

	
TSG-SA WG4 Meeting #125	S4-231299
Goteburg, 21– 25 August 2023	
	CR-Form-v12.0

	PSEUDO CHANGE REQUEST

	

	
	26.119
	CR
	-
	rev
	-
	Current version:
	0.2.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	

	

	Title:	
	[MeCAR] Proposed clarifications

	
	

	Source to WG:
	Apple

	Source to TSG:
	

	
	

	Work item code:
	MeCAR
	
	Date:
	28/07/2023

	
	
	
	
	

	Category:
	B
	
	Release:
	18

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	[bookmark: OLE_LINK1]Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
Rel-12	(Release 12)
Rel-13	(Release 13)
Rel-14	(Release 14)
Rel-15	(Release 15)
Rel-16	(Release 16)

	
	

	Reason for change:
	Although the current versioning, TS 26.119 is in an early draft state (v0.2.0) as first version available beyond skeleton, some changes are proposed along with comments that target to improve the readability and structure of the specification in general.

	
	

	Summary of change:
	Some clauses are proposed to be renamed and new subclauses introduced by breaking existing larger clauses. Further clarification comments are provided.

	
	

	Consequences if not approved:
	The noted conflicts and issues will remain the TS.

	
	

	Clauses affected:
	1, 4.1, 4.1.1, 4.1.2, 4.1.2.1, 4.1.2.2, 4.1.3, 6.2.2, 6.2.3

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

Page 1

* * * First Change * * * *
[bookmark: _Toc139020931][bookmark: _Toc112909630][bookmark: _Toc112910141]1	Scope
The present document defines the supported media formats, codecs, processing functions and guaranteed minimum performances per AR device category. The present document addresses the interoperability gaps identified in the conclusions of TRS 26.998 [3].

* * * Next Change * * * *
[bookmark: _Toc139020938]4.1	Hypothetical XR runtime and related concepts	Comment by Waqar Zia: The clause mentions runtime only once towards the end, is mainly describing informative XR concepts.
4.1.1	General
Extended Reality (XR) refers to a continuum of experiences combine real-a and- virtual combined environments in which the user is immersed through one or more devices capable of audio, visual and haptics rendering generated by computers through human-machine interaction. XR encompasses technologies associated with vVirtual rReality (VR), aAugmented rReality (AR) and mMixed rReality (MR) which constitute the so-called XR continuum.. A detailed overview of definitions, concepts and background on XR and AR is provided in TR 26.928 [2] and TR 26.998 [3], respectively.
The clause 4 documents the core assumptions for a device capable of offering an XR experience. In the context of this document, such a devices will be referred to an XR Device. An XR Device is assumed to have one or several displays, speakers, sensors, cameras, microphones, actuators, controllers and/or other peripherals that allow to create XR experiences, i.e. experiences for which the user interacts with the content presented in virtual world and/or augmented to the real-world. Example of XR Devices are for example AR Glasses, a VR/MR Head-Mounted Display (HMD) or a regular smartphone, etc.
An application which offers an XR experience by making use of the hardware capabilities, including media capabilities, of the XR Device it runs on as well as the network connectivity to retrieve the asset being used by the application is referred to as an XR Application. In the context of this specification, it is primarily assumed that access to the network is provided by 5G System functionalities.
To enable XR experiences, the hardware on an XR Device typically offers a set of functions to perform commonly required XR operations. These operations may include, but are not limited to:
-	accessing controller/peripheral state,
-	getting current and/or predicted tracking positions and pose information of the user,
-	receiving pre-rendered views of the scene for final presentation to the user, taking into account the latest user position and pose. Adaptation to the latest user position and pose is also referred to as warping.	Comment by Waqar Zia: “Pre-rendered” is specific to split rendering, only one possibility and not necessary for devices like HMD, hence the list is non exhaustive and informational
* * * Next Change * * * *
4.1.2	XR Runtime
4.1.2.1 General
The set of functions provided by the XR Device to the XR Application in order to create XR experiences is defined as XR Runtime provides a set of functionalities to XR applications including but not limited to peripheral management, runtime functions as tracking, SLAM, composition and warping etc. The functions are accessible to the XR Application via an API exposed by the XR Runtime referred to as the XR Runtime Application Programming Interface (API). The XR Runtime typically handles functionalities such as composition, peripheral management, tracking, Spatial Localization and Mapping (SLAM), capturing and audio-related functions. Further, it is assumed that the hardware and software capabilities of the XR Device are accessible through well-defined device APIs, and in particular the media capabilities are accessible through media APIs. 	Comment by Waqar Zia: The definition is misaligned with XR Runtime description in clause 5.2 and did not sound correct since it seems to include also media and device API’s. Eventually move to definitions, consolidate with 5.2?
In the remainder of the specification, the XR prefix with Runtime or Application or other defined XR-prefixed terms may be omitted for better readability.
An overview of an XR Device logical components is shown in Figure 4.1.1-1.
 [image:]
Figure 4.1.21-1 Logical components of an XR Device
The primary scope of this specification is the definition of a minimum amount of media capabilities that an XR Application can rely on when deployed targeting on a certain type category of XR Device. Media capabilities include, but are not limited to, media encoders and decoders, parsing and writing of media encapsulation format, security functions, synchronization information, spatial alignment information, metadata formats, graphics capabilities, etc.
The logic and behaviour of the XR Application is not specified in this specification. , but the XR Application may be a 3GPP-based service or a third-party service. The media capabilities may also be referenced as part of a Media Session Enabler as defined in TR 26.857 [4].	Comment by Waqar Zia: SA4 specification can be a guideline for 3rd party applications, but in the context of the sentence above, SA4 cannot define “a minimum amount of media capabilities that an XR Application can rely on when deployed”, it can be a guideline in this case
This specification relies on an hypothetical XR Runtime and its API in order to define the media capabilities. This way, different implementation of XR runtimes may be compatible with this specification. However, for the purpose of developing this specification, a subset of the minimal set of expected functionalities of the XR Runtime haves been aligned with what is offered by the core Khronos’ OpenXR specification [5] as an example. Support for other XR Runtime environments are not precluded by this approach. The OpenXR specification has been used as a reference for defining the XR Runtime API and functionalities which guarantees at least the compatibility of the present specification with a XR Runtime as defined in the OpenXR specification. Although not required, the readers of this specification are encouraged to familiarize themselves with the OpenXR specification and concepts which gives an in-depth understanding of the internal mechanics of an XR Device. Lastly, a mapping of general functionalities to OpenXR is provided in Annex B.	Comment by Waqar Zia: If a “subset of the expected functionalities of the XR Runtime has been aligned”, the guarantee in the following sentence cannot be given.	Comment by Waqar Zia: The sentence is not needed for specification given the reference is provided.
* * * Next Change * * * *
[bookmark: _Toc139020939]4.1.2.2	XR session and rendering loop (informative)
At startup, the XR Application creates an XR Session via the XR Runtime API and allocates the necessary resources from the available resources on the XR Device. Upon success, the XR Runtime begins the life cycle of the XR Session whose cycle is typically made of several states. The purpose of those states is to synchronise the rendering operations controlled by the XR Application with the display operations controlled by the XR Runtime. The rendering loop is thus a task jointly executed by the XR Runtime and the XR Application and synchronised via the states of the XR Session.
The XR Application is responsible of generating a rendered view of the scene from the perspective of the user. To this end, the XR Application produces XR Views which are passed to the XR Runtime at every iterations of the rendering loop. The XR Views are generated for one or more poses in the scene for which the XR application can render images. From those views, the view corresponding to the viewer’s pose is typically called the primary view. There may be other XR Views defined in the scene, for instance for spectators.
The XR Views are configured based on the display properties of the XR Device. A typical head-mounted XR System has a stereoscopic view configuration, i.e. two views, while a handheld XR Device has a monoscopic view configuration, i.e. a single view. Other view configurations may exist. At the start of session, the XR Application configures the view type based on those device properties which remains the same for the duration of the XR Session.
A XR View may also comprise one more composition layers associated with an image buffer. Those layers are then composed together by the XR Runtime to form the final rendered images.
In addition to layers containing visual data, an XR View may be complemented with a layer provided depth information of the scene associated with this XR View. This additional information may help the XR Runtime to perform pose correction when generating the final display buffer. Another type of layer can be an alpha channel layer useful for blending the XR View with the real environment for video-see through XR devices, e.g. which is the case for AR applications running on smartphones.
For the XR Application to render the XR Views, the XR Runtime provides the viewer pose as well as projection parameters which are typically taken into account by applications to render those different XR Views. The viewer pose and projection parameters are provided for a given display time in the near future. The XR Runtime accepts repeated calls for prediction updates of the pose, which may not necessarily return the same result for the same target display time. Instead, the prediction gets increasingly accurate as the function is called closer to the given time for which a prediction is made. This allows an application to prepare the predicted views early enough to account for the amount of latency in the rendering while at the same time minimising the prediction error when pre-rendering the views.
In addition, the XR Application communicates with input devices in order to collect actions. Actions are created at initialization time and later used to request input device state, create action spaces, or control haptic events. Input action handles represent ‘actions’ that the application is interested in obtaining the state of, not direct input device hardware.
 [image:]
Figure 4.1.4-1 Rendering loop for visual data
* * * Next Change * * * *
[bookmark: _Toc139020940]4.1.3	XR runtime capabilities
Table 4.1.35-1 provides a summary of relevant capabilities for XR Runtimes. This table does not prescribe support for any specific capabilities, this aspect is addressed for each device category individually. A mapping of these high-level capabilities to OpenXR is provided in Annex A.
Table 4.1.35-1	XR Runtime Capabilities
	Capability
	Description and Reference
	Parameters
	OpenXR (will be moved to Annex)

	XR System Properties
	An application can query the XR Runtime to retrieve information about the system such as a system identifier, graphics properties or tracking properties.
	System identifier
Tracking Properties
Graphics Properties
	xrGetSystemProperties

	XR System Graphics Properties
	Information on the graphics capabilities, namely the maximum image pixel height and width of the swapchain as well as the maximum number of composition layers
	maxSwapchainImageHeight
maxSwapchainImageWidth
maxLayerCount
	xrSystemGraphicsProperties
minMaxLayerCount = 16

	XR System Tracking Properties
	Information on the tracking capabilities, namely support of orientation and position tracking.
	orientationTracking
positionTracking
	XrSystemTrackingProperties

	Blend Mode
	The supported blend modes of the XR System, see clause 4.1.4
	Opaque, additive, alpha_blend
	XrEnvironmentBlendMode

	Supported view configuration types
	Supported primary view configurations by the XR System
	Mono, Stereo, others

	xrEnumerateViewConfigurations
xrViewConfigurationType

	View Configuration Properties
	specifies properties related to rendering of an individual view within a view configuration
	Recommended and maximum height/width and swapchain sample count
	XrViewConfigurationView

	Reference Space Type
	XR Runtimes implement different reference spaces as described in clause 4.1.3
	View, Local, Stage, unbounded, user-defined
	xrEnumerateReferenceSpaces

	Spatial Range Boundaries
	XR systems may have limited real world spatial ranges in which users can freely move around while remaining tracked
	dimensions of an axis-aligned bounding box
	xrGetReferenceSpaceBoundsRect

	Swapchain Formats
	Swapchain image format support by the runtime
	For example R8G8B8A8
	xrEnumerateSwapchainFormats

	Swapchain Images
	number of images allocated to swapchain
	For example 1 or 2
	xrEnumerateSwapchainImages

	Projection Layer Type
	Provides the supported layer type that is used in the projections for the layer
	Projection Composition Layer: represents planar projected images, one rendered for each eye using a perspective projection.
Quad Composition Layer: is useful for rendering user interface elements or 2D content on a planar area in the world.
Cylinder Composition Layer: the XR runtime maps a texture stemming from a swapchain onto the inside of a cylinder section.
Cube Composition Layer: consists of a cube map with 6 views to be rendered by the application.
Equirectangular Composition Layer: consists of an equirectangular image that is mapped onto the inside of a sphere in the world.
Depth Composition Layer: provides an extra composition layer to allow applications to submit depth maps to assist with the pose correction of projected images of a project layer.
	XrStructureType

	Frame rate
	
	
	

	ACTIONS
	
	
	

[Add a table of capabilities of the XR Runtime and what is expected to available and what is optional needs to be queried.
Basic concept of specification:
-	Capability query
-	[Editor’s note: Description of the pipelines, sensors, AR runtime, decoders… identify for what entities capabilities are defined]
Collected Requirements]

* * * Next Change * * * *
[bookmark: _Toc130832422][bookmark: _Toc132137246][bookmark: _Toc134709895][bookmark: _Toc139020956]6.2.2	Pose prediction format	Comment by Waqar Zia: The following clauses 6.2.2 and 6.2.3 seem applicable to split rendering only, this needs to be anchored.
The split rendering client on the edge-assisted XR device may periodically transmits a set of pose predictions to the split rendering server. The type of the message shall be set to “urn:3gpp:split-rendering:v1:pose”.	Comment by Waqar Zia: Does not apply to all device types.	Comment by Waqar Zia: This should not read mandatory for all device types.
Each predicted pose shall contain the associated predicted display time and an identifier of the XR space that was used for that pose.
Depending on the view configuration of the XR session, there could be different pose information for each view.
The payload of the message shall be as follows:
Table 5.1.2-1 - Pose Prediction Format
	Name
	Type
	Cardinality
	Description

	poseInfo
	Object
	1..n
	An array of pose information objects, each corresponding to a target display time and XR space.

	 displayTime
	number
	1..1
	The time for which the current view poses are predicted.

	 xrSpace
	number
	0..1
	An identifier for the XR space in which the view poses are expressed. The set of XR spaces are agreed on between the split rendering client and the split rendering server at the setup of the split rendering session.

	 viewPoses
	Object
	0..n
	An array that provides a list of the poses associated with every view. The number of views is determined during the split rendering session setup between the split rendering client and server, depending on the view configuration of the XR session.

	 pose
	Object
	1..1
	An object that carries the pose information for a particular view.

	 orientation
	Object
	1..1
	Represents the orientation of the view pose as a quaternion based on the reference XR space.

	 x
	number
	1..1
	Provides the x coordinate of the quaternion.

	 y
	number
	1..1
	Provides the y coordinate of the quaternion.

	 z
	number
	1..1
	Provides the z coordinate of the quaternion.

	 w
	number
	1..1
	Provides the w coordinate of the quaternion.

	 position
	Object
	1..1
	Represents the location in 3D space of the pose based on the reference XR space.

	 x
	number
	1..1
	Provides the x coordinate of the position vector.

	 y
	number
	1..1
	Provides the y coordinate of the position vector.

	 z
	number
	1..1
	Provides the z coordinate of the position vector.

	 fov
	Object
	1..1
	Indicates the four sides of the field of view used for the projection of the corresponding XR view.

	 angleLeft
	number
	1..1
	The angle of the left side of the field of view. For a symmetric field of view this value is negative.

	 angleRight
	number
	1..1
	The angle of the right side of the field of view.

	 angleUp
	number
	1..1
	The angle of the top part of the field of view.

	 angleDown
	number
	1..1
	The angle of the bottom part of the field of view. For a symmetric field of view this value is negative.

* * * Next Change * * * *
[bookmark: _Toc130832423][bookmark: _Toc132137247][bookmark: _Toc134709896][bookmark: _Toc139020957]6.2.3	Action format
Actions are grouped into action sets, which may be activated and deactivated during the lifetime of an XR session. The action sets and actions are negotiated at the start of the split rendering session.
The split rendering client may reports any changes to action state as soon as it occurs by sending a message of the type “urn:3gpp:split-rendering:v1:action”.
The content of the action message type shall follow the following format:
Table 5.1.3-1 - Action Format
	Name
	Type
	Cardinality
	Description

	actionSets
	Object
	1..n
	An array of active action sets, for which there is at least an action that has a state change.

	 actions
	Object
	1..n
	An array of objects that conveys information about the actions of the parent action set.

	 identifier
	string
	1..1
	A unique identifier of the action that was agreed upon during split rendering session setup.

	 subactionPath
	string
	1..1
	The sub-action path for which the state has changed. It abstracts a binding between an action and the hardware input associated to it by the XR runtime.

	 state
	object
	1..1
	The state of the action that had a change in state.

	 lastChangeTime
	number
	1..1
	The timestamp of the last change to the state of this action.

	 currentStateBool
	Bool
	0..1
	The current Boolean state of the action

	 currentStateNum
	number
	0..1
	The current numerical state of the action.

	 currentStateVec2
	Array
	0..1
	An array of numerical state values for the action.

* * * End of Changes * * * *

image1.emf

XR Device
XR Runtime

Cameras

Sensors

Displays

Composition and
Warping

Runtime functions
(tracking, SLAM)

Audio Subsystem

Speakers

Microphones

Network
connectivity

(5G System Uu)
XR Application

Actuators

Device Hardware and Software Capabilities

Controllers

Capturing
Media Capabilities

peripheral
management

XR

Ru
nt

im
e

AP
I

Media APIsDevice APIs

Synchronization
and Spatial
Alignment

XR Device

XR Runtime

Cameras

Sensors

Displays

Composition and

Warping

Runtime functions

(tracking, SLAM)

Audio Subsystem

Speakers

Microphones

Network

connectivity

(5G System Uu)

XR Application

Actuators

Device Hardware and Software Capabilities

Controllers

Capturing

Media Capabilities

peripheral

management

X

R

R

u

n

t

i

m

e

A

P

I

Media APIs Device APIs

Synchronization

and Spatial

Alignment

image2.emf

 XR Device

XR ApplicationXR Runtime

Cameras

Sensors

Displays
Composition and

Warping

Runtime functions
(tracking, SLAM)

Controllers

peripheral
management

Swapchain
Rendering Loop Rendering

Actions

Composition Layers
+ display time

+ render pose@XRSpace

Viewer pose at expected display time

XR Device

XR Application

XR Runtime

Cameras

Sensors

Displays

Composition and

Warping

Runtime functions

(tracking, SLAM)

Controllers

peripheral

management

Swapchain

Rendering Loop

Rendering

Actions

Composition Layers

+ display time

+ render pose@XRSpace

Viewer pose at expected display time

