

	
3GPP TSG-SA WG4 Meeting #125	S4-231540
Göteborg, Sweden, 21st August 2023 - 25th August 2023
	CR-Form-v12.2

	PSEUDO CHANGE REQUEST

	

	
	26.119
	CR
	<CR#>
	rev
	<Rev#>
	Current version:
	0.2.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	

	

	Title:	
	Updates on XR runtime capabilities

	
	

	Source to WG:
	Xiaomi, Qualcomm Incorporated

	Source to TSG:
	S4

	
	

	Work item code:
	MeCAR
	
	Date:
	11-08-2023

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-18

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)
Rel-19	(Release 19)

	
	

	Reason for change:
	· Clause 4.1.3 is incomplete regarding XR Runtime capabilities definition
· Clause 4.1.3 has editor’s notes

	
	

	Summary of change:
	The following changes are proposed:
· Introduce as defined term XR System as logical abstraction of an XR Runtime
· The XR System capabilities are formalised as method names and associated parameters
· The mapping of XR System capabilities onto OpenXR is provided in an Annex

	
	

	Consequences if not approved:
	Clause 4.1.3 remains incomplete

	
	

	Clauses affected:
	4.1.3, B.2

	
	

	
	Y
	N
	
	

	Other specs
	
	
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

Page 1

[bookmark: _Toc63784936]CHANGE #1
[bookmark: _Toc135925182]3	Definitions of terms, symbols and abbreviations
[bookmark: _Toc135925183]3.1	Terms
For the purposes of the present document, the terms given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].
Frame of Reference: an abstract coordinate system whose origin, orientation, and scale are specified by a set of reference points
Reference Points: geometric points whose position is identified both mathematically and physically.
XR Application: application running on an XR Device which offers an XR experience based on an XR Runtime
XR Device: a device capable of offering an XR experience.
XR Runtime: Set of functions provided by the XR Device to the XR Application in order to create XR experiences.
XR Runtime API: the API to communicate with an XR Runtime
XR Session: an application’s intention to present XR content to the user.
XR System: a collection of resources and capabilities from the XR Runtime exposed to the XR Application for the duration of the XR Session.
XR View: a rendered view of the scene generated by the XR Application and passed on to the XR Runtime during a running XR Session
[bookmark: _Toc135925184]3.2	Symbols
For the purposes of the present document, the following symbols apply:
<symbol>	<Explanation>

[bookmark: _Toc135925185]3.3	Abbreviations
For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].
AR	Augmented Reality
MR	Mixed Reality
VR	Virtual Reality
XR		eXtended Reality

CHANGE #2

[bookmark: _Toc135925189]4.1.3	XR Runtime System capabilities
The XR Runtime comprises functions and hardware components present on the XR Device. However, those functions and hardware components are not directly exposed to the XR Application. Instead, the XR Runtime offers its functions and hardware components via an XR System. A single XR Runtime may expose more than one XR Systems for targeting different purposes, e.g., a handheld device may have two XR Systems, one when the user holds the device and one when the device is inserted into an HMD. At the start of the XR Application, the XR Application is expected to query what XR Systems are available on the XR Device and select one of them to create the XR Session.
Table 4.1.5-1 provides a summary of relevant capabilities for XR Runtimes. This table does not prescribe support for any specific capabilities, this is addressed for each device category individually. A mapping of these high-level capabilities to OpenXR is provided in Annex A.Table 4.1.5-1 provides capabilities for XR Runtimes exposed through an XR System. This table does not prescribe support for any specific capabilities of an XR System. The support of XR System capabilities is defined per device category in clause 10. A mapping of these high-level capabilities to XR frameworks are provided in Annex B.
Table 4.1.5-1	XR System Runtime cCapabilities
	Capability
	Description
	Parameters
	Value type
	Parameter definitions

	Create a XR System
	An application can create a XR System from an XR Runtime.
	xrSystemIdentifier
	integer
	Identifier of a given XR System exposed by a XR Runtime.

	Query XR System’s gGraphics pProperties
	An application can query an XR System about its graphics capabilities.
	swapchainSupported
	boolean
	Indicates whether the XR System supports the swapchains.

	
	
	maxSwapchainImageHeight
	integer
	The maximum swapchain image pixel height supported by this XR system.

	
	
	maxSwapchainImageWidth
	integer
	The maximum swapchain image pixel height supported by this XR system.

	
	
	maxLayerCount
	integer
	The maximum number of composition layers supported by this XR system

	Query XR System’s tTracking pProperties
	An application can query the an XR System on the tracking capabilities., namely support of orientation and position tracking.
	orientationTracking
	boolean
	Indicates whether the XR System supports orientational tracking of the view pose(s), or not.

	
	
	positionTracking
	boolean
	Indicates whether the XR system supports positional tracking of the view pose(s),

	Enumerate XR System’s supported environment Bblend mModes
	An application can query an XR System about itsThe supported environment blend modes of the XR System, see clause [xxx]4.1.4.
	blendModeOpaque, additive, alpha_blend
	['opaque', 'additive', 'alpha_blend']
	Indicates the type of blend mode supported by the XR System.
The value 'opaque' relates to the opaque blend mode, the value 'additive' to the additive blend mode and 'alpha_blend' to the alpha blend mode.

	Enumarate Ssupported view configuration types
	An application can query an XR System about the its Ssupported primary view configurations. by the XR System
	viewConfigurationPrimaryMono, Stereo, others

	['monoscopic', 'stereoscopic', 'other']
	Indicates the type of primary view configuration of the XR System.
The value 'monoscopic' relates to a single view, the value 'stereoscopic' to the left and right-eye views and 'other' to a type undefined in the scope of this specification.

	Enumerate the Vview Cconfiguration Pproperties
	specifies properties related to rendering of an individual view within a view configurationAn application can list the properties associated with different view configurations advertised by an XR System.
	recommendedImageRectWidthRecommended and maximum height/width and swapchain sample count
	integer
	The optimal width of imageRect to use when rendering this view into a swapchain.

	
	
	maxImageRectWidth
	integer
	The maximum width of imageRect supported when rendering this view into a swapchain.

	
	
	recommendedImageRectHeight
	integer
	The optimal height of imageRect to use when rendering this view into a swapchain

	
	
	maxImageRectHeight
	integer
	The maximum height of imageRect supported when rendering this view into a swapchain.

	
	
	recommendedSwapchainSampleCount
	integer
	The recommended number of sub-data element samples to create for each swapchain image that will be rendered into for this view.

	
	
	maxSwapchainSampleCount
	integer
	The maximum number of sub-data element samples supported for swapchain images that will be rendered into for this view.

	Enumerate Rreference Sspace Ttypes
	An application can query an XR Runtimes System about the supported implement different reference spaces types as described in clause 4.1.3, described in [xxx].
	referenceSpaceView, Local, Stage, unbounded, user-defined
	['view', 'local', 'stage', 'unbounded', 'user_defined']
	Indicates the type of reference spaces supported by the XR System.
The value 'view' relates to view reference space, the value 'local' to the local reference space, the value 'stage' to the stage reference space, the value 'unbounded'.

	Query the Sspatial Rrange Bboundaries
	XR systems may have limited real world spatial ranges in which users can freely move around while remaining trackedAn application can query the spatial ranges in which an XR experience may be rendered.
	dimensions of an axis-aligned bounding box2DSpatialRangeBoundaries
	tbd
	Provides the rectangle centered on the origin of a given reference space in which the user can freely move.

	Enumerate Sswapchain image Fformats
	An application can query the Sswapchain image formats supportted by the runtimean XR System.
	For example R8G8B8A8swapchainImageFormatIdentifier
	enumeration
	Provides an identifier of a swapchain image format that the XR System supports.

	Enumerate Sswapchain Iimages
	An application can list the number of swapchain images allocated to a swapchain.
	For example 1 or 2numberSwapchainImages
	enumeration
	Provides the number of images allocated for a given swapchain.

	
	
	swapchainImages
	object
	Provide the implementation-specific swapchain image objects for a given swapchain.

	Enumerate compositionProjection lLayer tType
	An application can list the composition layer types supported by an XR System.Provides the supported layer type that is used in the projections for the layer
	compositionLayerProjectionProjection Composition Layer: represents planar projected images, one rendered for each eye using a perspective projection.
Quad Composition Layer: is useful for rendering user interface elements or 2D content on a planar area in the world.
Cylinder Composition Layer: the XR runtime maps a texture stemming from a swapchain onto the inside of a cylinder section.
Cube Composition Layer: consists of a cube map with 6 views to be rendered by the application.
Equirectangular Composition Layer: consists of an equirectangular image that is mapped onto the inside of a sphere in the world.
Depth Composition Layer: provides an extra composition layer to allow applications to submit depth maps to assist with the pose correction of projected images of a project layer.
	['projection', 'quad', 'cylinder', 'cube', 'equirectangular', 'depth']
	Indicates the type of composition layers supported by the XR Systems supports.
The value 'projection' represents planar projected images, one rendered for each eye using a perspective projection.
The value 'quad' represents quad composition layers which are useful for rendering user interface elements or 2D content on a planar area in the world.
The value 'cylinder' represents cylinder composition layers which maps the texture onto the inside of a cylinder section.
The value 'cube' represents cube composition layer which consists of a cube map with six views to be rendered by the application.
The value 'equirectangular' represents equirectangular composition layers which consists of an equirectangular image that is mapped onto the inside of a sphere in the world.
The value 'depth' represents depth composition layers which allows submitting depth maps as an extra composition layer to be used by the XR Runtime for pose correction.

	Frame rate
	
	
	
	

	ACTIONS
	
	
	
	

[Add a table of capabilities of the XR Runtime and what is expected to available and what is optional needs to be queried.
Basic concept of specification:
-	Capability query
-	[Editor’s note: Description of the pipelines, sensors, AR runtime, decoders… identify for what entities capabilities are defined]
Collected Requirements]

CHANGE #3
[bookmark: _Toc134709917][bookmark: _Toc135925227]B.2	Capability mapping to OpenXR
B.2.1	Mapping overview
	Capability
	Corresponding
OpenXR capability
	Parameters
	Corresponding
OpenXR object

	Create an XR System
	xrGetSystem()
	xrSystemIdentifier
	XrSystemId* systemId;

	Query XR System’s graphics properties
	xrGetSystemProperties()
	swapchainSupported
	Implicit, since the OpenXR specification support of swapchain by design.

	
	
	maxSwapchainImageHeight
	uint32_t maxSwapchainImageHeight;

	
	
	maxSwapchainImageWidth
	uint32_t maxSwapchainImageWidth;

	
	
	maxLayerCount
	uint32_t maxLayerCount;

	Query XR System’s tracking properties
	xrGetSystemProperties()
	orientationTracking
	XrBool32 orientationTracking;

	
	
	positionTracking
	XrBool32 positionTracking;

	Enumerate XR System’s supported environment blend modes
	xrEnumerateEnvironmentBlendModes()
	Value 'opaque' of blendMode
	XrEnvironmentBlendMode* environmentBlendModes;
There is one element of environmentBlendModes whose value is equal to XR_ENVIRONMENT_BLEND_MODE_OPAQUE.

	
	
	Value 'additive' of blendMode
	XrEnvironmentBlendMode* environmentBlendModes;
There is one element of environmentBlendModes whose value is equal to XR_ENVIRONMENT_BLEND_MODE_ADDITIVE.

	
	
	Value 'alpha_blend' of blendMode
	XrEnvironmentBlendMode* environmentBlendModes;
There is one element of environmentBlendModes whose value is equal to XR_ENVIRONMENT_BLEND_MODE_ALPHA_BLEND.

	Enumarate supported view configuration types
	xrEnumerateViewConfigurations()
	Value 'monoscopic' of viewConfigurationPrimary
	XrViewConfigurationType* viewConfigurationTypes;
There is one element of viewConfigurationTypes whose value is equal to XR_VIEW_CONFIGURATION_TYPE_PRIMARY_MONO.

	
	
	Value 'stereoscopic' of viewConfigurationPrimary
	XrViewConfigurationType* viewConfigurationTypes;
There is one element of viewConfigurationTypes whose value is equal to XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO.

	
	
	Value 'other' of viewConfigurationPrimary
	XrViewConfigurationType* viewConfigurationTypes;
There is one element of viewConfigurationTypes whose value is strictly greater than XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO and strictly lower than XR_VIEW_CONFIGURATION_TYPE_MAX_ENUM.

	Enumerate the view configuration properties
	xrEnumerateViewConfigurationViews()
	recommendedImageRectWidth
	uint32_t recommendedImageRectWidth;

	
	
	maxImageRectWidth
	uint32_t maxImageRectWidth;

	
	
	recommendedImageRectHeight
	uint32_t recommendedImageRectHeight;

	
	
	maxImageRectHeight
	uint32_t maxImageRectHeight;

	
	
	recommendedSwapchainSampleCount
	uint32_t recommendedSwapchainSampleCount;

	
	
	maxSwapchainSampleCount
	uint32_t maxSwapchainSampleCount;

	Enumerate reference space types
	xrEnumerateReferenceSpaces()
	Value 'view' of referenceSpace
	XrReferenceSpaceType* spaces;
There is one element of spaces whose value is equal to XR_REFERENCE_SPACE_TYPE_VIEW.

	
	
	Value 'local' of referenceSpace
	XrReferenceSpaceType* spaces;
There is one element of spaces whose value is equal to XR_REFERENCE_SPACE_TYPE_LOCAL.

	
	
	Value 'stage' of referenceSpace
	XrReferenceSpaceType* spaces;
There is one element of spaces whose value is equal to XR_REFERENCE_SPACE_TYPE_STAGE.

	
	
	Value 'unbounded' of referenceSpace
	XrReferenceSpaceType* spaces;
There is one element of spaces whose value is equal to XR_REFERENCE_SPACE_TYPE_UNBOUNDED_MSFT.
[Editor’s note: This requires the extension XR_MSFT_unbounded_reference_space]

	
	
	Value 'user_defined' of referenceSpace
	[Editor’s note: This doesn’t seem to be mappable in OpenXR]

	Query the spatial range boundaries
	xrGetReferenceSpaceBoundsRect()
	2DSpatialRangeBoundaries
	XrExtent2Df* bounds;

	Enumerate swapchain image formats
	xrEnumerateSwapchainFormats
	swapchainImageFormatIdentifier
	int64_t* formats;

	Enumerate swapchain images
	xrEnumerateSwapchainImages()
	numberSwapchainImages
	uint32_t* imageCountOutput;

	
	
	swapchainImages
	XrSwapchainImageBaseHeader* images;

	Enumerate composition layer type
	N/A
	Value 'projection' of compositionLayer
	Part of the core specification

	
	
	Value 'quad' of compositionLayer
	Part of the core specification

	
	xrEnumerateInstanceExtensionProperties()
	Value 'cylinder' of compositionLayer
	XrStructureType type;
The variable type has the value XR_TYPE_COMPOSITION_LAYER_CYLINDER_KHR.

	
	
	Value 'cube' of compositionLayer
	XrStructureType type;
The variable type has the value XR_TYPE_COMPOSITION_LAYER_CUBE_KHR.

	
	
	Value 'equirectangular' of compositionLayer
	XrStructureType type;
The variable type has the value XR_TYPE_COMPOSITION_LAYER_EQUIRECT_KHR or XR_TYPE_COMPOSITION_LAYER_EQUIRECT2_KHR.

	
	
	Value 'depth' of compositionLayer
	XrStructureType type;
The variable type has the value XR_TYPE_COMPOSITION_LAYER_DEPTH_INFO_KHR.

[bookmark: _Toc134709918][bookmark: _Toc135925228]B4.21.24	XR views and rendering loop

Those composition layers are drawn in a specified order, with the 0th layer drawn first. Layers are drawn with a “painter’s algorithm,” with each successive layer potentially overwriting the destination layers whether or not the new layers are virtually closer to the viewer. Composition layers are subject to blending with other layers. Blending of layers can be controlled by the alpha channel information present in the image buffer of each layer. In addition, the image buffer of the layer may be limited by a maximum width and a maximum height when rendering them such that they fit into the capabilities of the swapchains.
[To OpenXR annex START]
For visual rendering, the following applies:
1)	To present images to the user, the runtime provides images organized in swapchains for the application to render into.
2)	The XR Runtime may support different swapchain image formats and the supported image formats may be provided to the application through the runtime API. XR Runtimes typically support at least sRGB formats. Details may depend on the graphics API specified when creating the session.
3) 	Swapchain images may be 2D or 2D Array. Arrays allow to extract a subset of the 2D images for rendering. Multiple swapchain handles may exist simultaneously, up to some limit imposed by the XR runtime. Swap chain parameters include:
-	texture format identifier, a graphics API specific version of a format, for example sRGB.
-	width and height, expressing the pixel count of the images sent to the swapchain
-	faceCount, being the number of faces, which can be either 6 (for cubemaps) or 1
-	indication whether the swapchain is dynamic, i.e. updated as part of the XR rendering loop or static, i.e. the application releases only one image to this swapchain over its entire lifetime.
-	access protection, indicating that the swapchain’s images are protected from CPU access
4)	Once a session is running and in focussed state as introduced in clause 4.1.2, the following rendering loop is executed following Figure 4.1.4
a)	The XR Application retrieves the action state, e.g. the status of the controllers and their associated pose. The application also establishes the location of different trackables.
b)	Before an application can begin writing to a swapchain image, it first waits on the image to avoid writing to it before the Compositor has finished reading from it. Then an XR application synchronizes its rendering loop to the runtime. In the common case that an XR application has pipelined frame submissions, the application is expected to compute the appropriate target display time using both the predicted display time and predicted display interval. An XR Runtime is expected to provide and operate a swapchain that supports a specific frame rate.
c) 	Once the wait time completes, the application initiates the rendering process. In order to support the application in rendering different views the XR Runtime provides access to the viewer pose and projection parameters that are needed to render the different views. The view and projection info is provided for a particular display time within a specified XR space. Typically, the target/predicted display time for a given frame.
D)	the application then performs its rendering work. Rendering work may be very simple, for example just directly copying data from the application into the swap chain or may be complex, for example iterating over the scene graph nodes and rendering complex objects. Once all views/layers are rendered, the application sends them to the XR Runtime for final compositing including the expected display time as well as the associated render pose.
e) 	An XR Runtime typically supports (i) planar projected images rendered from the eye point of each eye using a perspective projection, typically used to render the virtual world from the user’s perspective, and (ii) quad layer type describing a posable planar rectangle in the virtual world for displaying two-dimensional content. Other projection types such as cubemaps, equirectangular or cylindric projection may also be supported.
f)	The XR application offloads the composition of the final image to an XR Runtime-supplied compositor. By this, the rendering complexity is significantly lower since details such as frame-rate interpolation and distortion correction are performed by the XR Runtime. It is assumed that the XR Runtime provides a compositor functionality for device mapping. A Compositor in the runtime is responsible for taking all the received layers, performing any necessary corrections such as pose correction and lens distortion, compositing them, and then sending the final frame to the display. An application may use multiple composition layers for its rendering. Composition layers are drawn in a specified order, with the 0th layer drawn first. Layers are drawn with a “painter’s algorithm,” with each successive layer potentially overwriting the destination layers whether or not the new layers are virtually closer to the viewer. Composition layers are subject to blending with other layers. Blending of layers can be controlled by layer per-texel source alpha. Layer swapchain textures may contain an alpha channel. Composition and blending is done in RGBA.
g)	After the compositor has blended and flattened all layers, it then presents this image to the system’s display. The composited image is then blend with the user’s view of the physical world behind the displays in one of three modes, based on the application’s chosen environment blend mode:
-	OPAQUE. The composition layers are displayed with no view of the physical world behind them. The composited image is interpreted as an RGB image, ignoring the composited alpha channel. This is the typical mode for VR experiences, although this mode can also be supported on devices that support video passthrough.
-	ADDITIVE: The composition layers are additively blended with the real world behind the display. The composited image is interpreted as an RGB image, ignoring the composited alpha channel during the additive blending. This is the typical mode for an AR experience on a see-through headset with an additive display, although this mode can also be supported on devices that support video passthrough.
-	ALPHA_BLEND. The composition layers are alpha-blended with the real world behind the display. The composited image is interpreted as an RGBA image, with the composited alpha channel determining each pixel’s level of blending with the real world behind the display. This is the typical mode for an AR experience on a phone or headset that supports video passthrough.
h)	Meanwhile, while the XR Runtime uses the submitted frame for compositing and display, a new rendering process may be kicked off for a different swap chain image.
[To OpenXR annex END]

END OF CHANGES

