : source file for TFO decision algorithm

*

**/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include "tfo_decision.h"

/* --- */

/* convert a string (example "-X--XX-X") to a CodecSet */

CodecSet s2cs(char* s)

{

 int k;

 CodecSet m, cs = 0;

 if (strlen(s) != 8)

 {fprintf(stderr,"ERROR: reading input\n");exit(0);}

 for (k=0, m=mode_122; k<8; k++, m >>= 1)

 if (s[k] == 'X')

 cs |= m;

 return cs;

}

/* read input Data from stdin */

int getInputData(Data* data)

{

 char buffer[255];

 char lscs[255], dscs[255];

 char lacs[255], dacs[255];

 int lmacs, dmacs;

 char lType[255], dType[255];

 char lOM, dOM;

 data->cacs = data->oacs = data->cscs = 0;

 if (!fgets(buffer, 255, stdin))

 return 0;

 if (sscanf(buffer, "%s %s %d %s %c %s %s %d %s %c",

 lscs, lacs, &lmacs, lType, &lOM,

 dscs, dacs, &dmacs, dType, &dOM) != 10)

 {fprintf(stderr,"ERROR: reading input\n");exit(0);}

 data->lscs = s2cs(lscs);

 data->lacs = s2cs(lacs);

 if (lmacs > 0 && lmacs <= 8)

 data->lmacs = lmacs;

 else

 {fprintf(stderr,"ERROR: reading input\n");exit(0);}

 if (!strcmp(lType, "AMR_FR"))

 data->lType = AMR_FR;

 else if (!strcmp(lType, "AMR_HR"))

 data->lType = AMR_HR;

 else if (!strcmp(lType, "AMR_UMTS"))

 data->lType = AMR_UMTS;

 else if (!strcmp(lType, "GSM_EFR"))

 data->lType = GSM_EFR;

 else if (!strcmp(lType, "GSM_FR"))

 data->lType = GSM_FR;

 else if (!strcmp(lType, "GSM_HR"))

 data->lType = GSM_HR;

 else

 {fprintf(stderr,"ERROR: reading input\n");exit(0);}

 if (lOM == 'y')

 data->lOM = 1;

 else if (lOM == 'n')

 data->lOM = 0;

 else

 {fprintf(stderr,"ERROR: reading input\n");exit(0);}

 data->dscs = s2cs(dscs);

 data->dacs = s2cs(dacs);

 if (dmacs > 0 && dmacs <= 8)

 data->dmacs = dmacs;

 else

 {fprintf(stderr,"ERROR: reading input\n");exit(0);}

 if (!strcmp(dType, "AMR_FR"))

 data->dType = AMR_FR;

 else if (!strcmp(dType, "AMR_HR"))

 data->dType = AMR_HR;

 else if (!strcmp(dType, "AMR_UMTS"))

 data->dType = AMR_UMTS;

 else if (!strcmp(dType, "GSM_EFR"))

 data->dType = GSM_EFR;

 else if (!strcmp(dType, "GSM_FR"))

 data->dType = GSM_FR;

 else if (!strcmp(dType, "GSM_HR"))

 data->dType = GSM_HR;

 else

 {fprintf(stderr,"ERROR: reading input\n");exit(0);}

 if (dOM == 'y')

 data->dOM = 1;

 else if (dOM == 'n')

 data->dOM = 0;

 else

 {fprintf(stderr,"ERROR: reading input\n");exit(0);}

 /* check some settings */

 if (data->lType != AMR_FR && data->lType != AMR_HR && data->lType != AMR_UMTS)

 data->lOM = data->lscs = data->lacs = data->lmacs = 0;

 if (data->dType != AMR_FR && data->dType != AMR_HR && data->dType != AMR_UMTS)

 data->dOM = data->dscs = data->dacs = data->dmacs = 0;

 if ((data->lacs & data->lscs) != data->lacs ||

 (data->dacs & data->dscs) != data->dacs)

 {fprintf(stderr,"ERROR: ACS not in SCS\n");exit(0);}

 if (data->lmacs < nModes(data->lacs) ||

 data->dmacs < nModes(data->dacs))

 {fprintf(stderr,"ERROR: MACS < #ACS\n");exit(0);}

 if (data->lType == AMR_HR)

 {data->lscs &= 0x3f; data->lacs &= 0x3f;}

 if (data->dType == AMR_HR)

 {data->dscs &= 0x3f; data->dacs &= 0x3f;}

 return 1;

}

/* print Data to stdout */

int printData(Data* data)

{

 CodecSet m;

 printf("\n\n--");

 printf("\n\n\t%s\t\t\t\t\t%s\n", codecName(data->lType), codecName(data->dType));

 printf("\tMACS = %d\t\t\t\tMACS = %d\n", data->lmacs, data->dmacs);

 printf("\tOM = %s\t\t\t\tOM = %s\n", data->lOM ? "yes" : "no", data->dOM ? "yes" : "no");

 printf("\n\tSCS\tACS\tIACS\tOACS\tCSCS\tACS\tSCS\n");

 for (m=mode_122; m; m>>=1)

 {

 printf("%s\t%c\t%c\t%c\t%c\t%c\t%c\t%c\n",

 modeName((CodecMode)m),

 data->lscs & m ? 'X' : '-',

 data->lacs & m ? 'X' : '-',

 data->cacs & m ? 'X' : '-',

 data->oacs & m ? 'X' : '-',

 data->cscs & m ? 'X' : '-',

 data->dacs & m ? 'X' : '-',

 data->dscs & m ? 'X' : '-');

 }

 printf("\n");

 return 0;

}

/* ---

 main

 --- */

int main()

{

 Data a;

 Data* data = &a;

 while (getInputData(data))

 {

 determine_IACS(data);

 determine_OACS(data);

 printData(data);

 tfo_decision_main(data);

 }

 return 0;

}
G.1.4.2
tfo_decision.c

/***

*

* Description : source file for TFO decision algorithm

*

***/

#include <stdio.h>

#include <stdlib.h>

#include "tfo_decision.h"

/* ---

 Main TFO Decision Procedure (section 11.1)

 --- */

int tfo_decision_main(Data* data)

{

 /* Two compatible AMR codec types? */

 if (data->lType == AMR_UMTS && data->dType == AMR_UMTS ||

 data->lType == AMR_FR && data->dType == AMR_FR ||

 data->lType == AMR_HR && data->dType == AMR_HR ||

 data->lType == AMR_FR && data->dType == AMR_HR ||

 data->lType == AMR_HR && data->dType == AMR_FR)

 {

 return tfo_decision_AMR(data);

 }

 /* Same non AMR codec type? */

 if (data->lType == GSM_FR && data->dType == GSM_FR ||

 data->lType == GSM_EFR && data->dType == GSM_EFR ||

 data->lType == GSM_HR && data->dType == GSM_HR)

 {

 return immediate_TFO(data);

 }

 /* Codec Mismatch Resolution */

 return codec_mismatch_resolution(data);

}

/* ---

 TFO Decision Algorithm for AMR Codec Types (section 11.2)

 --- */

int tfo_decision_AMR (Data* data)

{

 /* LACS == DACS ? */

 if (data->lacs == data->dacs)

 return immediate_TFO(data);

 /* FR - HR - Matching ? */

 if (FR_HR_matching(data))

 {

 immediate_TFO(data);

 return FR_HR_optimization(data);

 }

 /* OACS acceptable ? */

 if (!acceptable(data, data->oacs))

 return codec_mismatch_resolution(data);

 /* IACS == OACS ? */

 if (data->cacs == data->oacs)

 return immediate_TFO(data);

 /* IACS subset of OACS ? */

 if (contiguous_subset(data->cacs, data->oacs))

 {

 immediate_TFO(data);

 return codec_mode_optimization(data);

 }

 return change_to_OACS(data);

}

/* ---

 FR - HR - Matching (section 12.6)

 --- */

int FR_HR_matching(Data* data)

{

 if (!(data->lType == AMR_FR && data->dType == AMR_HR ||

data->lType == AMR_HR && data->dType == AMR_FR))

 return 0;

 if (!data->cacs)

 return 0;

 if (!acceptable(data, data->cacs))

 return 0;

 printf("FR-HR-Matching.\n");

 return 1;

}

/* ---

 --- */

int determine_IACS(Data* data)

{

 /* calculate CSCS */

 data->cscs = data->lscs & data->dscs;

 /* calculate CMACS */

 data->cmacs = data->lmacs < data->dmacs ? data->lmacs : data->dmacs;

 /* calculate IACS */

 data->cacs = contiguous_subset_selection((CodecSet)(data->lacs & data->dacs), 0,0,

 data->lacs, data->dacs, data->cmacs);

 return 0;

}

/* ---

 --- */

int determine_OACS(Data* data)

{

 /* no side supports ACS change */

 if (!data->lOM && !data->dOM)

 calc_OACS_case1(data);

 /* both sides support ACS change */

 else if (data->lOM && data->dOM)

 /* calculate OACS */

 data->oacs = calc_OACS(data->cscs,

 data->cmacs,

 data->lType == AMR_HR || data->dType == AMR_HR ? AMR_HR : AMR_FR);

 /* only one side supports ACS change */

 else

 calc_OACS_case2(data);

 return 0;

}

/* ---

 --- */

int acceptable(Data* data, CodecSet cs)

{

 CodecType codecType = data->lType == AMR_HR || data->dType == AMR_HR ? AMR_HR : AMR_FR;

 return lowModeRule (data->lacs, data->dacs, cs, codecType) &&

 highModeRule(data->lacs, data->dacs, cs);;

}

/* ---

 --- */

/* check if a is a contiguous subset of b */

int contiguous_subset(CodecSet a, CodecSet b)

{

 int mode;

 if (!a) return 0;

 for (mode=mode_122; mode; mode>>=1)

 {

 if (a & mode) break;

 b &= mode ^ 0xFF;

 }

 return a == b;

}

/* ---

 --- */

/* section 12.2.2 Case 1: No side supports ACS change */

int calc_OACS_case1(Data* data)

{

 CodecSet cacs = data->lacs & data->dacs;

 if (!contiguous_subset(cacs, data->lacs) || !contiguous_subset(cacs, data->dacs))

 {

 data->oacs = contiguous_subset_selection(cacs, data->lOM, data->dOM,

 data->lacs, data->dacs, data->cmacs);

 return 0;

 }

 data->oacs = cacs;

 return 0;

}

/* ---

 --- */

/* section 12.2.2 Case 2: Only one side supports ACS change */

int calc_OACS_case2(Data* data)

{

 CodecSet fixACS, scs, cscs;

 if (data->lOM && !data->dOM)

 {

 fixACS = data->dacs;

 scs = data->lscs;

 }

 else if (!data->lOM && data->dOM)

 {

 fixACS = data->lacs;

 scs = data->dscs;

 }

 else

 {

 fprintf(stderr, "ERROR in calc_OACS_case2()\n");

 exit(0);

 }

 cscs = fixACS & scs;

 if (!contiguous_subset(cscs, fixACS))

 {

 data->oacs = contiguous_subset_selection(cscs, data->lOM, data->dOM,

 data->lacs, data->dacs, data->cmacs);

 return 0;

 }

 if (nModes(cscs) > data->cmacs)

 {

 data->oacs = contiguous_subset_selection(cscs, data->lOM, data->dOM,

 data->lacs, data->dacs, data->cmacs);

 return 0;

 }

 data->oacs = cscs;

 return 0;

}

/* ---

 --- */

/* section 12.4 Rules for contiguous subset selection */

CodecSet contiguous_subset_selection (CodecSet cs, int lOM, int dOM,

 CodecSet lacs, CodecSet dacs, int cmacs)

{

 int mode;

 for (mode=mode_122; mode; mode>>=1)

 {

 if ((lOM || contiguous_subset(cs, lacs)) &&

 (dOM || contiguous_subset(cs, dacs)) &&

 (nModes(cs) <= cmacs))

 break;

 cs &= mode ^ 0xFF;

 }

 return cs;

}

/* ---

 terminal blocks

 --- */

int immediate_TFO(Data* data)

{

 if (data->lType == AMR_FR || data->lType == AMR_HR || data->lType == AMR_UMTS)

printf("Immediate TFO on IACS.\n");

 else

printf("Immediate TFO on %s.\n", codecName(data->lType));

 return 0;

}

int codec_mismatch_resolution(Data* data)

{

 printf("Codec Mismatch Resolution.\n");

 return 0;

}

int change_to_OACS(Data* data)

{

 printf("Change ACS to OACS and establish TFO on OACS.\n");

 return 0;

}

int codec_mode_optimization(Data* data)

{

 printf("Codec Mode Optimization.\n");

 return 0;

}

int FR_HR_optimization(Data* data)

{

 printf("FR - HR - Optimization.\n");

 return 0;

}

/* ---

 help routines

 --- */

/* return a string with the name of a mode */

char* modeName(CodecMode m)

{

 switch(m)

 {

case mode_122: return "12.2";

case mode_102: return "10.2";

case mode_795: return "7.95";

case mode_740: return "7.40";

case mode_670: return "6.70";

case mode_590: return "5.90";

case mode_515: return "5.15";

case mode_475: return "4.75";

default:

 fprintf(stderr, "ERROR in modeName()\n");

 exit(0);

 }

 return 0;

}

/* return a string with the name of a codec type */

char* codecName(CodecType t)

{

 switch(t)

 {

case AMR_FR: return "AMR_FR";

case AMR_HR: return "AMR_HR";

case AMR_UMTS: return "AMR_UMTS";

case GSM_EFR: return "GSM_EFR";

case GSM_FR: return "GSM_FR";

case GSM_HR: return "GSM_HR";

default:

 fprintf(stderr, "ERROR in modeName()\n");

 exit(0);

 }

 return 0;

}
G.1.4.3
tfo_decision.h

/*

**

*

*

* Description : header file for TFO decision algorithm

*

*

**

*/

#ifndef TFO_DECISION_H_INCLUDED

#define TFO_DECISION_H_INCLUDED

#include "oacs.h"

typedef struct

{

 CodecSet lscs;

 CodecSet lacs;

 int lmacs;

 CodecType lType;

 int lOM;

 CodecSet dscs;

 CodecSet dacs;

 int dmacs;

 CodecType dType;

 int dOM;

 CodecSet oacs;

 CodecSet cscs;

 CodecSet cacs;

 int cmacs;

} Data;

int tfo_decision_main (Data* data);

int tfo_decision_AMR (Data* data);

int immediate_TFO (Data* data);

int codec_mismatch_resolution (Data* data);

int change_to_OACS (Data* data);

int codec_mode_optimization (Data* data);

int FR_HR_optimization (Data* data);

int determine_OACS (Data* data);

int determine_IACS (Data* data);

int acceptable (Data* data, CodecSet cs);

int FR_HR_matching (Data* data);

int contiguous_subset (CodecSet a, CodecSet b);

int calc_OACS_case1 (Data* data);

int calc_OACS_case2 (Data* data);

CodecSet contiguous_subset_selection (CodecSet cs, int lOM, int dOM,

 CodecSet lacs, CodecSet dacs, int cmacs);

char* modeName (CodecMode m);

char* codecName (CodecType t);

#endif

G.1.4.4
Oacs.c

/*

**

*

* Description : source file for OACS selection rules

*

**

*/

#include <stdio.h>

#include <stdlib.h>

#include "oacs.h"

/* ---

 private functions

 --- */

void selectMode (CodecMode codecMode, CodecSet* cscs, CodecSet* oacs);

void notInclude (CodecMode codecMode, CodecSet* cscs);

int ready (CodecSet cscs, CodecSet oacs, int cmacs);

CodecMode findHighest (CodecSet cs);

CodecMode findLowest (CodecSet cs);

void selectLowest (CodecSet* cscs, CodecSet* oacs);

void selectHighest (CodecSet* cscs, CodecSet* oacs);

CodecSet calc_OACS_FR (CodecSet cscs, int cmacs);

CodecSet calc_OACS_HR (CodecSet cscs, int cmacs);

void checkDefaultFR (CodecSet* cscs, CodecSet* oacs, int cmacs);

void checkDefaultHR (CodecSet* cscs, CodecSet* oacs, int cmacs);

/* --- */

CodecSet calc_OACS(CodecSet cscs, int cmacs, CodecType codecType)

{

 switch (codecType)

 {

 case AMR_FR: return calc_OACS_FR(cscs, cmacs);

 case AMR_HR: return calc_OACS_HR(cscs, cmacs);

 default: fprintf(stderr, "ERROR: invalid codec type.\n"); exit(0);

 }

 return (CodecType) 0;

}

CodecSet calc_OACS_FR(CodecSet cscs, int cmacs)

{

 CodecSet oacs = 0;

 while (1)

 {

 /*

if CMACS == 1

select mode according to preference list {6.7, 7.4, 5.9, 5.15, 4.75, 7.95, 10.2, 12.2}

*/

 if (cmacs == 1)

 {

 selectMode(mode_670, &cscs, &oacs); if (ready(cscs, oacs, cmacs)) break;

 selectMode(mode_740, &cscs, &oacs); if (ready(cscs, oacs, cmacs)) break;

 selectMode(mode_590, &cscs, &oacs); if (ready(cscs, oacs, cmacs)) break;

 selectMode(mode_515, &cscs, &oacs); if (ready(cscs, oacs, cmacs)) break;

 selectMode(mode_475, &cscs, &oacs); if (ready(cscs, oacs, cmacs)) break;

 selectMode(mode_795, &cscs, &oacs); if (ready(cscs, oacs, cmacs)) break;

 selectMode(mode_102, &cscs, &oacs); if (ready(cscs, oacs, cmacs)) break;

 selectMode(mode_122, &cscs, &oacs); if (ready(cscs, oacs, cmacs)) break;

 fprintf(stderr, "ERROR: This point must never be reached.\n"); exit(0);

 }

 /*

if CMACS == 2

*/

 if (cmacs == 2)

 {

 /* If mode 10.2 is supported, do not include mode 12.2. */

 if (cscs & mode_102) notInclude(mode_122, &cscs);

 if (ready(cscs, oacs, cmacs)) break;

 /* Select highest mode. */

 selectHighest(&cscs, &oacs);

 if (ready(cscs, oacs, cmacs)) break;

 /* If mode 12.2 or mode 10.2 is selected, select mode according to

 preference list {6.7, 7.4, 5.9, 5.15, 4.75, 7.95, 10.2, 12.2}. */

 if (oacs & (mode_122 | mode_102))

 {

 selectMode(mode_670, &cscs, &oacs); if (ready(cscs, oacs, cmacs)) break;

 selectMode(mode_740, &cscs, &oacs); if (ready(cscs, oacs, cmacs)) break;

 selectMode(mode_590, &cscs, &oacs); if (ready(cscs, oacs, cmacs)) break;

 selectMode(mode_515, &cscs, &oacs); if (ready(cscs, oacs, cmacs)) break;

 selectMode(mode_475, &cscs, &oacs); if (ready(cscs, oacs, cmacs)) break;

 selectMode(mode_795, &cscs, &oacs); if (ready(cscs, oacs, cmacs)) break;

 selectMode(mode_102, &cscs, &oacs); if (ready(cscs, oacs, cmacs)) break;

 selectMode(mode_122, &cscs, &oacs); if (ready(cscs, oacs, cmacs)) break;

 }

 /* Select lowest mode. */

 selectLowest(&cscs, &oacs);

 if (ready(cscs, oacs, cmacs)) break;

 fprintf(stderr, "ERROR: This point must never be reached.\n"); exit(0);

 }

 /* CMACS > 2 */

 /* if cmacs == 4, check default FR set */

 if (cmacs == 4) checkDefaultFR(&cscs, &oacs, cmacs);

 if (ready(cscs, oacs, cmacs)) break;

 /* if 10.2 is supported, do not include 12.2 */

 if (cscs & mode_102) notInclude(mode_122, &cscs);

 if (ready(cscs, oacs, cmacs)) break;

 /* if 5.9 or 6.7 is supported, do not include 5.15 */

 if (cscs & (mode_590 | mode_670)) notInclude(mode_515, &cscs);

 if (ready(cscs, oacs, cmacs)) break;

 /* if 5.9 or 6.7 is supported, do not include 4.75 */

 if (cscs & (mode_590 | mode_670)) notInclude(mode_475, &cscs);

 if (ready(cscs, oacs, cmacs)) break;

 /* if 4.75 is supported, do not include 5.15 */

 if (cscs & mode_475) notInclude(mode_515, &cscs);

 if (ready(cscs, oacs, cmacs)) break;

 /* If mode 5.9 is supported, do not include mode 6.7. */

 if (cscs & mode_590) notInclude(mode_670, &cscs);

 if (ready(cscs, oacs, cmacs)) break;

 /* if (12.2 or 10.2) and 7.4 is supported, do not include 7.95 */

 if ((cscs & (mode_122 | mode_102)) && (cscs & mode_740)) notInclude(mode_795, &cscs);

 if (ready(cscs, oacs, cmacs)) break;

 /* If mode 7.95 is supported, do not include 7.4. */

 if (cscs & mode_795) notInclude(mode_740, &cscs);

 if (ready(cscs, oacs, cmacs)) break;

 /* ----- */

 /* select lowest mode */

 selectLowest(&cscs, &oacs);

 if (ready(cscs, oacs, cmacs)) break;

 /* select highest mode */

 selectHighest(&cscs, &oacs);

 if (ready(cscs, oacs, cmacs)) break;

 /* ----- */

 /* select 6.7 */

 /* selectMode(mode_670, &cscs, &oacs); */

 if (ready(cscs, oacs, cmacs)) break;

 /* select 5.9 */

 /* selectMode(mode_590, &cscs, &oacs); */

 if (ready(cscs, oacs, cmacs)) break;

 /* ----- */

 fprintf(stderr, "ERROR: Not enough rules.\n"); exit(0);

 } /* end of while (1) */

 if (nModes(oacs) < cmacs)

 oacs |= cscs;

 return oacs;

}

CodecSet calc_OACS_HR(CodecSet cscs, int cmacs)

{

 CodecSet oacs = 0;

 while (1)

 {

 /*

if CMACS == 1

select mode according to preference list {5.9, 5.15, 4.75, 6.7, 7.4, 7.95}

*/

 if (cmacs == 1)

 {

 selectMode(mode_590, &cscs, &oacs); if (ready(cscs, oacs, cmacs)) break;

 selectMode(mode_515, &cscs, &oacs); if (ready(cscs, oacs, cmacs)) break;

 selectMode(mode_475, &cscs, &oacs); if (ready(cscs, oacs, cmacs)) break;

 selectMode(mode_670, &cscs, &oacs); if (ready(cscs, oacs, cmacs)) break;

 selectMode(mode_740, &cscs, &oacs); if (ready(cscs, oacs, cmacs)) break;

 selectMode(mode_795, &cscs, &oacs); if (ready(cscs, oacs, cmacs)) break;

 fprintf(stderr, "ERROR: This point must never be reached.\n"); exit(0);

 }

 /*

if CMACS == 2

*/

 if (cmacs == 2)

 {

 /* Select highest mode. */

 selectHighest(&cscs, &oacs);

 if (ready(cscs, oacs, cmacs)) break;

 /* Select lowest mode. */

 selectLowest(&cscs, &oacs);

 if (ready(cscs, oacs, cmacs)) break;

 fprintf(stderr, "ERROR: This point must never be reached.\n"); exit(0);

 }

 /* CMACS > 2 */

 /* if cmacs == 4, check default HR set */

 if (cmacs == 4) checkDefaultHR(&cscs, &oacs, cmacs);

 if (ready(cscs, oacs, cmacs)) break;

 /* if 4.75 is supported, do not include 5.15 */

 if (cscs & mode_475) notInclude(mode_515, &cscs);

 if (ready(cscs, oacs, cmacs)) break;

 /* if 5.15 is supported, do not include 5.9 */

 if (cscs & mode_515) notInclude(mode_590, &cscs);

 if (ready(cscs, oacs, cmacs)) break;

 /* If mode 5.9 is supported and mode 4.75 is not supported, do not include mode 6.7. */

 if ((cscs & mode_590) && !(cscs & mode_475)) notInclude(mode_670, &cscs);

 if (ready(cscs, oacs, cmacs)) break;

 /* If mode 7.95 is supported, do not include 7.4. */

 if (cscs & mode_795) notInclude(mode_740, &cscs);

 if (ready(cscs, oacs, cmacs)) break;

 /* ----- */

 /* select lowest mode */

 selectLowest(&cscs, &oacs);

 if (ready(cscs, oacs, cmacs)) break;

 /* select highest mode */

 selectHighest(&cscs, &oacs);

 if (ready(cscs, oacs, cmacs)) break;

 /* ----- */

 /* select 6.7 */

 selectMode(mode_670, &cscs, &oacs);

 if (ready(cscs, oacs, cmacs)) break;

 /* select 5.9 */

 /* selectMode(mode_590, &cscs, &oacs); */

 if (ready(cscs, oacs, cmacs)) break;

 /* ----- */

 fprintf(stderr, "ERROR: Not enough rules.\n"); exit(0);

 } /* end of while (1) */

 if (nModes(oacs) < cmacs)

 oacs |= cscs;

 return oacs;

}

int nModes(CodecSet codecSet)

{

 int k, n=0;

 for (k=0; k<8; k++)

 {

 if (codecSet & 1) { n++; }

 codecSet >>= 1;

 }

 return n;

}

void selectMode(CodecMode codecMode, CodecSet* cscs, CodecSet* oacs)

{

if (*cscs & codecMode)

{

*cscs &= codecMode ^ 0xFF;

*oacs |= codecMode;

}

}

void notInclude(CodecMode codecMode, CodecSet* cscs)

{

 *cscs &= codecMode ^ 0xFF;

}

int ready(CodecSet cscs, CodecSet oacs, int cmacs)

{

 if (nModes(oacs) == cmacs) return 1;

 if (nModes(oacs) + nModes(cscs) <= cmacs) return 1;

 return 0;

}

CodecMode findHighest(CodecSet cs)

{

 if (cs & mode_122) return mode_122;

 if (cs & mode_102) return mode_102;

 if (cs & mode_795) return mode_795;

 if (cs & mode_740) return mode_740;

 if (cs & mode_670) return mode_670;

 if (cs & mode_590) return mode_590;

 if (cs & mode_515) return mode_515;

 if (cs & mode_475) return mode_475;

 fprintf(stderr, "ERROR: This point must never be reached.\n"); exit(0);

 return (CodecMode) 0;

}

CodecMode findLowest(CodecSet cs)

{

 if (cs & mode_475) return mode_475;

 if (cs & mode_515) return mode_515;

 if (cs & mode_590) return mode_590;

 if (cs & mode_670) return mode_670;

 if (cs & mode_740) return mode_740;

 if (cs & mode_795) return mode_795;

 if (cs & mode_102) return mode_102;

 if (cs & mode_122) return mode_122;

 fprintf(stderr, "ERROR: This point must never be reached.\n"); exit(0);

 return (CodecMode) 0;

}

void selectLowest(CodecSet* cscs, CodecSet* oacs)

{

 selectMode(findLowest(*cscs), cscs, oacs);

}

void selectHighest(CodecSet* cscs, CodecSet* oacs)

{

 selectMode(findHighest(*cscs), cscs, oacs);

}

void checkDefaultFR(CodecSet* cscs, CodecSet* oacs, int cmacs)

{

 if ((cmacs >= 4) &&

 (*cscs & mode_475) &&

 (*cscs & mode_590) &&

 (*cscs & mode_670) &&

 (*cscs & mode_102))

 {

 selectMode(mode_475, cscs, oacs);

 selectMode(mode_590, cscs, oacs);

 selectMode(mode_670, cscs, oacs);

 selectMode(mode_102, cscs, oacs);

 }

}

void checkDefaultHR(CodecSet* cscs, CodecSet* oacs, int cmacs)

{

 if ((cmacs >= 4) &&

 (*cscs & mode_475) &&

 (*cscs & mode_590) &&

 (*cscs & mode_670) &&

 (*cscs & mode_740))

 {

 selectMode(mode_475, cscs, oacs);

 selectMode(mode_590, cscs, oacs);

 selectMode(mode_670, cscs, oacs);

 selectMode(mode_740, cscs, oacs);

 }

}

int highModeRule(CodecSet lacs, CodecSet dacs, CodecSet oacs)

{

 CodecMode highOACS = findHighest(oacs);

 CodecMode highLACS = findHighest(lacs);

 CodecMode highDACS = findHighest(dacs);

 CodecMode minACSMode = (highLACS < highDACS ? highLACS : highDACS);

 return (highOACS >= (minACSMode >> 1));

}

int lowModeRule(CodecSet lacs, CodecSet dacs, CodecSet oacs, CodecType codecType)

{

 CodecMode max = (codecType == AMR_HR ? mode_590 : mode_740);

 CodecMode lowOACS = findLowest(oacs);

 CodecMode lowLACS = findLowest(lacs);

 CodecMode lowDACS = findLowest(dacs);

 CodecMode lowestACSMode = (lowLACS < lowDACS ? lowLACS : lowDACS);

 return (lowOACS <= max || lowOACS <= lowestACSMode);

}
G.1.4.5
Oacs.h

/**

*

* Description : header file for OACS selection rules

*

**/

#ifndef OACS_H_INCLUDED

#define OACS_H_INCLUDED

typedef unsigned char CodecSet;

typedef enum

{

 AMR_HR,

 AMR_FR,

 AMR_UMTS,

 GSM_EFR,

 GSM_FR,

 GSM_HR

} CodecType;

typedef enum

{

 mode_475 = 1,

 mode_515 = 2,

 mode_590 = 4,

 mode_670 = 8,

 mode_740 = 16,

 mode_795 = 32,

 mode_102 = 64,

 mode_122 = 128

} CodecMode;

/* --

 functions

 -- */

CodecSet calc_OACS(CodecSet aCscs, int cmacs, CodecType codecType);

/*

 Calculate the OACS.

 Input parameters:

 - CodecSet aCscs : common supported codec set (CSCS)

 - int cmacs : CMACS

 - CodecType codecType: AMR_HR if AMR_HR is involved, else AMR_FR

 Return value: OACS (type CodecSet)

*/

int nModes(CodecSet codecSet);

/*

 Return the number of modes in the codecSet.

*/

int highModeRule(CodecSet lacs, CodecSet dacs, CodecSet oacs);

int lowModeRule (CodecSet lacs, CodecSet dacs, CodecSet oacs, CodecType codecType);

#endif
G.2
OACS Table
-- to be included --

_969192248.unknown

_1034687645.doc

LACS == DACS ?

Immediate TFO Establishment(see 11.3)

yes

Codec Mismatch Resolution (see 11.6)

no

IACS == OACS ?

Immediate TFO Establishment (see 11.3)

yes

TFO Establishment on OACS

yes

no

Change ACS to OACS

(if supported)

Both radio legs use AMR

no

R2

R3

no

yes

Immediate TFO Establishment(see 11.3)

yes

Immediate TFO Establishment (see 11.3)

no

IACS �sub-set of OACS?

Codec Mode Optimization (see 11.5)

FR – HR – Optimization (see 11.4)

FR – HR – Matching?� (see 12.6)

OACS acceptable?

(see 12.5)

Calculate OACS and IACS

(see section 12)

R6

R4

R5

R7

R8

_1034689896.doc

BSC (distant)

BTS (distant)

BSC (local)

TRAU (distant)

Operation

Connect

Contact

TRAU (local)

Operation

Connect

First Try

Not active

Wake up

BTS (local)

TA is stopped

Speech/config frame

TFO_FILL

TFO_ACK (RSIG, DUC, DACS)

TFO_REQ (SIG, LUC, LACS)

PCM samples

PCM samples

LACS=DACS LUC=DUC TFO possible

TFO Frame

TFO Frame

Config frame (TFO Soon)

Config ack

TFO On

Remote codec config report (dist parms, TFO On)

Channel activation

Exchange of TFO frames

TFO_REQ_L (local parms)

TFO_ACK_L

Config frame (Distant params)

TFO Trans

TFO Trans

_969192252.unknown

_969192246.unknown

_969192247.unknown

_969192245.unknown

_969192244.unknown

