3GPP TSG SA WG4#122	Tdoc S4-22xxxx
Athens, Greece, 20th – 24th February 2023

Source:	Xiaomi
Title:	Considerations for RGBD transmission
Document for:	Agreement
Agenda Item:	10.5

1	Introduction
One of the goals of the iRTCW is to enable real-time media transport for immersive services. Part of this (Objective 2 and Objective 3 of the WID) is related to sensor I/O and the resulting media transport. One of these media that is considered is Depth, accompanying the video capture (i.e. RGB+D). In this contribution we examine the current state on RGBD transmission, and more specifically, practices on capture, coding and encapsulation of RGBD streams.

Based on this analysis, we propose changes to the Permanent Document [1] to reflect our findings.
2	Current state of RGBD transmission
Even though the RGBD hardware and software ecosystem has been populated for quite some time now, there are still many different solutions, for different use cases and/or platforms. On the hardware side, we can find different technologies used to capture Depth data, which then in turn can be encoded using different techniques and encapsulated typically in ad-hoc manner. The following section contains an overview of the current state in RGB+D transmission.
2.1	Capture
There are several technologies that enable capturing of Depth frames, varying from generating the Depth using a colour image of the scene, to dedicated hardware (e.g. using IR) [6]. However, regardless of the sensor used, the result is the same, which is a set of distances (usually measured in millimetres) of points from a vertical plane that includes the depth sensors. Therefore, we consider the capture method with regards to the hardware sensor used to be irrelevant to the context of iRTCW, as long as it is expressed in the convention mentioned above.
2.2	Coding
Regarding the coding/compression of the depth data, the approaches vary from using generic data compression approaches (like LZ4) [7], to depth-specific coding schemes [8], to using video codecs to encode depth frames. The final approach is currently the most common one, since it uses the same pipeline with video (with or without depth-specific pre-processing)[9][10][11]. With the video-based coding approaches, the depth is expressed as a grayscale representation of the distance, usually with 8, 16, or 24bits. In this approach, the bits can be arranged in various way, like emulating the colour channels [4], or optimized for reducing the losses according the properties of the video codec [11]. For this document we assume that when referring to coded depth data, a video-based approach has been used.
2.3	Encapsulation
There is not currently a dedicated packaging format for RGBD streams. However, since it is common practice to use video codecs for compression, containers used for video streams are also used for depth data. This approach offers the advantage that existing packagers can treat depth streams and that the depth frames are inherently synchronized to the video frames by being encapsulated in the same file.
Currently, the most common file formats used to encapsulate RGBD is Matroska (used by Azure Kinect) [5] and ISO Base Media File Format [2], developed by MPEG.
2.3.1	Matroska file format
The matroska file format was popularized for storage of depth data after it was the default option for the Azure Kinect, supported directly by its SDK [5]. To record sensor data, the Matroska (.mkv) container format is used, which allows for multiple tracks to be stored using a wide range of codecs. The recording file contains tracks for storing Color, Depth, IR images, and IMU. When recording depth, the “Track Name” field is set to DEPTH with the Codec Format being defined as “b16g (16-bit Grayscale, Big-endian)”. To identify the depth track, the Track Tag “K4A_DEPTH_TRACK” is used.
[bookmark: _Hlk127291079]2.3.1	ISO Base Media File Format
Currently ISO Base Media File Format (ISOBMFF) supports accompanying video with depth via auxiliary tracks – with reference_type as ’auxl’ or ‘vdep’ (or both). Then, provisions in ISOBMFF spec is for auxiliary video metadata (item of type ‘auvd’), that references ISO/IEC 23002-3 [3]. These two specifications define features like stride, near/far plane etc. The mentioned properties, combined with some inherent FF features (codec-agnostic, ease of segmentation, tool for random access etc.) produce an RGBD encapsulation mechanism that is easy to deploy and flexible.
3	Analysis
Even though there are already some tools for RGBD transmission, it seems that there could be improvements on the encapsulation aspects. What the ecosystem is lacking right now for RGBD transmission is a content-centric, but application and codec agnostic way to encapsulate the depth accompanying the video, while at the same time exposing the properties for the depth stream to distribution mechanisms (i.e. to be streaming-ready).
Some example depth information that must be available prior to accessing the data for immersive real time communication scenarios would be:
-	Depth range
-	Depth projection properties
-	Depth coding properties

4	Conclusion
We recommend adding clauses 2 and 3 to the iRTCW Permanent Document and invite more study on the matter.

References
[1] [iRTCW] permanent document v0.3.0, S4-230022, https://www.3gpp.org/ftp/TSG_SA/WG4_CODEC/TSGS4_122_Athens/Docs/S4-230022.zip
[2] ISO/IEC 14496-1: Information technology — Coding of audio-visual objects — Part 12: ISO base media file format
[3] ISO/IEC 23002-3, Information technology — MPEG video technologies — Part 3: Representation of auxiliary video and supplemental information
[4] Google – Depth Image Encoding - https://sites.google.com/site/brainrobotdata/home/depth-image-encoding
[5] Microsoft. Use Azure Kinect Sensor SDK to record file format. https://learn.microsoft.com/bs-latn-ba/azure/Kinect-dk/record-file-format
[6] Wikipedia. Range Imaging “Types of range cameras”. https://en.wikipedia.org/wiki/Range_imaging
[7] The Byte Kitchen. Data Compression for the Kinect. https://thebytekitchen.com/2014/03/24/data-compression-for-the-kinect/
[8] Sanjeev Mehrotra, Zhengyou Zhang, Qin Cai, Cha Zhang, Philip A. Chou. Low-Complexity, Near-Lossless Coding of Depth Maps from Kinect-Like Depth Cameras https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/depthcode-final.pdf
[9] Jens Ogniewski and Per-Erik Forssen. What is the best depth-map compression for Depth Image Based Rendering?. https://liu.diva-portal.org/smash/get/diva2:1150797/FULLTEXT01.pdf
[10] Jingjing Fu, Dan Miao, Weiren Yu, Shiqi Wang, Yan Lu, and Shipeng Li. Kinect-Like Depth Data Compression. https://www.doc.ic.ac.uk/~wyu1/pubs/tmm13.pdf
[11] Fabrizio Pece Jan Kautz Tim Weyrich. Adapting Standard Video Codecs for Depth Streaming. https://reality.cs.ucl.ac.uk/projects/depth-streaming/depth-streaming.pdf
		Page: 1/4
		Page: 4/4
