Page 4
Draft prETS 300 ???: Month YYYY
TSG SA4 SWG #125 Meeting	Tdoc S4-231185
Gothenburg, Sweden, 21st – 25th August 2023
Agenda item: 	9.7
Source: 	Qualcomm Inc.
Title: 	[FS_AI4Media] Evaluation of Object Detection Split Inference
Document for	Discussion and Agreement
1. [bookmark: _Toc504713888]Introduction
.
1. Object Detection and Labeling Scenario
2.1 Motivation and use case relevance
Object detection and tracking finds prevalent applications in today’s world. These applications range from surveillance, image-based gallery and web search, media annotation, autonomous driving and more.
TR 22.874 section 5.2 describes these scenarios where deep learning-based object detection and tracking is performed.
2.2 Description of the scenario
In this scenario, a pre-trained model is used to detect objects in a video sequence. The output of the inference may consist of the following:
· Detected object labels per image
· Bounding boxes for the detected objects
· Masks describing pixel-accurate location of the object

In this scenario, it is assumed that the end device is resource constrained and may not have sufficient memory/processing capabilities, or battery power to perform the object detection task.
It is proposed that by splitting the model into 2 parts, where one part is inferred in the device and the other part is inferred in the network, the device will be able to perform the inference within its capabilities.
Two configurations are possible, based on the exact use cases:
· The image/video is captured on the device and inference is run on the image/video to produce feature maps that are then sent to the network for further inference. This step may be performed to protect user privacy. The device will then receive the results once, the inference is performed by the network. An example of such a use case is image/video-based web search, where the user captures an image/video and receives web search results. Another such use case is where the user captures an image/video and attempts to remove a specific object from the image/video.
· The image/video is provided by a content provider and processed by the network to enable the user to perform different tasks. The video is processed by a deep network to produce distilled features, which are then used by the device to perform task-specific inference. Different users viewing the same image/video may run different tasks. An example of such a use case is a sports game streaming service, where different users may have different interests in the game. One user may configure their application to track and annotate the players of their favorite team. Another user may be interested in extracting statistics about the ball. The core of the network produces a set of features that can be used to perform both tasks, where each user will run the model head specific to their selected task.
2.3 	Test dataset(s) and scripts for the scenario
The SFU-HW-Objects and the SFU-HW-Tracking datasets are used for this evaluation scenario.
A set of scripts is made available under the 5G-MAG rt-ml-ai-evaluation-framework repository: 5G-MAG/rt-ml-ai-evaluation-framework (github.com)
The scripts are:
· convert_model.py: a script to convert a pre-trained model into an ONNX model
· inferonnx.py: this script is used to run an object detection inference model and produce predication results in the following format [label top_left_x top_left_y bottom_right_x bottom_right_y confidence_score]. The model is used to produce results for the anchors, where the full model is run locally on the device or completely in the network.
	usage: inferonnx.py [-h] [--mask] dataset_name model_location
inferonnx.py: error: the following arguments are required: dataset_name, model_location

· infer_split.py: this script is used to run split inference. It is passed the two parts of the model. It runs the first part of the model and saves the results in numpy binary format NPZ. Then it proceeds to run inference using the second part of the model, which loads the NPZ files as input and produces the object detection results.
	usage: splitinfer.py [-h] [--mask] dataset_name model_part1_location model_part2_location
Run split inference using ONNX models
positional arguments:
 dataset_name Dataset name
 model_part1_location Path to 1st part of the ONNX Model
 model_part2_location Path to 2nd part of the ONNX Model
optional arguments:
 -h, --help show this help message and exit
 --mask Indicates if output of model is a Mask and needs to be converted

· calc_map.py: this script is used to calculate the mean Average Precision (mAP) score for the predictions. It compares the predicted labels and their bounding boxes to the ground truth annotations that are provided by the dataset.
	usage: calc_map.py [-h] [--ds DATASET_NAME] [--threshold THRESHOLD] video_name
Calculate the mAP for the object detection prediction.
positional arguments:
 video_name The name of the video sequence, e.g. Kimono.
optional arguments:
 -h, --help show this help message and exit
 --ds DATASET_NAME Name of the dataset. Defaults to SFU-HW-Objects.
 --threshold THRESHOLD
 The threshold for the prediction confidence to consider the prediction.

· visualize.py: The visualize script takes the ground truth annotations or the predictions and renders them on top of the video. This script is useful to inspect the prediction results.
	usage: visualize.py [-h] [--sleep_time SLEEP_TIME] video_fn annotation_path
Visualize Object Detection.
positional arguments:
 video_fn Path to the video file
 annotation_path Path to the folder with annotations/predictions
optional arguments:
 -h, --help show this help message and exit
 --sleep_time SLEEP_TIME
 Specifies the inteval between the display of 2 consecutive frames

Instructions to download the dataset with the annotations are provided in the README.md file of the datasets folder of the repo.
The following screenshots show examples of the object detection predictions and results.
	[image:]
	[image:]

	[image:]
	[image:]

The following results were obtained by using the RetinaNet model with a very basic split approach (no retraining, no compression of intermediate features, and no quantization of the split models). For a realistic scenario, these would eventually be required.
	Video Sequence
	Single Model Inference %
	Split Model Inference %

	BasketballDrill
	14.8
	10.24

	BasketballDrive
	27.48
	18.33

	BasketballPass
	25.35
	16.09

	BlowingBubbles
	39.44
	28.35

	BQMall
	26.09
	21.01

	BQSquare
	24.54
	6.03

	BQTerrace
	19.86
	13.64

	Cactus
	79.9
	35.8

	FourPeople
	53.13
	34.35

	Johnny
	71.23
	38.44

	Kimono
	49.9
	44.9

	KristenAndSara
	10.56
	5.49

	ParkScene
	40.67
	27.29

	PartyScene
	60.43
	48.86

	PeopleOnStreet
	10.09
	21.44

	RaceHorses
	47.94
	48.15

	Traffic
	53.74
	36.42

	Overall Average
	38.54
	26.75

Note that the intermediate data was about 8MB of size per image. A better split point should be pursued with retraining of the model parts and compression of the intermediate feature maps.
1. Proposal
We propose to continue working on the evaluation and ask proponents to provide more fine-tuned split models for better evaluation.
Due to the large size of the models, we propose to consider other locations for the storage of the evaluated pre-trained models.
1. References
[1] 	5G-MAG Repository, 5G-MAG/rt-ml-ai-evaluation-framework (github.com)
- 12/13 -
image1.png

image2.png

image3.png

image4.png

