3GPP TSG SA WG4#125	Tdoc S4-231385
Göteborg, Sweden, 21st – 25th August 2023	revision of n/a

Source:	Xiaomi
Title:	Updates on Transparency Information Processing
Document for:	Agreement
Agenda Item:	9.5

1 Introduction
The current version of the MeCAR PD has Transparency Information provisions (Section 3.6) that shows the interest on Transparency information in the context of MeCAR (Section 3.6.1) as well as referencing the environment blending modes (having as an example the OpenXR specification).
1.1 Points of interest on transparency
The processing of transparency information can vary based on the carriage, coding and the rendering application. Assuming that the transparency information is exported and decoded, the application itself would define the processes in place. If, for example, a video with transparency is combined with meshes that also have transparency the 3D rendering order should be taken in account. For example, Babylon.js renders meshes with transparency in the following order [1]:
1. Depth pre-pass meshes
2. Opaque meshes
3. Alpha tested meshes
4. Sprites (handled by SpriteManager)
5. Particles (handled by ParticleSystem)
6. Alpha blended meshes, sorted by depth (= distance to camera)
And after the above process, if the device is a video see-through device, the resulting 2D frame will have to be blended with the recorded frame.
Of course, the blend mode is always taken in consideration, for AR that is typically Additive, or Alpha Blend (using OpenXR as reference). However, even if the definition of each mode is set the interpretation might vary.
For example in OpenGL (specified by Khronos) the GL_FUNC_ADD [footnoteRef:2] that would be used for blending a new pixel with a pixel already in the framebuffer (in general – not specifically for AR) is defined as following: [2: Note that the other blend modes are not mentioned (e.g. subtract) because they are generic – not relevant to AR]

[image:]

Thus adding the different components (including the alpha). This would be applicable in a video see-through AR device by using the RGBA values of the stream to be displayed and the RGBA of the recorded (outwards facing) video. However, OpenXR defines Additive blending as following (Section 3.6.1 of the PD):
· XR_ENVIRONMENT_BLEND_MODE_ADDITIVE. The composition layers will be additively blended with the real world behind the display. The composited image will be interpreted as an RGB image, ignoring the composited alpha channel during the additive blending. This will cause black composited pixels to appear transparent. This is the typical mode for an AR experience on a see-through headset with an additive display, although this mode can also be supported on devices that support video passthrough.
We can see that OpenXR assumes that the Alpha channel is ignored, while in OpenGL it is not necessarily the case. Note however that this mode is recommended for Additive Displays.
Regarding the Alpha Blend mode (in OpenXR – that is recommended for non-additive displays e.g. video see-through), it is defined as following:
· XR_ENVIRONMENT_BLEND_MODE_ALPHA_BLEND. The composition layers will be alpha-blended with the real world behind the display. The composited image will be interpreted as an RGBA image, with the composited alpha channel determining each pixel’s level of blending with the real world behind the display. This is the typical mode for an AR experience on a phone or headset that supports video passthrough.

Which is actually using the GL_FUNC_ADD as intended (with the alpha value).
Therefore, we should consider updating the PD to clarify the way the alpha channel is used, and whether a separate transparency factor needs to be included.

2 Updates of the PD Text
[bookmark: _Toc141430600]3.6.2	Processing transparency information
[Editor’s note] This chapter is a preliminary draft. Further study is required on this topic.
Depending on how the transparency information is carried, it may be processed at different functional blocs.
For example, transparency information may be processed in the Media Access Function block. This processing might include This may be the case if theextracting transparency information is carried in media tracks and . This also includes theusing the decoder if transparency information is carried as auxiliary pictures. Transparency information may also be processed by an AR scene manager, when the transparency information is carried in the scene description.
There should be a distinction between transparency info for compositing layers and transparency information of the entire view to compose with the environment for optical see-through display. In this section, we further detail the transparency information for composing the entire view with the environment (unless stated otherwise) – which takes place after composing the layers.
On top of the carriage of the transparency information, applying this information for the blending process can depend on the device display type. For video see-through devices, it is recommended to use Alpha Blend, where the RGBA of the environment video is blended using an additive function (for each component) with the RGBA of the video to be rendered. For optical see-through devices, Additive or Alpha Blend can be used. In Additive, the transparency information is ignored (or applied as black colour mask on the respective pixels – before the blending function). However, for AR devices that are able to support rendering of black (or near-black), using Alpha Blend is possible. The summary of the above is shown in in Table 1. On a per-pixel basis the layer compositing blend mode might vary (depending on the application), and the final environment blend can be decided by querying the underlying device during setup.

[bookmark: _Ref142995062]Table 1 Recommendations of blending mode per optical device type
	
	Additive blending
	Alpha blending

	Optical see-through device
	Recommended
(Alpha is discarded)
	Recommended for devices that can render black

	Video see-through device
	Not-recommended
(No transparency)
	Recommended
(Alpha is preserved)

Wherever the processing is locatedAfter the processing of transparency, including the blending, the final image transparency information is forwarded to the display so that only the appropriate parts of the picture are displayed.

	
3 Proposal
We propose updating Section 3.6.2 of the PD with the Section 2 of this document.
References
[1] Babylon.js – Transparent Rendering, https://doc.babylonjs.com/features/featuresDeepDive/materials/advanced/transparent_rendering
[2] Nvidia - Transparency (or Translucency) Rendering, https://developer.nvidia.com/content/transparency-or-translucency-rendering
[3] Microsoft – Alpha Blending in Direct3D 9, https://learn.microsoft.com/en-us/windows/win32/direct3d9/alpha-blending
[4] Khronos – OpenGL 4 Reference Pages, https://registry.khronos.org/OpenGL-Refpages/gl4/html/glBlendFunc.xhtml
[5] Khronos – OpenGL 5 Reference Pages, https://registry.khronos.org/OpenGL-Refpages/gl4/html/glBlendEquation.xhtml
[6] Khronos – OpenXR Reference Pages, https://registry.khronos.org/OpenXR/specs/1.0/man/html/XrEnvironmentBlendMode.html

		Page: 1/4
		Page: 4/4
image1.png
In the equations that follow, source and destination color components are referred to as (Rs, G5, Bs, As) and (R4, G4, B, Agq), respectively. The result color is referred
to as (R,, Gy, B;, A;). The source and destination blend factors are denoted (sg, s, $8,54) and (dr,dq,dp,d4), respectively. For these equations all color components
are understood to have values in the range [0, 1].

Mode RGB Components Alpha Component

GL_FUNC_ADD Rr = R;sp + Rgdr Gr = Gssg + Gqdg Br = Bssp + Bgdp Ar = Agsq + Agdy

