3GPP TS 26.119 V0.1.0 (2022-04)
14
Release 18

	[bookmark: page1][bookmark: specType1][bookmark: specNumber][bookmark: issueDate]3GPP TS 26.119 V0.1.0 (2022-04)

	[bookmark: spectype2]Technical Specification

	3rd Generation Partnership Project;
[bookmark: specTitle]Technical Specification Group Services and System Aspects;
Media Capabilities for Augmented eXtended Reality
[bookmark: specRelease](Release 18)

		

	[image:]
	[image:]

	

	[bookmark: warningNotice]The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

	[bookmark: page2]

	[bookmark: coords3gpp]3GPP
Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16
Internet
http://www.3gpp.org

	[bookmark: copyrightNotification]Copyright Notification
No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

[bookmark: copyrightDate][bookmark: copyrightaddon]© 2021, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).
All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members
3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

[bookmark: tableOfContents]
Contents
Foreword	4
Introduction	5
1	Scope	6
2	References	6
3	Definitions of terms, symbols and abbreviations	6
3.1	Terms	6
3.2	Symbols	6
3.3	Abbreviations	6
4	Overview	7
4.1	Introduction	7
4.2	General terminal architecture	7
4.3	Structure of the specification	7
5	General and systems functions and capabilites	7
6	Visual functions and capabilities	7
7	Audio functions and capabilities	7
8	QoE Metrics	7
9	AR device categories	8
9.1	Introduction	8
9.2	Device type 1	8
9.2.1 	General	8
9.2.2	Refined architecture	8
9.2.3	General and system capabilities	8
9.2.4	Visual capabilities	8
9.2.5	Audio capabilities	8
Annex A (informative/normative): KPIs for AR/MR	9
A.1	Introduction	9
Annex <X> (informative): Change history	10

[bookmark: foreword][bookmark: _Toc100830955]Foreword
[bookmark: spectype3]This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).
The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:
Version x.y.z
where:
x	the first digit:
1	presented to TSG for information;
2	presented to TSG for approval;
3	or greater indicates TSG approved document under change control.
y	the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
z	the third digit is incremented when editorial only changes have been incorporated in the document.
In the present document, modal verbs have the following meanings:
shall		indicates a mandatory requirement to do something
shall not	indicates an interdiction (prohibition) to do something
The constructions "shall" and "shall not" are confined to the context of normative provisions, and do not appear in Technical Reports.
The constructions "must" and "must not" are not used as substitutes for "shall" and "shall not". Their use is avoided insofar as possible, and they are not used in a normative context except in a direct citation from an external, referenced, non-3GPP document, or so as to maintain continuity of style when extending or modifying the provisions of such a referenced document.
should		indicates a recommendation to do something
should not	indicates a recommendation not to do something
may		indicates permission to do something
need not	indicates permission not to do something
The construction "may not" is ambiguous and is not used in normative elements. The unambiguous constructions "might not" or "shall not" are used instead, depending upon the meaning intended.
can		indicates that something is possible
cannot		indicates that something is impossible
The constructions "can" and "cannot" are not substitutes for "may" and "need not".
will		indicates that something is certain or expected to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
will not		indicates that something is certain or expected not to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
might	indicates a likelihood that something will happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document
might not	indicates a likelihood that something will not happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document
In addition:
is	(or any other verb in the indicative mood) indicates a statement of fact
is not	(or any other negative verb in the indicative mood) indicates a statement of fact
The constructions "is" and "is not" do not indicate requirements.
[bookmark: introduction][bookmark: _Toc100830956]Introduction
This clause is optional. If it exists, it shall be the second unnumbered clause.
[bookmark: scope][bookmark: _Toc100830957]
1	Scope
The present document …
[bookmark: references][bookmark: _Toc100830958]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or nonspecific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	3GPP TR 26.928: "Extended Reality (XR) in 5G".
[3]	3GPP TR 26.998: "Support of 5G glass-type Augmented Reality / Mixed Reality (AR/MR) devices".
[4]	3GPP TR 26.857: "5G Media Service Enablers".
[5]	Khronos, "The OpenXR Specification", https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html
…
[x]	<doctype> <#>[([up to and including]{yyyy[-mm]|V<a[.b[.c]]>}[onwards])]: "<Title>".
[bookmark: definitions][bookmark: _Toc100830959]3	Definitions of terms, symbols and abbreviations
[bookmark: _Toc100830960]3.1	Terms
For the purposes of the present document, the terms given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].
Frame of Reference: an abstract coordinate system whose origin, orientation, and scale are specified by a set of reference points
Reference Points: geometric points whose position is identified both mathematically and physically
exampleXR Runtime: text used to clarify abstract rules by applying them literally.Set of functions provided by the device to the XR application in order to create XR experiences.
XR Runtime API: Set of functions provided by the device to the XR application in order to create XR experiences.
XR Session: an application’s intention to present XR content to the user
XR System: a collection of related devices in the runtime, often made up of several individual hardware components working together to enable XR experiences

[bookmark: _Toc100830961]3.2	Symbols
For the purposes of the present document, the following symbols apply:
<symbol>	<Explanation>

[bookmark: _Toc100830962]3.3	Abbreviations
For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].
AR	Augmented Reality
MR	Mixed Reality
VR	Virtual Reality
XR		eXtended Reality
<ABBREVIATION>	<Expansion>

[bookmark: clause4][bookmark: _Toc100830963]4	OverviewPreliminaries and Assumptions
[bookmark: _Toc100830964]4.1	IntroductionIntroduction and Assumptions: XR Runtime
4.1.1	Overview
Extended Reality (XR) refers to a continuum of real-and-virtual combined environments generated by computers through human-machine interaction and is inclusive of the technologies associated with virtual reality (VR), augmented reality (AR) and mixed reality (MR). A detailed overview of definitions, concepts and background on XR and AR is provided in TR26.928 [2] and TR26.998 [3], respectively.
This clause documents the core assumptions for an XR-capable device. An XR-capable device typically is assumed to have one or several displays, speakers, sensors, cameras, microphones, actuators, controllers and/or other peripherals that allow to create XR experiences, i.e. experiences for which the user interacts with the content presented in virtual world and/or augmented to the real-world, depending on the position and orientation of the user. An XR device may for example be AR Glasses, a VR Head-Mounted Display (HMD) or a regular smartphone.
An XR application may be available to an XR device making use of the hardware and software capabilities, including media capabilities, of the XR device as well as network connectivity in order to provide XR experiences to the user of the XR device. In the context of this specification, it is primarily assumed that access to the network is provided by 5G System functionalities.
As a pre-requisite to support XR experiences on an XR device, the hardware offers a set of XR functions to the XR application on the devices to perform commonly required XR operations. These operations include, but are not limited to:
· accessing controller/peripheral state,
· getting current and/or predicted tracking positions and pose information,
· submitting pre-rendered media data to the device output for final presentation to the user, taking into account the latest user position and pose. Adaptation to the latest user position and pose is also referred to as warping.
The set of functions provided by the device to the XR application in order to create XR experiences is defined as XR Runtime. The functions are accessible to the XR application by an interface between the application and the XR Runtime referred to an XR Runtime Application Programming Interface (API). The XR Runtime typically handles functionalities as such composition, peripheral management, tracking, Spatial Localization and Mapping (SLAM), capturing and audio-related functions. Further, it is assumed that the hardware and software capabilities of the device are accessible through well-defined device APIs, and in particular the media capabilities are accessible through media APIs.
In the remainder of the specification, the XR prefix with runtime or application or other defined XR-prefixed terms may be omitted for better readability.
An overview of an XR device architecture is shown in Figure 4.1.1-1.

Figure 4.1.1-1 XR Device Architecture and assumptions
The primary scope of this specification is the definition of consistent media capabilities that an XR application can use in order to access and deliver media and associated metadata from/to the network, using 5G System functionalities, under the assumption that the device includes an XR Runtime with APIs. Media capabilities include, but are not limited to, media encoders and decoders, packaging formats, security functions, synchronization information, spatial alignment information, metadata formats, graphics capabilities, etc.
The XR application is not further specified in this specification, but the XR application may be a 3GPP-based service or a third-party service. The media capabilities may also be referenced as part of a Media Session Enabler as defined in TR 26.857 [4].
This specification does neither define nor mandate a specific XR Runtime or XR Runtime API. However, at least a subset of the expected functionalities of the XR Runtime are aligned with what is offered by core Khronos’ OpenXR specification [5] which serves as a reference API for the definition of the XR Runtime functionalities in this specification. Many data formats are aligned with Khronos’ OpenXR specification [5], so readers of this specification are encouraged to familiarize themselves with OpenXR. A mapping of general functionalities to OpenXR is provided in Annex A.
XR devices may have very different processing capabilities, depending on the form factors, the considered target applications, etc. Based on this observation, two aspects are addressed in this specification:
-	different device types are considered, with focus on minimum capabilities device addressing low-power consumption with restricted form factors, predominantly AR Glasses as introduced in TR26.928 [2] and TR26.998 [3].
-	the XR application needs to be able to query the capabilities of the XR runtime and the media functions.
4.1.2	XR Systems, Spaces and Sessions
This XR Runtime API separates the concept of physical systems of XR devices from the logical objects that applications interact with directly. An XR System represents a collection of related devices in the runtime, often made up of several individual hardware components working together to enable XR experiences. Systems may include the form factor (HMD, handheld), the display and speaker characteristics, various forms of input devices, as well as other trackable objects. System capabilities may be queried.
XR applications have a core need to map the location of virtual objects to the corresponding real-world locations where they are rendered. Spaces are used to make determinations about the relative positions and motion of objects and other entities (such as light sources and cameras) within the user’s environment. XR Spaces allow applications to explicitly create and specify the frames of reference in which they choose to track the real world, and then determine how those frames of reference move relative to one another over time. A frame of reference is an abstract coordinate system whose origin, orientation, and scale are specified by a set of reference points, i.e. geometric points whose position is identified both mathematically and physically.
Whenever the XR application calls an XR Runtime function that returns coordinates, it provides an XR Space to specify the frame of reference in which those coordinates are expressed. Coordinates are 3D points, each identifying the distance from the center of the XR Space along one of the three axes. The XR Runtime is expected to use a Cartesian right-handed coordinate system as defined in OpenXR, clause 2.16. Rotation is represented by a unit quaternion. Similarly, when providing coordinates to a function, the application specifies which XR Space the runtime is expected to use to interpret those coordinates. Objects in the space are, at the simplest level, a set of polygons defined by points in 3D space and an offset transform, indicating how to move and rotate the object to position it at the desired point in space.
In order for objects to be useful for spatial tracking and scene geometry, the XR device's perceived position needs to be correlated with the space's coordinate system. That's where reference spaces come in. The XR Runtime API is expected to be designed to request a reference space matching the XR application’s needs. Once created, a reference space guarantees a certain level of support for motion and orientation tracking, and provides a mechanism for obtaining an viewer pose.
Reference spaces have a well-defined meaning, which establishes where its origin is positioned and how its axes are oriented. Well-known reference spaces that the XR application can use to bootstrap their spatial reasoning, are provided:
 -	VIEW space: tracking space whose native origin tracks the viewer's position and orientation. This is used for environments in which the user can physically move around. It's particularly useful when determining the distance between the viewer and an input, or when working with offset spaces. Otherwise, typically, one of the other reference space types will be used more often. Content rendered in VIEW space will stay at a fixed point on head-mounted displays.
-	LOCAL space represents a tracking space whose native origin is located near the viewer's position at the time the session was created. For devices with six degrees of freedom (6DoF) tracking, the local reference space tries to keep the origin stable relative to the environment. The reference space is typically used to describe a relatively small area, such as a single room.
-	STAGE space is a flat, rectangular space that is empty and can be walked around on. The origin is on the floor at the center of the rectangle, with +Y up, and the X and Z axes aligned with the rectangle edges.
-	UNBOUNDED space represents a tracking space which allows the user total freedom of movement, possibly over extremely long distances from their origin point. The viewer isn't tracked at all; tracking is optimized for stability around the user's current position, so the native origin may drift as needed to accommodate that need.
Beyond well-known reference spaces, XR runtimes may expose other independently-tracked spaces, for example as a pose action space that tracks the pose of a motion controller over time. XR systems may have limited real world spatial ranges in which users can freely move around while remaining tracked. Applications may wish to query these boundaries and alter application behavior or content placement to ensure the user can complete the experience while remaining within the boundary. Applications can find the pose/location of an XR Space origin within a base XR space at a given historical or predicted time.
When an XR Application wants to make use of the functions of the XR Runtime, it launches an internal XR program that initiates an XR Session in the XR Runtime. An XR Session represents an application’s intention to present XR content to the user. The XR Application uses the XR System to create an XR Session, which can then be used to accept input from the peripherals, as well can be used to present media samples. An XR application may use all or only a subset of the components of the available system, for example to avoid wasting resources on components that are not needed.
A typical XR Session coordinates the application and the runtime through session control functions and session state events. Without being too implementation specific a typically XR Session is as follows:
1:	A typical XR program begins with a call to create an instance which establishes a connection to a runtime. Then a call is made to create a system which selects for use of physical output devices and a subset of input, tracking, and graphics devices. The application creates a session by choosing a system based on the available components and functionalities. The application then monitors for session state changes, for example via events.
2:	When the XR runtime determines that the system is ready to accept XR content, the application receives a notification and once the XR application and once the application is also ready to proceed and present its XR content, an XR render loop is initiated and the session is started. For this purpose, swapchain buffers are created into which the application renders one or more views using the appropriate graphics or audio rendering engines. For more details on the Render Loop, refer to clause 4.1.4.
3:	When the XR runtime determines that the application is eligible to receive XR inputs that it has registered for (e.g. controller buttons or hand tracking inputs), it establishes a binding between the hardware input and a a hardware-agnostic naming scheme. It then receives queries for events and notifies the application about any active events. For more details, refer to clause 4.1.3.
4:	The runtime may determine that it has lost the ability to provide XR input and may temporarily move to present information without XR input. When the runtime ends the session it, it informs the application. Once informed, it stops its render loop and tells the runtime to stop the running session. The runtime may decide to release the resources related to the session.
4.1.3	XR Runtime Input Loop and Source Data
In order to support the application in rendering different views the XR Runtime provides access to the viewer pose and projection parameters that are needed to render the different views. The XR Runtime provides the viewer pose and projection parameters for a particular display time. This time is typically the target display time for a given sample. Runtimes typically allow to repeatedly call for updates at the same time, which may not necessarily return the same result. Instead, the prediction gets increasingly accurate as the function is called closer to the given time for which a prediction is made. This allows an application to get the predicted views as late as possible in its pipeline to get the least amount of latency and prediction error when pre-rendering the image.
In addition, XR applications communicate with input devices in order to collect actions. Actions are created at initialization time and later used to request input device state, create action spaces, or control haptic events. Input action handles represent 'actions' that the application is interested in obtaining the state of, not direct input device hardware.
Pose: https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#input
Media Data: Camera, Microphone
· Assumption:
· Do we include capturing in the first version? Minimize the functionalities (For example a Time-of-Flight or a avatar support camera output)
· We do less well-defined and extend later in future releases.
4.1.4	XR Views and Rendering Loop
XR applications typically want to present pre-rendered media to the user. For this purpose, views are generated and a rendering loop is executed.
A view configuration is a semantically meaningful set of one or more views for which an XR application can render images. A primary view configuration is a view configuration intended to be presented to the viewer interacting with the XR application. Additional views may be provided, for example views which are intended for spectators. The focus in the remainder is on the primary view configuration for the interacting viewer.
A typical head-mounted VR system (VR HMD, AR Glasses) has a view configuration with two views, while a typical phone-based XR system has a view configuration with a single view. Other view configurations may exist. The application selects its primary view configuration type at the start of the session, and that configuration remains constant for the lifetime of the session. Two distinct primary view configurations exist:
-	Mono: One view representing the form factor’s one primary display. For example, an AR phone’s screen.
-	Stereo: Two views representing the form factor’s two primary displays, which map to a left-eye and right-eye view.
Views may be further configured including recommended and maximum width and height when rendering the view into the swap chain.
It is assumed that the XR Runtime is focussed state, i.e. the application has synchronized its frame loop with the XR runtime, the session’s frames will be visible to the user, and the session is eligible to receive XR input. The application runs its frame loop, renders and submits composition layers.
For visual rendering, the following applies:
1)	To present images to the user, the runtime provides images organized in swapchains for the application to render into.
2)	The XR Runtime may support different swapchain image formats and the supported image formats may be provided to the application through the runtime API. XR Runtimes typically support at least sRGB formats. Details may depend on the graphics API specified when creating the session.
3) 	Swapchain images may be 2D or 2D Array. Arrays allow to extract a subset of the 2D images for rendering. Multiple swapchain handles may exist simultaneously, up to some limit imposed by the XR runtime. Swap chain parameters include:
-	texture format identifier, a graphics API specific version of a format, for example sRGB.
-	width and height, expressing the pixel count of the images sent to the swapchain
-	faceCount, being the number of faces, which can be either 6 (for cubemaps) or 1
-	indication whether the swapchain is dynamic, i.e. updated as part of the XR rendering loop or static, i.e. the application releases only one image to this swapchain over its entire lifetime.
-	access protection, indicating that the swapchain’s images are protected from CPU access
4)	Once a session is running and in focussed state as introduced in clause 4.1.2, the following rendering loop is executed following Figure 4.1.4
a)	The XR Application retrieves the action state, e.g. the status of the controllers and their associated pose. The application also establishes the location of different trackables.
b)	Before an application can begin writing to a swapchain image, it first waits on the image to avoid writing to it before the Compositor has finished reading from it. Then an XR application synchronizes its rendering loop to the runtime. In the common case that an XR application has pipelined frame submissions, the application is expected to compute the appropriate target display time using both the predicted display time and predicted display interval. An XR Runtime is expected to provide and operate a swapchain that supports a specific frame rate.
c) 	Once the wait time completes, the application initiates the rendering process. In order to support the application in rendering different views the XR Runtime provides access to the viewer pose and projection parameters that are needed to render the different views. The view and projection info is provided for a particular display time within a specified XR space. Typically, the target/predicted display time for a given frame.
d)	the application then performs its rendering work. Rendering work may be very simple, for example just directly copying data from the application into the swap chain or may be complex, for example iterating over the scene graph nodes and rendering complex objects. Once all views/layers are rendered, the application sends them to the XR Runtime for final compositing including the expected display time as well as the associated render pose.
e) 	An XR Runtime typically supports (i) planar projected images rendered from the eye point of each eye using a perspective projection, typically used to render the virtual world from the user’s perspective, and (ii) quad layer type describing a posable planar rectangle in the virtual world for displaying two-dimensional content. Other projection types such as cubemaps, equirectangular or cylindric projection may also be supported.
f)	The XR application offloads the composition of the final image to an XR Runtime-supplied compositor. By this, the rendering complexity is significantly lower since details such as frame-rate interpolation and distortion correction are performed by the XR Runtime. It is assumed that the XR Runtime provides a compositor functionality for device mapping. A Compositor in the runtime is responsible for taking all the received layers, performing any necessary corrections such as pose correction and lens distortion, compositing them, and then sending the final frame to the display. An application may use multiple composition layers for its rendering. Composition layers are drawn in a specified order, with the 0th layer drawn first. Layers are drawn with a "painter’s algorithm," with each successive layer potentially overwriting the destination layers whether or not the new layers are virtually closer to the viewer. Composition layers are subject to blending with other layers. Blending of layers can be controlled by layer per-texel source alpha. Layer swapchain textures may contain an alpha channel. Composition and blending is done in RGBA.
g)	After the compositor has blended and flattened all layers, it then presents this image to the system’s display. The composited image is then blend with the user’s view of the physical world behind the displays in one of three modes, based on the application’s chosen environment blend mode:
-	OPAQUE. The composition layers are displayed with no view of the physical world behind them. The composited image is interpreted as an RGB image, ignoring the composited alpha channel. This is the typical mode for VR experiences, although this mode can also be supported on devices that support video passthrough.
-	ADDITIVE: The composition layers are additively blended with the real world behind the display. The composited image is interpreted as an RGB image, ignoring the composited alpha channel during the additive blending. This is the typical mode for an AR experience on a see-through headset with an additive display, although this mode can also be supported on devices that support video passthrough.
-	ALPHA_BLEND. The composition layers are alpha-blended with the real world behind the display. The composited image is interpreted as an RGBA image, with the composited alpha channel determining each pixel’s level of blending with the real world behind the display. This is the typical mode for an AR experience on a phone or headset that supports video passthrough.
h)	Meanwhile, while the XR Runtime uses the submitted frame for compositing and display, a new rendering process may be kicked off for a different swap chain image.

Figure 4.1.4-1 Rendering loop for visual data
For audio rendering, the following is processes may be assumed:
1) An interface to the XR runtime is available hand over raw audio buffers to determine how the XR application would access a device’s audio capabilities. In audio, typically the term buffer queues is used instead of swap chains but they may be viewed equivalent to visual swap chains.
2) In addition to the functionalities from such buffer queues, different types of audio signals may be provided, and additional/alternative processing steps may be carried out. Audio signals (i.e. the combination of metadata and buffer queues) may be
a. non-diegetic, i.e. they are not rendered to the pose.
b. Provide a projected audio format that can be processed by the XR runtime to adjust to the user pose
c. a mixture of such signals that are jointly presented, equivalent to the composition done for the visual
3) Details are tbd, also in relation to TS 26.119. clause 4.5 and Annex B
The composition and display in the run-time also includes the audio-visual synchronization.
Composition layers submitted by the application include an XrSpace for the runtime to use to position that layer over time. Composition layers whose XrSpace is relative to the VIEW reference space are implicitly "head-locked", even if they may not be "display-locked" for non-head-mounted form factors. The application typically uses multiple media types and may use multiple composition layers per media type. For visual media, composition layers represent independent images that the compositor blends together to produce the final displayed image. Composition layers may be
-	"head-tracked" if desired to be corrected to the latest user pose
-	"head-locked" if the content is not adapted to the latest user pose in an HMD.
-	"display-locked" for not following the latest user pose.
-	"body-locked" for not following the latest user pose.
In audio, such composition layers are referred to as diegetic ("head-tracked") or non-diegetic ("head-locked").
4.1.5	XR Runtime Capabilities
Table 4.1.5-1 provides a summary of relevant capabilities for XR Runtimes. This table does not prescribe support for any specific capabilities, this is addressed for each device type individually. A mapping of these high-level capabilities to OpenXR is provided in Annex A.
Table 4.1.5-1	XR Runtime Capabilities
	Capability
	Description and Reference
	Parameters
	OpenXR (will be moved to Annex)

	XR System Properties
	An application can query the XR Runtime to retrieve information about the system such as a system identifier, graphics properties or tracking properties.
	System identifier
Tracking Properties
Graphics Properties
	xrGetSystemProperties

	XR System Graphics Properties
	Information on the graphics capabilities, namely the maximum image pixel height and width of the swapchain as well as the maximum number of composition layers
	maxSwapchainImageHeight
maxSwapchainImageWidth
maxLayerCount
	xrSystemGraphicsProperties
minMaxLayerCount = 16

	XR System Tracking Properties
	Information on the tracking capabilities, namely support of orientation and position tracking.
	orientationTracking
positionTracking
	XrSystemTrackingProperties

	Blend Mode
	The supported blend modes of the XR System, see clause 4.1.4
	Opaque, additive, alpha_blend
	XrEnvironmentBlendMode

	Supported view configuration types
	Supported primary view configurations by the XR System
	Mono, Stereo, others

	xrEnumerateViewConfigurations
xrViewConfigurationType

	View Configuration Properties
	specifies properties related to rendering of an individual view within a view configuration
	Recommended and maximum height/width and swapchain sample count
	XrViewConfigurationView

	Reference Space Type
	XR Runtimes implement different reference spaces as described in clause 4.1.3
	View, Local, Stage, unbounded, user-defined
	xrEnumerateReferenceSpaces

	Spatial Range Boundaries
	XR systems may have limited real world spatial ranges in which users can freely move around while remaining tracked
	dimensions of an axis-aligned bounding box
	xrGetReferenceSpaceBoundsRect

	Swapchain Formats
	Swapchain image format support by the runtime
	For example R8G8B8A8
	xrEnumerateSwapchainFormats

	Swapchain Images
	number of images allocated to swapchain
	For example 1 or 2
	xrEnumerateSwapchainImages

	Projection Layer Type
	Provides the supported layer type that is used in the projections for the layer
	Projection Composition Layer: represents planar projected images, one rendered for each eye using a perspective projection.
Quad Composition Layer: is useful for rendering user interface elements or 2D content on a planar area in the world.
Cylinder Composition Layer: the XR runtime maps a texture stemming from a swapchain onto the inside of a cylinder section.
Cube Composition Layer: consists of a cube map with 6 views to be rendered by the application.
Equirectangular Composition Layer: consists of an equirectangular image that is mapped onto the inside of a sphere in the world.
Depth Composition Layer: provides an extra composition layer to allow applications to submit depth maps to assist with the pose correction of projected images of a project layer.
	XrStructureType

	Frame rate
	
	
	

	ACTIONS
	
	
	

Add a table of capabilities of the XR Runtime and what is expected to available and what is optional needs to be queried
Basic concept of specification:
· Capability query
· [Editor’s note: Description of the pipelines, sensors, AR runtime, decoders… identify for what entities capabilities are defined]
Collected Requirements
4.1.6	Summary of Assumptions
In the context of this specification, it is assumed that the XR Runtime is in an active XR Render Loop and XR Input Loop.
Swapchain assumptions:
-	Rendering loop
4.2	Media Pipelines and Rendering
4.2.1	General
In the context of this specification, media to be rendered and displayed by the XR device through the XR runtime is typically not available in uncompressed from on the device. In contrast, media is accessed using a 5G System, decoded in the device using media capabilities, and the decoded media is rendered to then be provided through swap chains to the XR Runtime as shown in Figure 4.2.1-1.

Figure 4.2.1-1 Media pipelines: Access, decoding and rendering
The rendering function is responsible to adapt the content to be presentable by the by the XR Runtime by making use of a rendering loop and using swapchains. The application configures pipeline of different processes, namely the media access, the decoding and the rendering. The static information provided to the rendering step needs to be sufficient to configure the number of layers as well as each layer appropriately including
-	View configuration
-	Blend modes
-	XR spaces
-	swap chain formats and images
-	projection layer types
Frame rates: https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#XR_FB_display_refresh_rate
Rendering supported by the XR runtime
· Visual
· Audio
4.2.2	Basic Media Pipeline
Single media type
Access & Media decoder + Metadata + Render pose + Display time è Swap Chain è XR Runtime Composition (+ time warping), SEI Messages
Rendering is Conversion to RGB
4.2.3	Advanced Media Pipelines
Multiple decoders, VDI
Composition of multiple layers
Advanced Rendering (GPU Supported) – Scene Rendering (3D Rendering):
-	Scene (Media decoder + Metadata) è Vulkan API è GPU + render pose è Swap Chain è XR Runtime Composition
Optional and mandatory formats – XR Runtime API supports capability query.
4.2.4	Rendering capabilities
To be defined

[bookmark: _Toc100830965]4.32	General terminal architectureDevice Reference Architecture
As a consequence of the above
[image: Diagram

Description automatically generated]
Figure 4.3-1 Interoperability points and Interfaces of interest for TS 26.119

[Editor’s note: Description of the pipelines, sensors, AR runtime, decoders… identify for what entities capabilities are defined]
[bookmark: _Toc100830966]4.4	Interfaces and APIs
Describe the interfaces according to PD
4.5	Application and Service Provider view
Usage of Capabilities in different delivery environments
4.6	Device Types and Media Profiles
4.6.1	Introduction
4.6.2	Device Type 1: AR Glasses
Power-constrained
AR
The following XR Runtime functions are required to be supported
· Minimum pixel with and height of 1k by 1k per eye
· Frame rate: at least 60fps @1kx1k
· 16 Composition Layers
· Orientation and position tracking
· Blend mode: alpha_blend
· View configuration: stereo
· Reference space: View, local, stage
· Swap chain formats: RGBA
· Swap Chain images: 2
· Rendering capabilities: YUV to RGB conversion
4.6.2	Device Type 2: XR Phone
Mono display
AR and VR
The following XR Runtime functions are required to be supported
· Minimum pixel with and height of 1k
· Frame rate: at least 60fps @1k
· 16 Composition Layers
· Orientation and position tracking
· Blend mode: alpha_blend, additive, opaque
· View configuration: mono
· Reference space: View, local, stage
· Swap chain formats: RGBA
· Swap Chain images: 2
· Rendering capabilities: YUV to RGB conversion, advanced rendering
4.6.3	Device Type 2: XR HMD
Stereo display
AR and VR
The following XR Runtime functions are required to be supported
· Minimum pixel with and height of 2k by 2k per eye
· Frame rate: at least 60fps @2k
· 16 Composition Layers
· Orientation and position tracking
· Blend mode: alpha_blend, additive, opaque
· View configuration: mono, stereo
· Reference space: View, local, stage
· Swap chain formats: RGBA
· Swap Chain images: 2
· Rendering capabilities: YUV to RGB conversion, advanced rendering
4.73	Structure of the specification
[Ed note: how to read this spec]
[bookmark: _Toc100830967]5	General and systems functions and capabilitescapabilities
[Ed note: Description of general functions such as sensors, runtime and their different capabilities, same for system aspects including protocols…]
[bookmark: _Toc100830968]6	Visual functions and capabilities
6.0 XR Runtime Capabilities?
6.1 Decoding Capabilities
6.2 Encoding Capabilities
6.3 Scene Processing Capabilities
6.4	Capability exchange
[Ed note: eg description of video formats and codecs, same for GPU capabilities and formats]

[bookmark: _Toc100830969]7	Audio functions and capabilities
[Ed note: eg description of audio formats and codecs and their associated capabilities]

[bookmark: _Toc100830970]8	QoE Metrics
[Editor’s note: related WID objectives
Identify which QoE metrics from VR QoE metrics can be reused or enhanced for AR media (e.g., resolution per eye, Field of view (FOV), round-trip interaction delay, etc.) and define relevant KPIs that are dedicated to AR/MR
Specify additional relevant KPIs and simple QoE Metrics for AR media]
9	XR Media Profiles
9.1	Introduction
9.2	Baseline Media Profiles
9.1 Introduction
Why?
9.2 Assumptions on XR Runtime
9.3 Visual Capabilities
The device shall support
The device should
9.4 Audio Capabilities

[bookmark: _Toc100830971]9	AR XR Media Profilesdevice categories
[bookmark: _Toc100830972]9.1	Introduction
[bookmark: _Toc100830973]9.2	Device type 1
[bookmark: _Toc100830974]9.2.1 	General
[bookmark: _Toc100830975]9.2.2	Refined architecture
[bookmark: _Toc100830976]9.2.3	General and system capabilities
[bookmark: _Toc100830977]9.2.4	Visual capabilities
[bookmark: _Toc100830978]9.2.5	Audio capabilities
[bookmark: tsgNames]

[bookmark: startOfAnnexes][bookmark: _Toc100830979]
Annex A (informative/normative):
KPIs for AR/MR
[bookmark: _Toc100830980]A.1	Introduction
[Editor’s note: related WID objectives
Identify which QoE metrics from VR QoE metrics can be reused or enhanced for AR media (e.g., resolution per eye, Field of view (FOV), round-trip interaction delay, etc.) and define relevant KPIs that are dedicated to AR/MR
Specify additional relevant KPIs and simple QoE Metrics for AR media]
Annex B (informative):
Usage of OpenXR and WebXR as XR Runtime
B.1	Introduction

B.2	Capability Mapping to OpenXR

B.3	Capability Mapping to WebXR

[bookmark: _Toc100830981][bookmark: historyclause]
Annex <X> (informative):
Change history
	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2022-04
	SA4#118e
	S4-220504
	
	
	
	Draft TS sekeletonskeleton from the editor
	0.1.0

3GPP
image3.emf
XR DeviceXR RuntimeCamerasSensorsDisplaysComposition and WarpingRuntime functions (tracking, SLAM)Audio SubsystemSpeakersMicrophonesNetwork connectivity(5G System Uu)XR ApplicationActuatorsDevice Hardware and Software CapabilitiesControllersCapturingMedia Capabilitiesperipheral managementXR Runtime APIMedia APIsDevice APIsSynchronization and Spatial Alignment

Microsoft_Visio_Drawing.vsdx
XR Device
XR Runtime
Cameras
Sensors
Displays
Composition and Warping
Runtime functions (tracking, SLAM)
Audio Subsystem
Speakers
Microphones
Network connectivity
(5G System Uu)
XR Application
Actuators
Device Hardware and Software Capabilities
Controllers
Capturing
Media Capabilities
peripheral management
XR Runtime API
Media APIs
Device APIs
Synchronization and Spatial Alignment

image4.emf
XR DeviceXR ApplicationXR RuntimeCamerasSensorsDisplaysComposition and WarpingRuntime functions (tracking, SLAM)Controllersperipheral managementSwapchainRendering LoopRenderingActionsComposition Layers+ display time+ render pose@XRSpaceViewer pose at expected display time

Microsoft_Visio_Drawing1.vsdx
XR Device
XR Application
XR Runtime
Cameras
Sensors
Displays
Composition and Warping
Runtime functions (tracking, SLAM)
Controllers
peripheral management
Swapchain
Rendering Loop
Rendering
Actions
Composition Layers + display time + render pose@XRSpace
Viewer pose at expected display time

image5.emf
XR DeviceMedia CapabilitiesXR RuntimeCamerasSensorsDisplaysComposition and WarpingRuntime functions (tracking, SLAM)Audio SubsystemSpeakersMicrophonesActuatorsControllersCapturingperipheral managementSynchronization and Spatial AlignmentSwapchainRendering LoopRenderingDecodingAccess5G System (Uu)XR ApplicationViewer PoseMedia APIs

Microsoft_Visio_Drawing2.vsdx
XR Device
Media Capabilities
XR Runtime
Cameras
Sensors
Displays
Composition and Warping
Runtime functions (tracking, SLAM)
Audio Subsystem
Speakers
Microphones
Actuators
Controllers
Capturing
peripheral management
Synchronization and Spatial Alignment
Swapchain
Rendering Loop
Rendering
Decoding
Access
5G System (Uu)
XR Application
Viewer Pose
Media APIs

image6.png

image1.png

image2.png

