Page 4
Draft prETS 300 ???: Month YYYY
[bookmark: _Hlk54879034]3GPP TSG SA WG4#122	S4-230206
Athen (GR), 20th – 24th of February 2023

²Source: 	InterDigital Inc.
Title: 	AR Gaming use case implementation
Document for	Information 
Agenda item: 	9.5 - MeCAR (Media Capabilities for Augmented Reality)
	
Introduction
TS26.998 [1], in its annex A.6, describes the use case 21 called AR Gaming. The multi-user version of the use case is described as follow :

“Alice invites Bob and Clare to play an online AR shooting game in her living room. They wear AR glasses, log in to the AR shooting game application, select the multi-player team mode, and then they can control the shooting action through a gesture or the tethering device. The virtual target set in the shot game will appear in the living room, and have corresponding response according to their operation and display in their AR glasses. Then they can complete the game task and upgrade”.

The proposed demonstration corresponds to this use-case where several users meet at the same location for playing together a game which projects a virtual scene in the common real environment of the users. The golf game is here replaced by a cube piling-up game and the AR glasses by tablets.
Demo use case
The demonstration consists in implementing a game which takes place as a virtual projection into a real scene shared by several users.

The goal of the game is to hide a given pattern by placing virtual cubes in front of it. In addition, a 2D video is displayed while the game proceeds.

The pattern is displayed in the virtual scene. The user looks at the virtual scene through his/her tablet which works as if it were an optical see-through device (overlay of the virtual scene onto the real world). The user generates one virtual cube every time he/she touches the screen of the tablet. The cube appears where the user touches the screen on the tablet. The generated cube is animated by physical laws. If no other cube (or any other object) is located below it to support it, it falls. In order to hide the given pattern, cubes have to be piled-up as if they were real ones. Once the pattern is hidden, the user (or one of the users, if several users play together) has to position him/herself correctly in the virtual scene, in front of the piled-up cubes. If they hide the given pattern, the level is validated and the users have finished this part of the game. The cubes disappear and the displayed 2D video changes. A new level of the game starts : a new pattern is proposed and a new video is displayed.
As mentioned above, several users can play simultaneously. When one user places a cube, the other one can see it and can place a second cube above the cube placed by the first one. For each user, a different color is associated with the cubes. The virtual scene is common to the players. They add their cubes on the same stack and play collaboratively to hide the pattern.


The two figures below illustrate the text above.


Figure 1: yellow pattern has to be hidden by piling-up virtual cubes, a 2D video is displayed on the screen.

Figure 2 : the cube piling has to hide the pattern when the user is front of it

Implementation
0. Global description
The demonstration corresponds to a game play with two users. It is therefore implemented on three devices connected on the same LAN (wifi network) : one server and two user equipments. The server is a laptop PC and the two user equipments are tablets. When the server is started, it listens to specific ports, on which the user equipments establish a session.


The figure below depicts the functional organization of both the server and the user equipment (XR device). The colours indicate a correspondence with the functional blocks of the baseline architecture, as described in clause 4.1 of the MeCar permanent document [2].

Further description of each functional block is given in the next chapters.




Figure 3 : functional blocks corresponding to MeCar baseline architecture


Spatial anchoring

The first operation of each user equipment, once it has established a communication session with the server, is to relocalize itself with the real environment. To this purpose, it uses a trackable, ie an element of the real world that can be detected. A trackable may be of various nature. Here, a trackable mapped to a 2D marker (a picture) is used. An anchor is defined referring to this trackable. The anchor provides a local reference space to position the virtual world in the real world. This is illustrated by the figure below :


Figure 4 : the anchor provides the local reference space in reference to the trackable which is a 2D picture of the real world
Because the two user equipments use the same trackable and the same anchor definition, the two user equipments are relocalized identically. They display the same virtual scene located at the same place in the real world. The common virtual scene is seen by the two users from their respective point of view, as if it was a real scene. This illustrates the functionality provided by the MPEG SD anchoring extension [5]. 
Server implementation
The server implements a Scene Manager based on an Unity framework. The scene manager is functionally divided into three blocks : an AR scene composition functional block, an interaction module and a Virtual scene update functional block. 

The AR scene composition functional block loads 3D content elements from an asset storage to compose the scene. A scene description, based on glTF format [3] with MPEG-I Scene Description extensions [4], is used to describe the 3D content elements. The AR scene composition functional block then sends this scene representation to the User Equipment (and more specifically to the 3D Rendering functional block on the UE) 

The interaction functional block of the server receives from the user equipment the information that the user touched the screen and where he/she touched it. It retransmits the information to the virtual scene update functional block. 

The virtual scene update functional block updates the scene representation in function of the information received from the interaction functional block : typically when informed that the user has touched the screen of the UE at a specific location, the virtual scene update functional block adds a cube at this specific location and sends a scene update to the UE. This illustratres the functionality provided by the MPEG SD interaction extension [5].

The virtual scene update functional block is also in charge of applying physical laws to all the cubes and updates the scene consequently. Physical laws, as well as the description of a cube object, have been originally transmitted to the virtual scene update functional block as a scene object (glTF/MPEG-I SD objects) by the AR scene composition functional block. The virtual scene update functional block updates the scene representation 60 times per second so that the overall experience is fluid.


User Equipment implementation

The User Equipment implements an XR Runtime which includes an AR device tracking functional block. Thanks to the information received from the Inertial Measurement Unit and the camera image, the AR device tracking functional block regularly estimates the pose and transmit it to the 3D rendering function.

At the initialization, the AR device tracking functional block uses the image from the camera to detect the trackable and provides the local reference space. During this initialization step, the trackable, which is a 2D picture, has to be detected. Then, during the game, if the trackable is detected again, the local reference space is updated on the fly (thus correcting potential drift of the local reference space). 

The User Equipment also implements a Presentation Engine which includes a 3D Rendering function. It is also based on an Unity framework implementation. The 3D rendering function receives the Scene Representation and regular updates from the Scene Manager located on the server.

The 3D Rendering function also regularly receives the pose estimation from the AR device tracking functional block. Thanks to the pose estimation, it renders the scene as seen from the user view point. It also forwards the pose estimation to the virtual scene update functional block on the server. This information is used by the server to check that the user is in front of the pattern and to validate the game when the pattern is hidden. This information is also provided to the other user so that the users know their respective pose. 

In addition, the 3D rendering function decodes a 2D video stream and includes it onto a flat surface in the rendered scene, according to what is described in the scene representation. The video is used to demonstrate the integration of media in MPEG SD. The Scene update is triggered by an interactive event which is studied in the MPEG SD TuC [6].
References
[1] [bookmark: _Ref126237836]TR 26.998 “Support of 5G Glass-type Augmented Reality / Mixed Reality (AR/MR) devices”.
[2] [bookmark: _Ref126237810]MeCar Permanent Document https://www.3gpp.org/ftp/tsg_sa/WG4_CODEC/TSGS4_121_Toulouse/Docs/S4-221567.zip
[3] [bookmark: _Ref126237758]glTF 2.0 specification https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html
[4] [bookmark: _Ref126237785]MPEG-I Coded representation of immersive media – Part14: Scene Description for MPEG media, ISO/IEC DIS 23090-14 :2021 (E)
[5] [bookmark: _Ref126768451]Proposed draft of ISO/IEC 23090-14 AMD 2: Support for Haptics, Augmented Reality, Avatars, Interactivity and Lighting https://dms.mpeg.expert/doc_end_user/current_document.php?id=85105&id_meeting=192 https://www.iso.org/standard/86439.html

[6] [bookmark: _Ref126768488]Technologies under Consideration (TuC) in Scene Description https://sd.iso.org/documents/ui/#!/doc/1f2ddef0-cfc3-4731-b083-53f61e28f8f3

- 4/4 -
image1.jpeg

image2.png

image3.png

image4.png

