		

[bookmark: OLE_LINK2][bookmark: OLE_LINK1]3GPP TSG-SA WG4 Meeting #122 	S4-230248
Athens, Greece, 20th – 24th February 2023	

Source:	Fraunhofer IIS
Title:	Proposed Starting-Point for IVAS Processing Scripts
Document for:	Discussion
Agenda Item:	7.5

1. Introduction
At the last Audio SWG, it was agreed to start a collaborative scripts development [1]. It was also announced that Fraunhofer IIS would be willing to contribute a starting point for the development. This contribution outlines the current state of development on Fraunhofer side. In addition, it was found that additional legal clarification is needed on how to make these scripts available.
The processing scripts shall implement the processing as agreed in the IVAS-7a [2]. It needs to be clarified that IVAS-7a is currently in very premature status, and the proposed scripts exceed the functionality as described in IVAS-7a. The intention of the proposal is to serve as basis for further experimentation, to be subsequently implemented in IVAS-7a. The final status of the scripts and IVAS-7a shall match.
2. Description of the Proposed Processing Scripts
Overview
The proposed IVAS processing scripts contain two python sub-modules, one for manipulating audio, and another for performing the necessary processing for setting up a listening test. A general description is provided below, with further detail about the algorithms listed below.
The audio manipulation module (henceforth referred to as audiotools) includes functions for various signal processing related operations:
· Reading/writing audio files from/to disk. Supports WAVE and headerless PCM audio.
· Horizontal concatenation (combining multiple audios of the same format sequentially)
· Vertical concatenation (composing a multi-channel audio from several mono streams)
· Delay addition or compensation
· Sample rate conversion (polyphase filtering)
· Low-pass filtering (zero-phase filtering with forward backward filter application)
· Loudness computation (via bs1770demo from ITU STL)
· Limiting
· Comparison of two signals
· ...
Support for multiple audio formats is implemented via a data structure which defines the salient properties required for manipulating a related audio representation. The supported formats are:
· Channel-based audio (input and output):
· Mono, Stereo, 5.1, 5.1+2, 5.1+4, 7.1, 7.1+4 and custom loudspeaker layouts
· Scene-based audio (input and output):
· Ambisonics up to order 3 (ACN/SN3D ordering/normalization assumed)
· Support for planar ambisonics by zeroing the relevant components
· Object-based audio (input only):
· Object-based, up to 4 objects with metadata as per the IVAS-4
· Binaural (HRIRs) and Binaural Room (BRIRs) (output only)
Support for the Metadata-assisted spatial audio (MASA) input format is currently missing but could be added by incorporating the MASA reference software.
Several rendering algorithms are also implemented, enabling rendering to and from supported formats including headphone and loudspeaker rendering.
Loudspeaker rendering uses different algorithms based on the combination of input and output format:
· For channel-based audio, down-/up-mix matrices are used for the above-mentioned formats. Rendering to an arbitrary loudspeaker configuration via a text file is also supported using the Edge Fading Amplitude Panning (EFAP) algorithm.
· Scene-based audio is rendered with All-Round Ambisonics Panning and Decoding, using EFAP for computation of virtual loudspeaker gains.
· Object-based audio also uses the EFAP algorithm.
Binaural rendering is performed via time-domain convolution with either head-related impulse responses (HRIRs) or binaural room impulse responses (BRIRs) using the default HRIR/BRIR sets (IVAS-4) at 48 kHz. Depending on the combination of input and output format, processing is performed slightly differently:
· For Multichannel signals, the impulse responses corresponding to the respective channels are selected from the data set. If specified, a simulated head-rotation trajectory is applied on the input signal via EFAP. If an input LFE channel exists, it is filtered by a two-stage IIR-filter rendered to the output channels with a gain of 5.5 dB per ear. Custom loudspeaker inputs are treated as if they contain an individual object per-channel (see below).
· For scene-based audio, either the HOA3 processed HRIRs are convolved directly with the signal, or in the case of BRIRs a pre-conversion to the 7.1+4 format is performed after rotating the input along a simulated head-rotation trajectory (if specified).
· For object-based audio (ISM), object position metadata is adjusted by a simulated head-rotation trajectory (if specified). The object audio and updated position metadata is then used by a reference rendering implementation. The algorithm interpolates the impulse response coefficients using barycentric weights on the spherical surface to compute filters on a 5ms resolution.
The audiotools module is a key component for implementing the second sub-module related to processing. This module relies upon the above-described functionality to generate a listening test directory structure using input audio and a configuration file in the YAML format. Processing of a listening test item proceeds through the following steps:
Input audio Pre-processing [Core processing] Rendering/Post-processing Output audio
Implemented Functionality in Comparison to IVAS-7a
Pre-Processing
· Windowing: Currently missing
· Sampling rate change:
· Resampling using polyphase filtering
· Resampling using filter.exe missing
· Low-pass filtering
· Zero phase filtering (forward backward)
· scipy.signal.filtfilt
· Low-pass filtering using filter.exe missing
· Level Adjustment
· Using bs1770demo from ITU STL
· Supports specification of an output format which is used for obtaining the scale factor
1. Convert signal to specified format for loudness measurement (can be same as input format, i.e. no conversion)
2. Measure loudness and obtain scale factor by parsing bs1770demo output
3. Apply scale factor to signal
4. Repeat steps 2-3 until loudness converges to desired value
· Concatenation
· “Horizontal” concatenation of all files in an input directory using Python routines
· Files must be for the same audio format
· Background noise mixing: Currently missing
General Processing and Rendering
· Delay compensation (reference codecs): Using Python routines
· Encoding implemented for EVS reference codec, CuT
· Error Insertion: Currently missing
· Decoding implemented for EVS references codec, CuT
· JBM Handling: Partially implemented
· Rendering, incl. reference rendering schemes: See description above
Post-Processing
· Low/high level descaling: Currently missing
· Windowing/segmentation: Currently missing
· Sampling rate change:
· Resampling using polyphase filtering
· Resampling using filter.exe missing
· Filtering
· Zero phase filtering (forward backward)
· scipy.signal.filtfilt
· Low-pass filtering using filter.exe missing
· Limiting

Requirements
This section lists the software dependencies
· Python >= 3.9
· Python packages numpy, scipy and pyyaml
· Any required external tools (such as bs1770demo from the STL) should be placed in the “bin” directory or be present in the user $PATH
3. Joint Software Development and Distribution
As proposed in [1], it was agreed to carry out the joint development of the scripts (“Software”) in a 3GPP Gitlab repository. However, before a first version of the IVAS processing scripts (Software), the source seeks clarification on the handling of Copyright and other IPR related questions of the Software in the 3GPP Gitlab repository, to fulfill internal processes.
It’s the understanding of the source that according to [3] Annex 6, Copyright and IPR of Software is clearly defined if contributed “for inclusion in a STANDARD or TECHNICAL SPECIFICATION”. The source thus seeks clarification by 3GPP officials whether the IVAS processing scripts (Software) will be made available as a STANDARD or TECHNICAL SPECIFICATION, or otherwise seek clarification on the handling of Copyright and other IPR related questions of the Software in the 3GPP Gitlab repository.
4. Conclusion
This contribution outlines the functionality of the proposed initial version of the IVAS processing scripts. Further on, the source seeks clarification on the question of Copyright and IPR as outlined in Section 3, before an initial version can be provided by the source.

References:
[1] S4aA230020 - Collaborative Test and Script Development using 3GPP Forge
[bookmark: _Hlk63427229][2] S4221521 - IVAS-7a: Processing plan for selection phase v0.7.0
[3] ETSI Directives Version 46, 12 December 2022

		Page: 1/4
		Page: 2/4
