Page 4
Draft prETS 300 ???: Month YYYY
3GPP TSG SA4 Meeting #125	S4-231177
Goteborg, 21 – 25 August 2023

[bookmark: _Hlk126577385]Source: 				 Interdigital Finland Oy
Title: 	[MeCAR] Application player loop description
Agenda item: 	9.5
Document for:	Discussion and agreement

Introduction

[bookmark: _Hlk137827750][bookmark: _Hlk142383741]Section “4.1.2 XR session and rendering loop” of the TS 26.119 v0.2.0 describes the rendering loop with a single rendering processing module which takes as inputs the actions and the viewer pose to render the 3D scene, as showed in Figure 4.1.4-1. The rendering loop is also described in section 5.2.5 of the current MeCAR Permanent Document v8.2.0.

[image:]
Figure 4.1.4-1 Rendering loop for visual data

The rendering loop description is viewed from the XR runtime. From the XR application point of view, the rendering loop is a part of the player loop.
Indeed, before rendering a 3D scene from the viewer pose, the XR application needs to consider any change/modification of the virtual objects by updating the related scene graph. This update operation includes potential physics simulation, the handling of interactivity events (trigger activation, launching of actions).

In this paper, we propose a description of the XR application player loop. The description is based on the OpenXR guide and on an example of player loop with Unity. In order to measure the quality of experience, the metrics are defined for monitoring the player loop with the related Observation Points (OPs).

As a conclusion, the scene update end time and the rendering start time can be collected on the OP-1. Therefore, the OP-5 is not required. We propose to delete the OP-5 in section 5.2.1 Metrics Observation Points and update the Table 7 of the Permanent document accordingly.

Proposed changes

===== CHANGE #1 =====

5.2.6	XR application’s Player Loop

[bookmark: _Ref138231635]5.2.6.1	Frame submission with OpenXR

The article Frame submission of the OpenXR guide [1] details the OpenXR frame timing including common calling patterns, optimizations and pitfalls. The article explains the role of the three functions xrWaitFrame, xrBeginFrame and xrEndFrame to manages the frame submission in OpenXR.
As detailed in section “Call order restriction” of article, a frame can be in one of two states: pre-rendering and rendering.
1. After xrWaitFrame returns, a new frame is active in the pre-rendering or scene update stage. During this period, the scene manager updates the representation of the scene. This operation consists of adding/removing objects to the scene, updating the properties and the pose of virtual objects according to physics simulation, defined animations, runtime input actions and/or pose estimation updates of Augmented Reality (AR) anchor(s).

2. After xrBeginFrame, the frame passes from pre-rendering state to a rendering state. 3D engines are supposed to queue their work on GPU when in this state, using the swapchain.

3. At the end of the rendering process, the rendered layers are submitted to the XR runtime by calling xrEndFrame.

Figure 5.2.6-1 shows the player loop stages executed sequentially for each frame with the called OpenXR functions and the functional blocks involved.

[image:]

[bookmark: _Ref137808817]Figure 5.2.6-1 – Player loop stages with OpenXR calls

Single threaded & Multithreading

In case of multithreading, the scene update and the rendering processes may run concurrently on several successive frames for OpenXR [1]. The scene update of frame N+1 is performed while previous frame N is rendered. The total processing time spent for one frame is the sum of the scene update time and the rendering time.

In case of single threaded, the application must keep the total time spent working on a frame under the native frame duration in order to maintain full framerate. Therefore, when scene update and rendering stages are brief, a single-threaded approach of the player loop may be suitable to meet the full framerate.

5.2.6.2	Unity’s Player Loop examples
Unity is a game engine used to create 2D or 3D game and application. It implements a player loop (called PlayerLoop) for processing each frame. The section “Order of execution” for event functions of the Unity User Manual [1] details the player loop with event functions called on each stage. Figure 5.2.6-2 shows a simplified sequence of the Unity’s PlayerLoop with the two stages Scene update and Rendering.

[image: A picture containing text, screenshot, font, design

Description automatically generated]
[bookmark: _Ref142645273]Figure 5.2.6-2 – Unity’s PlayerLoop sequence

Unity provides Profiler tool to monitor the time spent on executing each stage of the PlayerLoop. Figure 5.2.6-3 and Figure 5.2.6-4 below are screen capture of the Unity profiler for two different XR applications using a Meta Quest Pro device.
The first application, example 1 on Figure 5.2.6-3, is a scene composed of several objects and a very simple game logic without physic simulation, animation, collision.
The second application, example 2 on Figure 5.2.6-4, is a scene composed of several objects and a complex game logic.
Both figures show the different stages of Unity’s PlayerLoop on one frame according to the Order of execution of Unity [2], comprising:
1. Scene update: EarlyUpdate and Update.
2. Scene rendering between the OpenXR xrBeginFrame and xrEndFrame as described in above section 5.2.6.1	Frame submission with OpenXR.

Note that the scene update and the rendering are executed sequentially for each frame.

Example 1 shows a scene update delay shorter than the rendering delay, see Figure 5.2.6-3.
In contrast, example 2 shows a scene update delay longer than the rendering delay, see Figure 5.2.6-4.

[image: A screenshot of a computer

Description automatically generated with medium confidence]
[bookmark: _Ref141943160]Figure 5.2.6-3 – Unity profiler example 1.

[image: A screenshot of a computer

Description automatically generated]
[bookmark: _Ref141943170]Figure 5.2.6-4 - Unity profiler example 2.

5.2.6.3	Player Loop latencies
The processing times of the two stages of the player loop, scene update and rendering, depend on different factors. The time spent updating the scene may be longer or shorter than spent for rendering the scene as illustrated on Figure 5.2.6-3 and Figure 5.2.6-4. Their duration may vary from one frame to another. The parameters influencing the processing time are different for both stages of the player loop:
· scene updates: number of objects, animations, colliders, physics,
· rendering: resolution, lights, level of detail.

Therefore, it is critical to distinguish the scene update and the rendering stages for the measurement of the quality experience, such as scene update and rendering delays. Measuring delays enables corrective actions to be taken to improve the user experience.

Observation points are defined to collect timestamps to measure the scene update delay and rendering delay.
The observation points are defined on the XR Baseline terminal architecture on Figure 18 in section 5.2.1 of the MeCAR Permanent Document.

In the XR Baseline terminal architecture, the rendering stage is performed by the Presentation engine and the scene update stage is performed by the Scene Manager.
The rendering loop involves the XR application, the Presentation engine and the XR runtime.
The player loop including the rendering loop, involves the XR application, the Scene manager, the Presentation engine and the XR runtime.

The timestamps and the observation points involved to measure the scene update delay and the rendering delay are the following:

Scene update delay:
· Start time: it can be observed on the OP-2. It corresponds to the sceneUpdateTime (T6) in the table 7. The XR Application determines the appropriate start time of the scene update at the beginning of a player loop iteration.
For scene update, the XR Application communicates with the XR runtime to collect actions and predicted poses of XR spaces (e.g., action and anchor spaces). Then the Scene manager updates the representation of the scene. It adds/removes objects to the scene, updates the properties and the pose of virtual objects according to physics simulation, defined animations.
· End time: It can be observed on the OP-1. The end time of the Scene update is defined by the XR application before the beginning of the rendering stage. With OpenXR API, it is typically before calling xrBeginFrame.

Rendering delay:
· Start time: It can be observed on the OP-1. It corresponds to the startRenderTime (T3) in the table 7.
The XR Runtime provides the viewer predicted pose for a given display time. Then the Presentation engine performs its rendering works into the swap chain. The XR Application determines the appropriate start time of the rendering stage. With OpenXR API, the rendering start time is typically after xrBeginFrame returns.
· End time: It can be observed on the OP-1 that is the interface between the Presentation engine and the XR runtime. The end time of the rendering stage is at the submission of the rendered layers to the XR runtime. With OpenXR API, it is typically before calling xrEndFrame.

The observation points OP-1 and OP-2 are used to measure the delays of the player loop (i.e., the scene update delay and the rendering delay).
These observation points are defined in the XR Baseline terminal architecture and, for example, can be defined in an XR application using OpenXR API and/or the Unity’s PlayerLoop.

===== END of CHANGE #1 =====

===== CHANGE #2 =====

[bookmark: _Toc135957361][bookmark: _Hlk142400688]5.2.1	Metrics Observation Points
5.2.1.1	General
In a similar fashion as for operation points and interface, metrics observation points may be defined to specify basic metrics as shown in Figure 18. It contains a number of observation points where specific metric-related information can be made available to the application. The application can use and combine information from the different observation points to calculate more complex metrics.

[bookmark: _Ref119654658][bookmark: _Ref119654652]Figure 18 – Metrics Observation Points of interest for TS 26.119
In the following potential KPIs as documented in TR 26.998, clause 4.5.2 are summarized. Specifically, the latencies as introduced in TR 26.998 are rediscussed in the context of the MeCAR work item.
5.2.1.2	Observation Point 1
Observation point 1 (OP-1) is derived from the XR Runtime API which exchanges information between the XR Runtime and the XR Source Management/Presentation Engine. The OP-1 which corresponds to the IF-1, is implemented as an API-1 that exposes functions provided by the XR Runtime. An example of this API is the Khronos OpenXR API.
5.2.1.3	Observation Point 2
Observation point 2 (OP-2) collects information at the input of the Scene Manager. The OP-2 corresponds to the IF-10 for information coming from the application and the IF-9 for data received from the Media Access Function.
5.2.1.4	Observation Point 3
Observation point 3 (OP-3) is derived from the API which exchanges information between the Media Access Function and the 5G System. It corresponds to the IF-4 interface.
5.2.1.5	Observation Point 4
[bookmark: _Hlk135131125]Observation point 4 (OP-4) is derived from the API which exchanges information between the XR Source Management and the Media Access Functions. It corresponds to the IF-3 interface.
5.2.1.6	Observation Point 5
Observation point 5 (OP-5) collects information between the Scene Manager and the Presentation Engine.
Note: the definition of the format on the interface between the Scene Manager and the Presentation Engine is FFS.

[bookmark: _Toc141430634]5.2.2	Timestamps and observation points
The timestamps collected at the observation points are listed in Table 7.
[bookmark: _Ref135954506]Table 7 - Timestamps definition and collection
	
Timestamp
	
Definition
	Observation Point / Interface

	pose prediction time (T1)
	The time when the viewer pose prediction is made. It corresponds to the time when the predicted viewer pose is collected using the XR runtime API-1 by the application or the XR Source Manager.
	OP-1 / IF-1a

	lastChangeTime
	The time when the user action is made. It corresponds to the lastChangeTime field in the action information defined as the timestamp of the last change to the state of the action.
	OP-1 / IF-1a

	sceneUpdateTime (T6)
	The time when the Scene Manager starts to update the 3D scene graph according to the viewer pose and the user actions.
	OP-2 / IF-10

	[bookmark: _Hlk142578680]startRenderTime (T3)
	The time when the renderer starts to render the scene according to the viewer pose.
	OP-15 / IF-1 Not Defined

	predicted displayTime (T2.actual)
	It is the predicted display time of the rendered frame in the swapchain. The display time is available through the XR runtime.
With OpenXR, the frame’s predicted display time is reported by xrWaitFrame in XrFrameState.predictedDisplayTime.
	OP-1 / IF-1c

===== END of CHANGE #2 =====

Proposal

We propose to update the MeCAR Permanent document:	
1. Add the proposal 1 in a new section 5.2.X,
2. Update section 5.2.1 Metrics Observation Points with proposal 2

In addition, we propose to populate section 9 QoE Metrics of TS 26.119 with the section Metrics Observation Points as proposed in the pCR S4-231178 [MeCAR] pCR QoE Metrics observation points.

References

[1] [bookmark: _Ref142401983][bookmark: _Ref138424400]OpenXR Guide, Frame submission section: https://github.com/KhronosGroup/OpenXR-Guide/blob/main/chapters/frame_submission.md
[2] [bookmark: _Ref142402067]Unity User Manual: Order of execution for event functions: https://docs.unity3d.com/2023.2/Documentation/Manual/ExecutionOrder.html

- 12/13 -
image1.emf
XR Runtime

peripheral

Actions:

XR Application

management

Runtime functions

/

(tracking, SLAM)

Composition and
Warping

“/

Swapchain
Rendering Loop

Viewer pose at expected display time—»|

Composition Layers
+ display time
+ render pose@XRSpace

Rendering

XR Device

XR Application

XR Runtime

Cameras

Sensors

Displays

Composition and

Warping

Runtime functions

(tracking, SLAM)

Controllers

peripheral

management

Swapchain

Rendering Loop

Rendering

Actions

Composition Layers

+ display time

+ render pose@XRSpace

Viewer pose at expected display time

image2.png
Inputs, actions xrSyncActions
Scene update, | xrGetActionstatexxx
Pre-rendering xrLocateSpace
(handle Inputs, | xrwaitframe — Scene Manager
game logic,
physics simulation)
l xrBeginFrame =
Viewer Pose xrlocateSpace (Headspace)
xrlocateView

Rendering xrAcquireSwapchainimage — Presentation Engine

xrWaitSwapchainimage

XrReleaseSwapchainimage

l xrEndFrame _J
Composition,
warping, display

— XR Runtime

image3.png
Begin
PlayerLoop

Physics

l

Scene update Input Events

L 4

Game logic

A 4
Scene

Rendering

Rendering

End

PlayerLoop

image4.png
Starting a new frame OpenXR BeginFrame OpenXR EndFrame

OpenXR « execute Graphics Work » section

3D scene rendering
from camera pose

8]
Rtanager.Uodate() linvote] (0.5en] Upsaid.

Scene update by the Scene Manager Scene rendering by the Presentation Engine

image5.png
Starting a new frame OpenXR Begin Frame OpenXR End Frame

OpenXR “execute Graphics work” section

3D rendering
from viewer pose
]

Scene update by the Scene rendering by the
Scene Manager Presentation Engine

image6.emf
XR Baseline Client

User input

Media Access Function

XR Runtime

Cameras

Sensor

Displays

Presentation

Engine

Composition

Runtime

functions

(tracking,

SLAM)

Visual Renderer

Audio Renderer

Audio

Subsystem

Speakers

Scene

Manager

Video Codecs

Audio Codecs

Metadata Formats

XR Source

Management

Application

Actuators

IF-1a

IF-3

IF-9

IF-8

Content Delivery Protocols

Media Session

Handler

IF-5

IF-6 IF-2

IF-7

Metrics collection &

reporting

5G System (Uu)

Microphones

API

-

1

API-2

API-7

API-6

IF-10

IF-1b

IF-1c

IF-4

API-6

IF-7

IF-6

OP-2

OP-5

OP-4

OP-3

OP-1

Microsoft_Visio_Drawing.vsdx
XR Baseline Client
User input

Media Access Function
XR Runtime
Cameras
Sensor
Displays
Presentation Engine
Composition
Runtime functions (tracking, SLAM)
Visual Renderer
Audio Renderer
Audio Subsystem
Speakers
Scene Manager
Video Codecs
Audio Codecs
Metadata Formats
XR Source Management
Application
Actuators
IF-1a
IF-3
IF-9
IF-8
Content Delivery Protocols
Media Session Handler
IF-5
IF-6
IF-2
IF-7
Metrics collection & reporting
5G System (Uu)
Microphones
API-1
API-2
API-7
API-6
IF-10
IF-1b
IF-1c
IF-4
API-6
IF-7
IF-6
OP-2
OP-5
OP-4
OP-3
OP-1

image7.emf
XR Baseline Client

User input

Media Access Function

XR Runtime

Cameras

Sensor

Displays

Presentation

Engine

Composition

Runtime

functions

(tracking,

SLAM)

Visual Renderer

Audio Renderer

Audio

Subsystem

Speakers

Scene

Manager

Video Codecs

Audio Codecs

Metadata Formats

XR Source

Management

Application

Actuators

IF-1a

IF-3

IF-9

IF-8

Content Delivery Protocols

Media Session

Handler

IF-5

IF-6 IF-2

IF-7

Metrics collection &

reporting

Microphones

API

-

1

API-2

API-7

API-6

IF-10

IF-1b

IF-1c

IF-4

API-6

IF-7

IF-6

OP-2

OP-4

OP-3

OP-1

5G System (Uu)

Microsoft_Visio_Drawing1.vsdx
XR Baseline Client
User input

Media Access Function
XR Runtime
Cameras
Sensor
Displays
Presentation Engine
Composition
Runtime functions (tracking, SLAM)
Visual Renderer
Audio Renderer
Audio Subsystem
Speakers
Scene Manager
Video Codecs
Audio Codecs
Metadata Formats
XR Source Management
Application
Actuators
IF-1a
IF-3
IF-9
IF-8
Content Delivery Protocols
Media Session Handler
IF-5
IF-6
IF-2
IF-7
Metrics collection & reporting
Microphones
API-1
API-2
API-7
API-6
IF-10
IF-1b
IF-1c
IF-4
API-6
IF-7
IF-6
OP-2
OP-4
OP-3
OP-1
5G System (Uu)

