3GPP TSG-SA Codec Working Group
TSGS4#13(00)0474

TSG-S4#13: October 23-27, 2000, Osaka, Japan

Source:
Philips
, Bouygues Telecom

Title:
Session establishment and web applications development language

Document for:
Discussion

Agenda Item:
11.6

" Multimedia codecs and protocols for conversational packet-switched services "
1 Introduction

This contribution presents first of an overview of the eXtensible Markup Language (XML) defined by W3C and the XML/HTTP/TCP/IP protocol stack applicable for PSS session establishment.

The XML (eXtensible Markup Language) is a simple, flexible text format derived from SGML (Standard Generalized Markup Language). It is an application profile which describes a class of data objects called XML documents and partially describes the behavior of computer programs which process them. The XML goal is to enable generic SGML to be served, received, and processed on the web in the way that is now possible with HTML. XML is a simplified version of SGML for specifying DTD (Document Type Definition) and parsed data. In comparison with HTML, which doesn't include DTD (it is implicitly assumed), XML allows authors to add tags at will. Then, it offers a good flexibility even to describe easily an evolutionary language for mobile phone web applications. XML is a web metalanguage (it is used to define and explain the object language) which can be basically use to define other specific object language. A good overview of the current development of web languages can be fund in the document annex, which is a background to understand the next sections.

The three next sections of this document focus on three objects, which are parts of XML and interesting for PSS.

2 XML Objects

2.1 Uniform Resource Identifiers (URI)

URI is an extension of the original concept of the URL and can be further classified as a locator, a name, or both. The term Uniform Resource Locator refers to the subset of URI that identify resources via a representation of their primary access mechanism (e.g., their network "location"), rather than identifying the resource by name or by some other attribute(s) of that resource. The term Uniform Resource Name refers to the subset of URI that are required to remain globally unique and persistent even when the resource ceases to exist or becomes unavailable.

XLink specifies the syntax and semantics of hyperlinks. XPointer specifies the pointer structure:

· The XML Linking Language (XLink) allows elements to be inserted into XML documents in order to create and describe links between resources. It uses XML syntax to create structures that can describe the simple unidirectional hyperlinks of today's HTML, as well as more sophisticated links.

· The XML Pointer Language (XPointer) is the language use as a fragment identifier for any URI-reference that locates a resource of Internet media type text/XML or application/XML. XPointer is based on the XML Path Language (XPath), supports addressing into the internal structures of XML documents. It allows for traversals of a document tree and choice of its internal parts based on various properties, such as element types, attribute values, character content, and relative position.

2.2 Resource Description Framework (RDF)

The Resource Description Framework (RDF) is a foundation for processing metadata; it provides interoperability between applications that exchange machine-understandable information on the Web. RDF uses XML to exchange descriptions of Web resources but the resources being described can be of any type, including XML and non-XML resources. RDF emphasizes facilities to enable automated processing of Web resources. It can be used in a variety of application areas.

The architecture how client devices express their capabilities and preferences (the user agent profile) to the server that originates content (the origin server) is specified by CC/PP. The format to interchange those profiles is based on RDF.

2.3 Synchronised multimedia integration language (SMIL)

SMIL defines an XML-based language that allows authors to write interactive multimedia presentations. An author can describe the temporal behavior of a multimedia presentation, associate hyperlinks with media objects and describe the layout of the presentation on a screen.

3 Conclusion

The three previous object languages based on XML are interesting the needs of PSS for opening and driving a stream. XML is becoming a new standard for Internet web applications. Similar works between the WAP forum (http://www.wapforum.org) and W3C try to find a convergence between XHTML and WML (WML is an XML application). The charter for the work on the next generation XHTML includes the definition of a profile for mobile devices. XHTML (XML), SMIL and RDF have been already modularized in different lightweight subsets that can be used to define a basic XML language.

Then, we recommend that PSS supports at least a basic profile of XML language and adopts XML/HTTP/TCP/IP stack for session establishment.
Annex: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">Web Technology: An introduction to the Web languages and their architectural relationships

Warner ten Kate, Philips

Table of Contents

· Basic Concepts

· Web

· HTML and CSS

· XML and XSL

· Structuring the Web

· XML as founding language

· Modularization and Profiling - Realizing Interoperability

· DOM

· Hyperlinking

· URI

· Other Web Languages

· SMIL and Timing

· Interaction and Events

· SVG

· SSML

· RDF

· XFORMS

· MathML

· Glossary

· References

<!-- ################################### -->
Basic Concepts <!-- ################################### --><!-- ############################## -->
Web<!-- ############################## -->
The Web is known by its hyperlinking feature. In fact the term web stems from the hypermedia paradigm which is centered on 4 basic elements:

Nodes:

Meaningful units of information

Links:

Relations of any kind between nodes

Anchors:

Selections within nodes from and to which links lead

Webs:

Coherent set of nodes and links, also called hypertexts or hypermedia documents

<div class="figure">PRIVE "TYPE=PICT;ALT=Web Concept"[image: image1.png]
Figure 1: Web: nodes, anchors and links.

</div>
In the World Wide Web (WWW) all link information is embedded in the nodes, see Figure 1, instead of in a separate database, making it almost impossible to grasp or visualize a hypermedia document as a distributed web. Vice versa this has enabled for its worldwide expansion.

The WWW has evolved out of an IETF project initiated by Tim Berners-Lee at CERN. Historical papers are [TBL1994] and [Abbate1999]. Tim Berners-Lee is now the director of the W3C.

<!-- ### -->
HTML and CSS<!-- ### -->
HTML [HTML4] is the original language of the Web. It combines the concepts of text markup, hyperlinking and URLs. In HTML these are supported at a basic level. Text markup derives from SGML [SGML]; in fact HTML is an SGML application. SGML was developed by the publishing industry and provides a way to specify structure in text documents. Structure refers to the organization of the text document and includes matters like paragraph, line break, chapter, etc. The style of presentation is not coded in the document. Style concerns formatting and refers to matters like font, page size, justify, colors, line spacing, ToC, etc. The idea of the publishing industry was that by separating structure and formatting a text document together with its markup can be stored once, from which the various printed versions (hard cover, paper back, etc.) can be derived using different style sheets. Moreover, applying the same style sheet in subsequent documents guarantees the same look of the books involved. The word processing language LaTeX operates along the same principles.

Structure is about qualifying or typing the document, formatting is about quantifying or presenting that document.

Style is the domain of DSSSL [DSSSL]. SGML and DSSSL, together with HyTime [HyTime], form the esoteric standards of document formats. HyTime is the multimedia extension of SGML. All three standards are considered too complex for use in the Web. This has triggered the development of CSS as the counterpart to HTML on the one hand and the development of XML/XSL as the generic cornerstone to Web Technology on the other hand.

As in principle HTML only specifies the structure, the look upon the presentation of an HTML document (on screen and paper) depends on the particular browser used. In other words the browser is specifying the style sheet. Neither the author nor the user has any control on the presentation. This has caused all types of tags to be added to HTML, which in fact were specifying style and layout. The introduction of CSS has turned these style-types of tags to be deprecated. CSS [CSS1, CSS2] was introduced to provide means to specify style as well as layout (positioning). This can be done in a cascading way, such that a series of style sheets can operate together, defining the final presentation.

In contrast to general multimedia content, text content reflects a flow, which by itself implies some way for layout in a presentation (start at left-top, line folding, wrap around, etc.). The flow bears a 1D character. The presentation process is called formatting, against layout in the multimedia case.

As said, HTML allows specifying the structure of a (text) document. That structure appears as markup elements in the document: the so-called tags. The structure arises because the elements form a hierarchy in a tree-like manner. The allowed parent-child relations between the elements are specified in a so-called DTD (Document Type Definition), or schema. This is called the Content Model: the child elements including the in-line data (e.g. text) that an element is allowed to contain. For example, a paragraph cannot contain a chapter. The DTD also specifies the attributes an element knows. For example, a paragraph can be given an ID (Name) such that a hyperlink can point to that paragraph. SGML is the language in which a DTD can be specified. This explains why HTML is an application of SGML: HTML is specified by a DTD written in SGML.

Formally, an SGML document should contain a so-called Document Type Declaration, which is declaring the DTD used (Document Type Definition). Such declaration can be merely a reference to that DTD. The Document Type Declaration enables the document's parsing (and validation). The declaration is followed by the parsed data, which consists of the content (text, or character data) and the markup. Next to what the DTD specifies, these parsed data also obey the general syntax rules set forth by SGML.

<!-- ## -->
XML and XSL<!-- ## -->
The HTML standard doesn't force to include the Document Type Declaration. It is implicitly assumed. The benefit of including the DTD is that variations in the document's structure can be added, allowing the document to better fit with its actual use. This has initiated the XML activity.

XML [XML] is a simplified version of SGML for specifying DTDs and parsed data. XML also introduces some rules to reduce the proliferation of HTML dialects. Current browsers ignore tags they do not recognize or render incorrect documents suggesting a correct use of HTML. This allows authors to add tags at will. XML introduces the concepts of well-formed and valid documents. Well-formed documents satisfy the XML syntax rules, a valid document includes a DTD (reference) such that the markup in the document can be validated (and the parser signals unknown, i.e. invalid, tags).

In order to ease "personalization" of the DTD and, more important, to support reuse of available (standard) DTDs, the concept of namespaces has been introduced [XMLNS]. Each DTD belongs to a namespace. A sub part of a DTD can be included in another document environment by referencing the namespace they stem from and by labeling the used elements with a prefix identifying that namespace. The included document part is called a fragment [XMLFRAGMENT].

Namespace inclusion can be applied per element or attribute. However, the (tree) relationship between elements associated with different namespaces is not specified. Obviously, it is neither possible to modify the DTD declared with the document (for that purpose, one should customize the DTD itself, using the principles of XML).

DTDs have been designed for (text) documents. Their expressive power is limited from data modeling perspective. XML Schema [XSCHEMA-PRIMER, XSCHEMA-STRUCT, XSCHEMA-TYPES] enables to further constrain a document's constituent parts: datatypes, elements and their content, attributes and their values, entities and their contents and notations. Schema constructs may also provide for the specification of implicit information such as default values.

XML Schema will replace DTDs as the mechanism for defining document types. XML Schemas themselves are written in XML, i.e. the Schema language is specified through a DTD.

While XML supports the specification of a document's DTD, i.e. its structure, XSL has been introduced to specify such a document's rendition, i.e. its formatting [XSL]. XSL derives from DSSSL. XSL specifies a formatting model, which consists of a vocabulary of so-called flow objects together with a rule base how these flow objects should be layed out (or flow) on the screen/paper. To that end the flow objects are organized in a formatting tree, where the formatting tree is associated with a reference layout model. An XSL document, or stylesheet, specifies a mapping of the elements in the XML document's tree onto the formatting tree. (Formally, the formatting vocabulary is an XML namespace.) Through setting the properties in the XSL document of the so-constructed flow objects, the rendition of any XML document can be specified (without transforming to an intermediate HTML version).

More generally, an XSL stylesheet specifies a mapping of a document's tree onto another tree. This mechanism is specified in XSLT [XSLT]. XSLT is designed to be used as part of XSL, where the XSLT part describes how the XML document is transformed into the XSL formatting vocabulary. XSLT is also designed to be used independently of XSL, providing a XML transformation language (performing DTD to DTD transformations), see Figure 2.

A transformation expressed in XSLT describes rules for transforming a source tree into a result tree. The transformation is achieved by associating patterns with templates. A pattern is matched against elements in the source tree. A template is instantiated to create part of the result tree. The result tree is separate from the source tree. The structure of the result tree can be completely different from the structure of the source tree. In constructing the result tree, elements from the source tree can be filtered and reordered and arbitrary structure can be added.

A transformation expressed in XSLT is called a style-sheet. This is because, in the case when XSLT is transforming into the XSL formatting vocabulary, the transformation functions as a style-sheet.

As an example, assume an author has created a document using a private DTD specification; let's call it A-DTD. This document can be transformed into HTML by using a XSLT style-sheet, which specifies the transformation of A-DTD into the DTD of HTML. The author of the A-DTD has to provide the XSLT style-sheet as well. Once he has created that XSLT style-sheet it can be reused for the rendition of subsequent A-DTD based documents.

<div class="figure"> PRIVE "TYPE=PICT;ALT=XSL Transformations"[image: image2.png]
Figure 2: XSL transformations

</div>
XSL (XSLT) style-sheets are conformant XML documents, or, in other words, XSL style-sheets are written using XML syntax. This means that XML tools can be applied on XSL style-sheets. For example, using the DOM, scripting can be added to turn the style-sheet dynamic.

Another way of looking at a XSLT style-sheet is that it searches a XML document and formats the found content in a document. XQL provides the next step in this searching aspect [XQL], in that it expands on XSL's pattern language by offering a general-purpose query interface to XML document. Instead of being a document, the XML source is now considered as a database.

XML provides the way to specify the database structure, XQL to query that database and XSL to format the query result. XQL uses string syntax such that it allows the queries to be used in URLs or to be embedded in attributes.

<!-- ## -->
Structuring the Web

 <!-- ## --><!-- ### -->
XML as founding language<!-- ### -->
There are several Web languages, HTML, SMIL and SVG being the predominant ones. (Others include SSML, XForms and MathML.) The approach is that all these languages are structured in a tree and specified by a schema: an XML DTD and/or a XSchema.

When a document is written using a private DTD, the common way of saying is that the document is written in XML and that the document is an XML document. Strictly, this also holds in case the DTD has been given a name, like HTML and SMIL. A document written in SMIL is also an XML document. The difference between HTML and XML is that XML is the metalanguage and HTML is a object language. The metalanguage is used to define and explain the object language.

As said, HTML is specified in SGML, while the Web is based upon XML. To that end HTML has been reformulated in XML. This reformulation has been called XHTML [XHTML1].

XML provides a way to specify any structure, i.e. any syntax. This enables to install a single XML parser, which, provided the document's DTD is known (from the corresponding declaration in the document), can parse and validate all languages as offered by Web sites. Further, existing languages can be subset and/or extended, through DTD manipulation, in that way tailoring the documents to the profile of client and server.

However, XML doesn't provide any semantics to the defined syntax structure. The XML application does. For example, languages like HTML, SMIL, SVG, and SSML add presentation semantics to the XML defined structure. (Because of that, these languages are also referred to as presentation languages.) In that sense, CSS relates to HTML and other presentation languages as to specialize the presentation style, while XSL relates to XML as to provide the generic way for specifying formatting semantics. Figure 3 and Figure 4 illustrate.

<div class="sidebar">
Note, that an XML document does contain semantics on itself. XML does not imply semantics to the defined syntax structure.

In the first place, there is information (meaning) available through the constraints XML set on the data and their structure. It enables parsing and validation of the syntax and the structure. The Infoset document specifies the abstract data that describes the information available in well-formed XML documents [INFOSET].

XML can also be seen as an (XML) application on its own, and thus implicitly bearing semantics. This stems from the publishing domain, where the implicit semantics is that of text flow, as explained in the section "HTML and CSS". The XML syntax is about structuring text, and the XSL stylesheet is specifying the formatting of that text flow. The internal formatting model of XSL, as described in the section "XML and XSL", allows to specify formatting of any XML document. The XSL stylesheet is transforming the XML to that XSL reference-formatting model. The XLink specification is needed to add hyperlink semantics to such documents, needed to create a web, as shown in Figure 1
. There is no temporal semantics. </div>
As the presentation languages are XML applications, the corresponding documents can be presented in two types of browsers. One is the general-purpose browser, which supports XML/XSL processing. An XML parser parses the document and the associated stylesheet specifies how that structure is to be presented. The other is the presentation language specific browser, which knows the semantics of the presentation language. Vice versa, an XML document can be presented in two ways. Next to the general-purpose browser, the document could be transformed, by applying XSLT, into a suitable presentation language.

<div class="figure">PRIVE "TYPE=PICT;ALT=Generic XML/XSL browser"[image: image3.png]
Figure 3: Generic, XML/XSL browser

</div><div class="figure">

PRIVE "TYPE=PICT;ALT=Presentation-Language specific browser"[image: image4.png]
Figure 4: Specific, Presentation-language browser

</div><!-- ### -->
Modularization and Profiling - Realizing Interoperability<!-- ### -->
Documents are authored with certain display expectations. Because of the Web's extent not all access environments are capable to implement those requirements. This has lead to the concepts of modularization and profiling. For each presentation language its grammar is partitioned into modules of semantically related elements. Those modules can be combined again into language profiles, forming new vocabularies. Modules from one language origin are called a module space. Modules from different module spaces can be combined. In this way, current languages can be subsetted, extended, and merged to form language profiles that are optimized to the needs of the application domain. A kind of "sliding window" can be created that encompasses the functionality, i.e. the modules, needed. Interoperability on the included functionality is realized.

A language profile always has a root element, e.g. <html> or <smil>. This element, or actually the module that support it, identifies a Host Language type. Typically, a Host Language specifies a minimal set of modules, a.o. containing the root element, such that a user agent supporting that minimal set, can yield a reasonable presentation by ignoring the unknown elements in the received document. Here, "reasonable presentation" is to be understood as something intelligible, which is not necessarily a close reflection of the author's original intentions. For that purpose a negotiation would have to be conducted to agree on the language profile to be used for the document interchange (see below). Host Language conformance contributes to interoperability by guaranteeing support for root element and minimal module set.

The tools to realize the profiling are provided by XML, which are DTD manipulation (and XML Schema manipulation) and namespaces. The architecture how client devices express their capabilities and preferences (the user agent profile) to the server that originates content (the origin server) is specified by CC/PP [CCPP-ARCH]. The format to interchange those profiles is based on RDF [CCPP-STRUCT]. See the section on RDF.

In a session, the client (content consumer) signals the profile(s) it supports and the server (content provider, author) indicates the profile(s) of the requested document. In a negotiation phase a suitable profile is agreed upon. The document is delivered in that profile, or transformed into it by proxy server along the delivery chain. The transformation can be executed by XSLT. <div class="sidebar">
After reformulating HTML into XHTML 1.0, the language has been modularized, which is referenced XHTML 1.1 [XHTML-MOD, XHTML1]. An example profile using this modularization is XHTML-Basic [XHTML-BASIC] (aside from the "XHTML 1.0" profile, which constitutes all the modules). XHTML-Basic defines a lightweight subset of what's in XHTML 1.1. It is the aim to be a profile for thin clients, interoperable with the Web. The profile does not include multimedia functionality.

SMIL 2.0 has also been modularized. Some of these modules have been combined with the XHTML modules such that animation functionality has been added to XHTML. The profile is called XHTML+SMIL [XHTML+SMIL].

</div>
Where the CC/PP at W3C solves for capability adaptation through profile negotiation from the document perspective, at IETF work has been conducted by the Conneg group from the protocol perspective [CONNEG]. In particular, Conneg is very specific in dealing with media features. CC/PP does not have such a constraint. Both groups aim to align.

Similar as browser can be divided into two types, the general purpose and presentation-language specific ones, this tailoring approach can also be divided into two types. One is where the XML Schema (or DTD) defines the document's profile and the associated stylesheet defines its presentation or translation into a presentation language. The other is the described modularization and profiling, where semantic modules are grouped together into profiles and XML/XSL provide the mechanics to realize such grouping.

<!-- ############################## -->
DOM<!-- ############################## -->
HTML documents are static. Markup is a declarative language. In order to manipulate HTML documents such that they become more dynamic, scripting has been added to HTML, known by its popular name dynamic-HTML. Scripting is a procedural approach. In order to model the effects of scripts to the document, the Document Object Model (DOM) specification has been introduced [DOM1, DOM2]. Basically, it models the elements in a document as objects offering methods to the script. In other words, the DOM provides an API to XML documents. For instance, the document itself is modeled as the root element of the document's tree. Through this root one can access the other elements by navigating along the tree (navigation can also start at other elements) and query the properties of an element (e.g., its attribute values), alter them, or add/remove elements. It doesn't need saying that this leads to dynamic behavior.

The DOM models XML documents. To support application to HTML documents, the model is extended with additional methods supporting the particular HTML properties. This extension is usually referred to as the HTML DOM. (And, in order to remove confusion, the former is referred to as the XML DOM.) Similarly, SMIL is adding its own API extension (the SMIL DOM) to support for synchronization control. Animation, e.g. in SVG, also uses a DOM Model.

The XML DOM also specifies other concepts, like the DOM Event model [DOM2]. See the section Interaction and Events.

DOM is not the same as dynamic-HTML. Dynamic-HTML is the popular name for the loosely defined combination of HTML, CSS, and scripting such that (HTML) pages become dynamic in their layout. DOM is a model by which an API is defined, in the first place to XML documents. The interfaces are specified in OMG IDL, being a language-independent and implementation-neutral way to do so. In addition, the DOM specification provides language bindings for Java and ECMAScript [SCRIPT]. The purpose of the DOM API is to enable manipulation of XML documents, not only for making HTML-pages dynamic. For example, it can equally well be used to build an editor.

<!-- ### -->
Hyperlinking<!-- ### -->
The syntax and semantics of hyperlinks is specified by XLink [XLINK]. The pointer structure is specified by XPointer [XPOINTER]. As hyperlinks point to a node in another document, see Figure 1
, they provide a similar functionality as the selectors used in XSL to grasp elements for transformation or formatting. This locator syntax has converged in XPath [XPATH]. XPath is a language for addressing parts of an XML document, designed to be used by both XSLT and XPointer.

XPath models an XML document as a tree of nodes. There are different types of node, including element nodes, attribute nodes and text nodes. XPath defines a way to compute a string-value for each type of node. Some types of nodes also have names. XPath fully supports XML Namespaces. Thus, the name of a node is modeled as a pair consisting of a local part and a possibly null namespace URI; this is called an expanded-name.

Hyperlinks also relate to URLs. XPointers associate with the fragment identifier optionally appended to an URL. The hash mark (#) is the delimiter.

<!-- ############################## -->
URI<!-- ############################## -->
The original concept of the URLs [URL], see Figure 1
, has been taken further to the notion of URI [URI], Uniform Resource Identifier. A URI is either a name or a locator: URN [URN,URN-RES] or URL [URL] (Uniform Resource Name or Locator). The URI specifications are an IETF effort.

Syntactically, a URN contains a prefix identifying the namespace used. The URN scheme should support any naming scheme and should provide a means to identify content (resources) independent of the various forms in which that content exists or can be accessed, including temporal dependencies. As such, the URN is related to concepts like GUID and UUID. When URNs receive wide acceptance they are also a means to improve interoperability between different name spaces.

A general framework is to identify a resource, e.g. some media content, through an URN. The URN is persistent by its definition. To access or retrieve the content, a subsequent naming service is required to resolve that URN into a suitable locator (URL), or possibly straight into the resource (content). The URN scheme as it stands today does not specify that naming service, but rather uses an indirection. This is done to allow for multiple naming services and protocols to coexist within the same URN scheme, in particular to allow each namespace to support its own protocols and conventions. The proposal is to use the DNS [DNS] to discover the location(s) of the naming service(s): the DNS is provided with the namespace prefix of the URN extended with "urn.net" to indicate that it is queried for the so-called Resource Discovery Service (RDS) [URN-LOC]. The response contains a so-called NAPTR which lists, a.o., the location of naming services, the type of services they support [URN-RESSERV], and the protocols they speak [URN-RESPROT]. In this way multiple resolution services and protocols can coexist in the same URN scheme. From the NAPTR the client can select a suitable naming service, and consult it to resolve the URN into the required URL (or resource).

<!-- ## -->
Other Web Languages <!-- ## -->
HTML is the lingua franca of the Web. There are many other Web languages defined or being specified. Also, third parties may define their language, while conforming to the XML architecture. Below some important Web languages are summarized.

<!-- ## -->
SMIL and Timing<!-- ## -->
SMIL [SMIL10] is an XML application. That means that the grammar of SMIL is specified in XML and therefore a SMIL document can be parsed by a (generic) XML parser. The concept of SMIL is to structure media objects in a tree, where a node has the semantics that its children are to be presented either in parallel or in sequence. The children of a node are other nodes or media-objects, which latter constitute the leaves of the tree. Within a node the objects can be assigned a mutual temporal dependence through attributes on those objects.

Each object is assigned a region attribute. That region attribute indirects to a layout specification. The layout specification is provided in a separate section of the SMIL document. Basically the layout specification consists of the location and the extent of regions on the screen. Each region bears an ID. The indirection at the media-object refers that ID, by which the location and extent of the media-object gets specified.

In terms of an implementation the indirection can be associated with a renderer. Each media-object calls for a renderer (at a certain time). The renderer is given a region on the display space where it has to deliver its rendering result.

The next version, SMIL 2.0, provides many things, noteworthy an improved timing model, including support for interaction, events, animation, and scenes [SMIL20]. SMIL 2.0 is modularized, such that, a.o., SMIL timing can be integrated with other XML languages. Next to the SMIL 2.0 Language Profile, the SMIL 2.0 Basic and the XHTML+SMIL 2.0 Language Profile are specified. The latter integrates SMIL Timing into XHTML.

<div class="sidebar">
Hypermedia content can be structured along three major axes:

1. Spatial (layout)

2. Hyperlink (web navigation)

3. Temporal (schedule & interaction)

Where HTML structures text flow, implying a layout, SMIL structures media items, reflecting a temporal structure. Neither of them provides a hyperlink structure. There are only anchor points. HTML doesn't know temporal structure, SMIL provides a separate section for layout using a indirection mechanism.

</div>
There are three approaches defined for integrating SMIL timing into an XML document:

1. Inline. This approach uses the modularization concept. It provides an easy syntax and by that intuitive authoring. A drawback is that for more complex timing the problem arises that layout and temporal tree are not congruent. Example Inline (structure coincide):

<ol id="list" class="seq" time="seq">

 <li id="first">Item one

 <li id="second">Item two

2. Stylesheets. This approach is to use CSS to assign temporal properties to elements. In this way, the presentation style is separated from the structure. This enables to design templates. As CSS specializes the presentation according to the structure in the document, the same drawback as for inline holds, that conflicts arise when layout and temporal tree are non congruent. Example Stylesheet (property assignment):

.seq {

 timeContainer: seq;

}

3. Timesheets. This approach is uses both modularization and a kind of stylesheet, which is a third section next to the document and the stylesheet. The timesheet assigns time relations between element i.s.o. time properties to elements. This provides complete independence of the document structure. It also allows the design of templates. A drawback is the more complex syntax of the solution. Example Timesheet (relation assignment):

<seq>

 <item select="#second/">

 <item select="#first"/>

</seq>

<div class="figure">PRIVE "TYPE=PICT;ALT=Timesheets"[image: image5.png]
Figure 5: Timesheets

</div><!-- ### -->
Interaction and Events<!-- ### -->
Upon interacting with a document an event mechanism is needed. The DOM has defined an event model and several interfaces to interact with events.

The following event types are recognized

· User Interface

· mouse, keyboard, remote control

· focus change

· System

· mutation (document change)

· Stream (not in DOM)

Currently, most attention has been directed to free moving cursor interaction. This will likely improve in future.

The following interfaces are recognized

· EventTarget : register eventlistener

· EventListener : perform eventhandling

· Event : event propagation phase; event type, set capture, bubble, default; etc.

A declarative version is being specified.

<div class="figure">PRIVE "TYPE=PICT;ALT=DOM event model"[image: image6.png]
Figure 6: DOM Event Model
</div>
The DOM models an event flow as follows. The event's target is the node in the DOM tree to which the event is directed. The event starts at root of the tree and traverses downwards to the target. Any ancestor of the target may capture, i.e. intercept, the event and perform some associated actions (including disabling further propagation). After the event has reached the target and the target has completed processing, the event will bubble upwards again towards the root. Ancestors may react on the event when it bubbles by. Upon reaching the root, any default actions as associated with the event type are executed. (This latter is merely in the model because of backward compatibility reasons.) An example is clicking an hyperlink: there is no handling of the "click" event; however, the default action is the traversal according to the declared URI.

SMIL 2.0 adds synchronization semantics to events. The approach is to distinguish between schedule and interaction. The SMIL document tree structure and sync-arcs provide for a schedule, enabling to prepare for the network, etc. Interaction is superimposed on that schedule in the form of event-arcs.

<div class="sidebar">
The document tree of <par>, <seq>, <switch>, <excl> span a time graph framework. Sync-arcs connect timepoints on the edges of the time graph. Sync-arcs are determinate, and mostly resolved. Event-arcs connect between edges of the time graph. They are indeterminate, not resolved.

From the tree and sync-arcs a schedule can be calculated, including preparation of the presentation, e.g. prefetching of content data. Dynamic changes are defined w.r.t. this schedule. Event-arcs are only traversed if their heads are in active parts of the schedule. SMIL events are compatible with DOM events. One way of looking at them is to consider an event-arc as a DOM registration of an event-listener. Another scenario could be that in a first phase DOM events are inserted into the SMIL document/time graph, after which in a second phase the event-arcs are traversed.

</div>
A special type of interaction constitute hyperlinks. They provide navigation semantics, i.e. jumping between documents or jumping within documents. Depending on the semantics of the document type the jump has corresponding effect. For example, jumping within a SMIL document causes a seek operation.

<!-- ############################## -->
SVG<!-- ############################## -->
SVG [SVG] is a language for describing two-dimensional graphics. SVG is an XML application. SVG allows for three types of graphic objects: vector graphic shapes (e.g., paths consisting of straight lines and curves), images and text. Graphical objects can be grouped, styled, transformed and composited into previously rendered objects. The feature set includes nested transformations, clipping paths, alpha masks, filter effects, template objects and extensibility.

SVG drawings can be dynamic and interactive. Vector graphics animation is supported via scripting, using the DOM. The DOM is also used for event handling such as onmouseover and onclick, where the events are assigned to a SVG graphical object. A declarative solution for animation is supported through SMIL-Animation [SMILAnim].

SVG can be embedded in a Web page, but can also be used as a proxy service for presenting Web pages. The Web page is mapped onto an SVG image, which is subsequently used for display in a SVG browser. This allows for efficient browsing capabilities.

<!-- ####################################### -->
SSML<!-- ####################################### -->
SSML is markup language to assist speech synthesis from text documents [SSML]. SSML is an application of XML.

<!-- ############################## -->
RDF<!-- ############################## -->
Where XML enables to describe a document's syntax, RDF [RDFMODEL] provides to describe the semantics. RDF is the language for providing metadata over documents.

One use of RDF could be to describe language profiles of machines, clients like a mobile phone or a TV, and of documents, like HTML extended with timing. See the section "Modularization and Profiling". Profiles to describe user agent capabilities is work conducted in CC/PP. Document profiles are being defined by the respective working groups, like the XHTML and SYMM Working Group for the XHTML and SMIL based language profiles.

The architectural relationship between RDF Schema and XML Schema are outlined in a discussion document known as the Cambridge Communiqué [CambridgeComm].

<!-- ####################################### -->
XFORMS<!-- ####################################### -->
Forms were part of HTML from the early times. They were designed to provide for user input back to the author/server, either in the form of an input field or in the form of buttons. Examples include selecting from a range of options, submitting keywords for a search query, and ordering goods in an e-commerce trade setting.

XForms improves and enhances the model [XFORMS]. A forms architecture is being developed that separates data modeling, logic, and presentation. In the XForms suite of specifications, the rules for describing, validating and submitting application data are expressed in XML, as well as the submitted data. XForms is a separate module in XHTML, which enables it to be integrated in other language profiles.

The XForms Data Model, which is part in a series of XForms specifications, separates (interaction) purpose from presentation [XFORMS-DataModel].

The XForms Data Model deliberately separates the purpose of a form from its presentation. This allows the application author to rigorously define the form data, independent of how end-users interact with the application. Separating purpose and presentation also makes device independence easier to achieve by allowing Web application authors to write the data model once for all devices. Because the data model is not tied to presentation, developers may customize the presentation in a way that best suits each device's user interface.

The XForms data types are a close match to those found in XML Schema [XSCHEMA-TYPES]. In some cases, however, the XForms datatypes differ from the ones in XML Schema, due to different usage scenarios and target audiences.

<!-- ####################################### -->
MathML<!-- ####################################### -->
MathML is language that provides markup for mathematical and scientific content [MathML1, MathML2]. MathML is an application of XML. Considering the language a module, it can be included in a language profile, using the principles of modularization & profiling.

<!-- ######################## -->
Glossary <!-- ######################## -->
CC/PP

Composite Capability/Preference Profiles

CSS

Cascading Style Sheets

DOM

Document Object Model

DSSSL
Document Style Semantics and Specification Language

DTD

Document Type Definition

HTML

HyperText Markup Language

HyTime
Hypermedia/Time-based Structuring Language

Infoset

XML Information Set

MathML
Mathematical Markup Language

RDF

Resource Description Framework

SGML

Standard Generalized Markup Language

SMIL

Synchronized Multimedia Integration Language

SSML

Speech Synthesis Markup Language

SVG

Scalable Vector Graphics

URI

Uniform Resource Identifier

URL

Uniform Resource Locator

URN

Uniform Resource Name

XHTML
Extensible HyperText Markup Language

XLink

XML Linking Language

XML

Extensible Markup Language

XForms
Extensible Forms

XPath

XML Path Language

XPointer
XML Pointer Language

XQL

XML Query Language

XSchema
XML Schema definition language

XSL

Extensible Stylesheet Language

XSLT

XSL Transformations

<!-- ############################ -->
References

<!-- ############################ -->
[Abbate1999]

J. Abbate, Inventing the Web, Proc. IEEE 87 (1999) 1999-2002.

[CambridgeComm]

The Cambridge Communiqué, W3C Note, <http://www.w3.org/TR/schema-arch>, Oct. 1999.

[CCPP-ARCH]

CC/PP, Composite Capability/Preference Profiles: Requirements and Architecture, W3C WD, <http://www.w3.org/TR/CCPP-ra/>, Jul. 2000.

[CCPP-STRUCT]

CC/PP, Composite Capability/Preference Profiles (CC/PP): Structure, W3C WD, <http://www.w3.org/TR/CCPP-struct/>, Jul. 2000.

[CONNEG]

Conneg, Content Negotiation Working Group, <http://www.imc.org/ietf-medfree/>.

[CSS1]

CSS, Cascading Style Sheets, level 1, W3C REC, <http://www.w3.org/TR/REC-CSS1.html>, Dec. 1996, revised Jan. 1999.

[CSS2]

CSS, Cascading Style Sheets, level 2, Specification, W3C REC, <http://www.w3.org/TR/REC-CSS2/>, May 1998.

[DNS]

DNS, Domain Name System, P. Mockapretis, STD 13 (RFC 1034 and RFC 1035), <http://info.internet.isi.edu:80/in-notes/std/files/std13.txt>, November 1987.

[DNS-STRUCT]

DNS Structure, Domain Name System Structure and Delegation, J. Postel, RFC 1591, <http://www.ietf.org/rfc/rfc1591.txt>, March 1994.

[DOM1]

DOM, Document Object Model, level 1, Specification, version 1.0, W3C REC, <http://www.w3.org/TR/REC-DOM-Level-1/>, Oct. 1998. Errata DOM Level 1
[DOM2]

DOM, Document Object Model, level 2, Specification, version 1.0, W3C CR, <http://www.w3.org/TR/DOM-Level-2/>, May 2000.

[DSSSL]

DSSSL, Document Style Semantics and Specification Language, ISO/IEC International Standard 10179:1996, 1996.

[HTML4]

HTML, HyperText Markup Language, 4.01 Specification, W3C REC, <http://www.w3.org/TR/html401/>, Dec. 1999.

[HyTime]

HyTime, Hypermedia/Time-based Structuring Language, 2nd edition, ISO/IEC International Standard 10744:1997, 1997.

[INFOSET]

XML Information Set, W3C WD, <http://www.w3.org/TR/xml-infoset>, Jul. 2000.

[MatML1]

MathML, Mathemetical Markup Language (MathML™), Specification, version 1.01, W3C REC, <http://www.w3.org/TR/REC-MathML/>, Jul. 1999.

[MatML2]

MathML, Mathemetical Markup Language (MathML™), Specification, version 2.0, W3C WD, <http://www.w3.org/TR/MathML2/>, Mar. 2000.

[RDFMODEL]

RDF, Resource Description Framework (RDF) Model and Syntax Specification, W3C REC, <http://www.w3.org/TR/REC-rdf-syntax/>, Feb. 1999.

[RDFSCHEMA]

RDF, Resource Description Framework (RDF) Schema Specification 1.0, W3C CR, <http://www.w3.org/TR/rdf-schema/>, Mar. 2000.

[SCRIPT]

ECMA-262, ECMAScript Language Specification , ECMA, <http://www.ecma.ch/stand/ecma-262.htm>, Aug. 1998.

[SGML]

SGML, Information Processing - Text and Office Systems - Standard Generalized Markup Language, ISO/IEC International Standard 8879:1986, 1986.

[SMIL10]

SMIL, Synchronized Multimedia Integration Language, W3C REC 1.0, <http://www.w3.org/TR/REC-smil>, June 1998.

[SMIL20]

SMIL 2.0, Synchronized Multimedia Integration Language, W3C WD, <http://www.w3.org/TR/smil-boston/>.

[SMILAnim]

SMIL Animation, W3C CR, <http://www.w3.org/AudioVideo/Group/Animation/smil-animation>, June 2000.

[SSML]

SSML, Speech Synthesis Markup Language Specification for the Speech Interface Framework, W3C WD, <http://www.w3.org/TR/speech-synthesis>, Aug. 2000.

[SVG]

SVG, Scalable Vector Graphics (SVG) 1.0, Specification, W3C CR, <http://www.w3.org/TR/SVG/>, Aug. 2000.

[TBL1994]

Tim Berners-Lee, Robert Cailliau, Ari Luotonen, Henrik Frystyk Nielsen, and Arthur Secret, The World-Wide Web, Comm. ACM 37 (1994) 76-82.

[URI]

URI, Uniform Resource Identifiers: Generic Syntax, T. Berners-Lee, R. Fielding, U.C. Irvine, L. Masinter, RFC 2396, <http://www.ietf.org/rfc/rfc2396.txt>, Aug. 1998. Updates RFC 1738, URL, and RFC 1808, Relative URL.

[URL]

URL, Uniform Resource Locators, T. Berners-Lee, L. Masinter, M. McCahill, RFC 1738, <http://www.ietf.org/rfc/rfc1738.txt>, Dec. 1994.

Relative URL, Relative Uniform Resource Locators, R. Fielding, RFC 1808, <http://www.ietf.org/rfc/rfc1808.txt>, June 1995.

[URN]

URN, Uniform Resource Names - Syntax, R. Moats, RFC 2141, <http://www.ietf.org/rfc/rfc2141.txt>, May 1997.

[URN-LOC]

Locating the URN Resolver, R. Daniel and M. Mealling, RFC 2168, <http://www.ietf.org/rfc/rfc2168.txt>, June 1997.

[URN-RES]

URN, Architectural Principles of URN Resolution, K. Sollins, RFC 2276, <http://www.ietf.org/rfc/rfc2276.txt>, Jan. 1998.

[URN-RESSERV]

URI Resolution Services, M. Mealling and R. Daniel, <http://www.ietf.org/rfc/rfc2483.txt>, Jan. 1999.

[URN-RESPROT]

URN Resolution Protocol using HTTP, R. Daniel, RFC 2169, <http://www.ietf.org/rfc/rfc2169.txt>, June 1997.

[XFORMS]

XFORMS, W3C Work in progress, <http://www.w3.org/MarkUp/Forms/>, 2000.

[XFORMS-DataModel]

XFORMS 1.0: Data Model, W3C WD, <http://www.w3.org/TR/xforms-datamodel/>, Apr. 2000.

[XHTML1]

XHTML™ 1.0: The Extensible HyperText Markup Language A Reformulation of HTML 4 in XML 1.0, W3C REC, <http://www.w3.org/TR/xhtml1/>, Jan. 2000.

XHTML™ 1.1 - Module-based XHTML, W3C CR, <http://www.w3.org/TR/xhtml11/>, Jul. 2000.

[XHTML-MOD]

Modularization of XHTML™, W3C PR, <http://www.w3.org/TR/xhtml-modularization/>, Jul. 2000.

[XHTML-BASIC]

XHTML™ Basic, W3C PR, <http://www.w3.org/TR/xhtml-basic/>, Jul. 2000.

[XHTML+SMIL]

The XHTML+SMIL 2.0 Language Profile, W3C WD <http://www.w3.org/TR/smil-boston/html-smil-profile.html>, Jun. 2000.

[XLINK]

XLink, XML Linking Language, W3C CR, <http://www.w3.org/TR/xlink/>, Jul. 2000.

[XML]

XML, Extensible Markup Language, W3C REC 1.0, <http://www.w3.org/TR/REC-xml>, Feb. 1998.

(annotated version)

Extensible Markup Language (XML) 1.0 (Second Edition), W3C WD <http://www.w3.org/TR/2000/WD-xml-2e-20000814>, Aug. 2000

[XMLNS]

XML-namespaces, Namespaces in XML, W3C REC, <http://www.w3.org/TR/REC-xml-names/>, Jan. 1999.

[XMLFRAGMENT]

XML-fragments, XML Fragment Interchange, W3C WD, <http://www.w3.org/TR/WD-xml-fragment>, June 1999.

[XPATH]

XPath, XML Path Language, W3C REC 1.0, <http://www.w3.org/TR/xpath>, Nov. 1999.

[XPOINTER]

XPointer, XML Pointer Language, W3C WD, <http://www.w3.org/TR/WD-xptr>. Jun. 2000.

[XSCHEMA-PRIMER]

XML Schema, XML Schema Part 0: Primer, W3C WD, <http://www.w3.org/TR/xmlschema-0/>, Apr. 2000.

[XSCHEMA-STRUCT]

XML Schema, XML Schema Part 1: Structures, W3C WD, <http://www.w3.org/TR/xmlschema-1/>, Apr. 2000.

[XSCHEMA-TYPES]

XML Schema, XML Schema Part 2: Datatypes, W3C WD, <http://www.w3.org/TR/xmlschema-2/>, Apr. 2000.

[XSL]

XSL, Extensible Stylesheet Language, W3C WD, <http://www.w3.org/TR/xsl/>.

[XSLT]

XSLT, XSL Transformations, W3C REC 1.0, <http://www.w3.org/TR/xslt>, Nov. 1999.

[XQL]

XQL, XML Query Language, W3C submission, <http://www.w3.org/TR/NOTE-xml-ql/>.

� �LIENHYPERTEXTE "mailto:jean-benoit.pierrot@philips.com"��jean-benoit.pierrot@philips.com�, Tel: 33 1 2 43 18 41 97

� LIENHYPERTEXTE mailto:Gilles.delmas@philips.com ��gilles.delmas@philips.com�, Tel: 33 1 45 10 69 89

� �LIENHYPERTEXTE "mailto:fduclos@bouyguestelecom.fr"��fduclos@bouyguestelecom.fr�, Tel: 33 1 1 41 09 27 54

Page: 1/1

Page: 22/1

