

	
[bookmark: OLE_LINK2]3GPP TSG SA WG4#122	S4-230085
Athens, Greece, 20th – 24th February 2023	
	CR-Form-v12.0

	PSEUDO CHANGE REQUEST

	

	
	26.806
	CR
	pseudo
	rev
	-
	Current version:
	1.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:	
	[FS_SmarTAR] Key Issue #4: Formats and Connectivity of Tethered Glass

	
	

	Source to WG:
	Qualcomm Incorporated

	Source to TSG:
	

	
	

	Work item code:
	FS_SmarTAR
	
	Date:
	02/14/2023

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-18

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	[bookmark: OLE_LINK1]Use one of the following releases:
Rel-10	(Release 10)
Rel-11	(Release 11)
Rel-12	(Release 12)
Rel-13	(Release 13)
Rel-14	(Release 14)
Rel-15	(Release 15)
Rel-16	(Release 16)
 Rel-17	(Release 17)
 Rel-18	(Release 18)

	
	

	Reason for change:
	

	
	

	Summary of change:
	

	
	

	Consequences if not approved:
	

	
	

	Clauses affected:
	

	
	

	
	Y
	N
	
	

	Other specs
	
	
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

Page 1

===== CHANGE =====
[bookmark: _Toc120623886]6.4	Key Issue #4: Formats and Connectivity of Tethered Glass
[bookmark: _Toc120623887]6.4.1	Description
Split Rendering across a proprietary link may have limitations in terms of formats that can be used, as well as on the supported connectivity and associated bitrates. The knowledge of the capabilities of a tethered glass, accessible through the XR Runtime API on the phone, can support the operation of the phone over the 5G Network in terms of required bitrates as well as in terms of preferable formats. This clause discusses the workflow and provides relevant conclusions in terms of capabilities and related signalling.
6.4.2	Background
The architecture of relevance for the device is shown in Figure 4.4.1-2. The key issue is the handling of media data in the workflow. In a typical implementation aligned with OpenXR processing, the following applies for visual media:
-	To present images to the user, the runtime provides images organized in swapchains for the application to render into.
-	The XR runtime may support different swapchain image formats and the supported image formats may be provided to the application through the runtime API. XR runtimes is expected to at least support R8G8B8A8 and R8G8B8A8 sRGB formats. Details may depend on the graphics API specified in xrCreateSession. Options include DirectX or OpenGL. For example, support for OpenGL ES as a reference may be assumed, i.e. an extension equivalent to the functionalities provided in XR_KHR_opengl_es_enable. OpenGL ES is platform independent and suited for embedded systems.
-	Swapchain images can be 2D or 2D Array. Arrays allow to extract a subset of the 2D images for rendering
-	The application or scene manager can offload the composition of the final image to a XR runtime-supplied compositor. By this, the rendering complexity is significantly lower since details such as frame-rate interpolation and distortion correction are performed by the XR runtime. It is assumed that the XR Runtime provides these functionalities.
-	A runtime on a XR device typically supports OpenXR composition, namely Projection, Quad, Cube, Cylinder, Equirectangular.
An OpenXR application life cycle is shown in Figure 6.4.2-1. In this case, after creating an OpenXR session, the application starts a frame loop. The frame loop is executed for every frame. The frame loop consists of the following steps:
1)	Synchronize actions: this step consists of retrieving the action state, e.g. the status of the controller buttons and the associated pose. During this step, the application also establishes the location of different trackables. The application may also send haptics feedback.
2)	Start a new frame: this step starts with waiting for a frame to be provided by the XR runtime. This step is necessary to synchronize the application frame submission with the display. The xrWaitFrame function returns a frame state for the requested frame that includes a predictedDisplayTime, which is a prediction of when the corresponding composited frame will be displayed. This information is used by the application to request the predicted pose at display. Once the xrWaitFrame function completes, the application calls xrBeginFrame to signal the start of the rendering process.
3)	Retrieve rendering resources: the application starts by locating the views in space and time by calling the xrLocateViews function, provided with the predicted display time and the XR space. It then acquires the swap chain image associated with every view of the composition layer. It waits for the swap chain image to be made available so it can write into it.
4)	Rendering: the application then performs its rendering work. It iterates over the scene graph nodes and renders each object to the view. This step usually uses a Graphics Framework such Vulkan, OpenGL, or Direct3D to perform the actual graphics operations.
5)	Release resources: once the rendering is done for a view, the application releases the corresponding swap chain image. Once all views are rendered, it sends them for display by calling the xrEndFrame function.

Figure 6.4-2-1: OpenXR application life cycle
For audio media, similar processes as video typically apply. OpenXR and OpenSL ES aligned terminology is used as a reference, A typically possible decomposition of steps for immersive audio rendering is as follows: An interface to the XR runtime is available to hand over raw audio buffers to determine how the XR application and scene manager would access a device’s audio capabilities. In order address a concrete implementation example, the model of OpenSL ES is used as a reference for. OpenSL ES supports both file-based and in-memory data sources, as well as buffer queues, for efficient streaming of audio data from memory to the audio system. Buffer queues in OpenSL may be viewed as equivalent to visual swap chains. OpenSL ES may be viewed as companion to 3D graphic APIs such as OpenGL ES. The 3D graphics engine will render the 3D graphics scene to a two-dimension display device, and the OpenSL ES implementation will render the 3D audio scene to the audio output device. In today’s implementations, in addition to the functionalities from such buffer queues, different types of audio signals may be provided, and additional/alternative processing steps may be carried out. Audio signals (i.e. the combination of metadata and buffer queues) may be
-	non-immersive or also known as non-diegitic, i.e. they are not rendered according to the pose.
-	Immersive and describe a full 6DoF experience in the reference space of the XR session. In this case, the XR runtime will create a rendered signal according to the latest pose.
-	Immersive and pre-rendered for a specific render pose. In this case, the signals have been prepared such that the runtime can use the audio signal and the associated render pose and supplementary data for a pose correction to the latest pose.
-	a mixture of such signals that are jointly presented.
-	the signals may originate from different source, for example some may be generated locally, others may be part of a pre-rendering or a full scene created in the network
The audio data is considered to be uncompressed.
6.4.3	Assumptions
Assuming now a device as documented in clause 4.4.3 as a tethered AR glasses, then in a typical deployment, Figure 6.4.3-1 provides a summary of the operation.
-	Swap chain images are provided by phone-based XR Scene manager to OpenXR
-	Actions and pose information are provided to the application
-	A proprietary system is operated south of the OpenXR API for split rendering, i.e. depicted left of the OpenXR API. This is very typical in implementations today for which the phone and the glass are provided by the same vendor.
-	The OpenXR API supports a set of typical formats, that are raw formats according to the discussion in clause 6.4.2.
[image: Diagram

Description automatically generated]
Figure 6.4.3-1: Tethering based on proprietary split rendering operation
In an extension to Figure 6.4.3-1, Figure 6.4.3-2 provides more details of the typical functions carried out in the split rendering, namely converting the raw OpenXR formats, encoding and providing a security framework, setting up a connection together with a protocol and match the bitrate of the link. On the receiving end, the signals sent over the tethered link are decrypted, decoded and the provided to the XR runtime on the glass for final pose correction. Similar processing happens on the uplink to provide encoded pose and actions.
[image: Diagram

Description automatically generated]
Figure 6.4.3-2: Split rendering operations on proprietary link
6.4.4	Problem Statements
6.4.4.1		General
Now a couple of scenarios exist, in case the media is not generated on device, but received over the 5G System. In the regular operation, the formats on the two links, i.e. the 5G system and the proprietary link, would operate completely independently.
6.4.4.2		Case 1: Restricted Raw formats
However, this misses the following aspects when the raw formats are decoded and provided:
1) The formats on the AR Glass may be restricted. Hence, only a reduced set of media data, for example in terms of resolution, may be usefully provided to the AR glass
2) The bitrate on the tethered link may be restricted, or may even dynamically change. In this case, the quality of the formats provided at the input may not be maintained end-to-end
3) The security framework between the glass and the phone is such that it is unusable for certain formats.
Examples for such cases may be in Media Streaming, for which only formats and signals are downloaded that can be processed by the raw formats supported over the tethered link. For conversational applications, also such restrictions may apply, for example for audio only stereo signals are supported.
6.4.4.3		Case 2: Transcoding Problem
Even more severe, if the content is provided from the 5G System in a compressed from, then the operation in the phone results in a typical transcoding operation with the following drawbacks
1) Addition of latency because of algorithmic and processing delays
2) Additional distortion may be added in the transcoding process
3) Unnecessary power consumptions for the encoding and decoding processes
4) A trusted security point may be interrupted, put in clear and re-encoded
5) The bitrate on the tethered link may be restricted, or may even dynamically change. In this case, the quality of the formats provided at the input may not be maintained end-to-end
6) The security framework between the glass and the phone is such that it is unusable for certain formats.
Examples for such cases may be in Media Streaming, but likely to a limited attempt. For conversational applications, also such restrictions may apply, for example for audio only stereo signals are supported. More prominent is the case in conversational speech cases and most prominent is the case in split rendering context, i.e. if the buffer view is pre-rendered on the edge or the cloud. In this case, transcoding is most impactful.
6.4.5	Potential Solutions
6.4.5.1	Layer-2 or Layer-3 Relay
In order to avoid format or transcoding conversion on the UE in case 1 from above, a simple relay can be done according to the architecture in clause 4.4.4. However, this has several downsides:
1) The phone is excluded in the rendering and the application. No locally generated data can be added to the rendering. The application needs to reside on the edge, and the UE may upload data for rendering.
2) If the connection to the cloud/edge is not available or interrupted, no service can be provided.
3) The latency that is possibly incurred by this operation may be too high
6.4.5.2	Raw Format adaptation
Raw format adaptation primarily addressed case 2 from 6.4.4. In this case, the application on the UE not only queries the supported raw formats, but it also gets information from the XR Runtime on information related to the resolution of the formats, the quality of the link in a static and dynamic fashion and other information that the phone can use in the communication between across the 5G System as well as in the rendering in the device to properly match the formats received and generated on the phone to match those of the one supported on the proprietary link.
The key extensions are as follows:
· Support in the runtime query for supported formats additional information that include
-	the resolution of the format
-	the quality degradation incurred by the combination of the link and the coding
-	the security framework and capabilities of the device
-	dynamically providing the metrics and information of the signal quality on the proprietary link
· Support of usage of this provided static and dynamic information for example in
-	the Media streaming client to select the appropriate content codecs, bitrates, possibly in a dynamic fashion
-	a communication client to negotiate with the network to support the appropriate content formats, bitrates and qualities, possibly in a dynamic fashion
· Announcing appropriate information on the 5G System network side to the 5G Phone in order to be able to make such selections.
The details of these extensions need to be added to for example a streaming manifest, the session description protocol or to a scene description.
6.4.5.3	Pass-through Compressed Media Formats for XR Runtimes
This case primarily addressed the case 2 from 6.4.4, namely the issue of transcoding. In order to address this case, it is considered according to Figure 6.4.5.3-1, the media format is passed through from the 5G network over the tethering link, using the OpenXR or the general run-time API. This allows to also add local data as an example that can be added on different layers. Pass-through may include pasing only the compressed media data, but may also include the security frame work or the entire protocol. This depends on the capability of the endpoint on the glass.
[image: Diagram

Description automatically generated with medium confidence]
Figure 6.4.5.3-1: Pass-through compressed media format.
The key extensions are as follows:
· Support in the runtime query for supported formats additional information that include
-	the audio and video decoding capabilities of the glass
-	the security capabilities of the glass
-	the security framework and capabilities of the device
-	statically and dynamically the bitrate and delay of the link
· Support of usage of this provided static and dynamic information for example in
-	the Media streaming client to select the appropriate content formats, bitrates, codecs and qualities, possibly in a dynamic fashion
-	a communication client to negotiate with the network to support the appropriate content formats, codecs bitrates and qualities, possibly in a dynamic fashion
-	in split rendering for which the formats are provided accordingly as shown in Figure 6.4.5.3-2
· Announcing appropriate information on the 5G System network side to the 5G Phone in order to be able to make such selections.
The details of these extensions need to be added to for example a streaming manifest, the session description protocol or to a scene description.
[image: Diagram

Description automatically generated with medium confidence]
Figure 6.4.5.3-2: Pass-through compressed media format.
A simplified approach is provided in Figure 6.4.5.3-3, for which compressed formats ate exchanged via the XR runtime API.
[image: Timeline

Description automatically generated with medium confidence]
Figure 6.4.5.3-3: Simplified architecture: Compressed formats are exchanged via XR Runtime API
In order to address these extensions in the Swapchain Image Management of OpenXR are provided here https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#swapchain-image-management and summarized in clause 6.4.2, the following extensions are considered:
· In a regular operation, the xrEnumerateSwapchainFormats functional call enumerates the texture formats supported by the current session. The type of formats returned are dependent on the graphics API specified in xrCreateSession.
· As an example, Vulkan permits compressed image formats https://registry.khronos.org/vulkan/specs/1.3-khr-extensions/html/chap45.html relying on compressed data formats from Khronos: https://registry.khronos.org/DataFormat/specs/1.3/dataformat.1.3.html
· However, none of the APIs refer to using any video compression formats for each of the swap chain images.
· Hence, inr order to support the above operation of pass-through compressed formats, OpenXR or any runtime is extended to allow a format that adds compressed video formats as swap chain images for which
· Time stamp is target display time (for example RTP time stamp)
· the compressed format includes render pose
· compressed texture format is handed over as part of the swap chain management
Note that this swap chain image management with compressed data only applies for parts of the submitted swap chain buffers, one layer may be sent over in compressed from, whereas a locally generated layer may be sent over in raw form. The synchronization needs to be done by the runtime.
For audio similar principles apply, for which a compressed bitstream is handed to the glass.
For the uplink media data, action and pose data may be passed on in compressed form as received in the glass to the network. The XR Runtime API may even provide such data in compressed (for sending to network) and in raw form (for processing on the phone)
6.4.6	Conclusions
In order to support tethered links and glass-based endpoints properly, it is beneficial to provide a framework that allows to adapt to the end point capabilities to maximize end-to-end quality in terms of signal quality, latency, power consumption, etc. In order to support this, extensions considered above include:
· Support in the runtime query for supported formats additional information that include
-	the resolution of the format
-	the quality degradation incurred by the combination of the link and the coding
-	the security framework and capabilities of the device
-	dynamically providing the metrics and information of the signal quality on the proprietary link
-	the audio and video decoding capabilities of the glass
-	the security capabilities of the glass
-	the security framework and capabilities of the device
-	statically and dynamically the bitrate and delay of the link
· Support of usage of this provided static and dynamic information for example in
-	the Media streaming client to select the appropriate content formats, bitrates and qualities, possibly in a dynamic fashion
-	a communication client to negotiate with the network to support the appropriate content formats, bitrates and qualities, possibly in a dynamic fashion
-	in split rendering which the formats are provided from the cloud/edge rendering
· Announcing appropriate information on the 5G System network side to the 5G Phone in order to be able to make such selections.
These extensions are preferably addressed in extensions OpenXR, 5G Media Streaming, 5G Real-time communication and the related stage-3 protocols such as DASH, ISO BMFF, SDP, RTP/RTCP, etc.

image1.wmf
X

R

D

e

v

i

c

e

A

R

/

M

R

A

p

p

l

i

c

a

t

i

o

n

X

R

R

u

n

t

i

m

e

G

r

a

p

h

i

c

s

F

r

a

m

e

w

o

r

k

1

:

r

e

t

r

i

e

v

i

n

g

t

h

e

a

c

t

i

o

n

s

t

a

t

e

2

:

w

a

i

t

f

o

r

a

f

r

a

m

e

t

o

b

e

p

r

o

v

i

d

e

d

b

y

t

h

e

X

R

r

u

n

t

i

m

e

3

:

x

r

W

a

i

t

F

r

a

m

e

f

r

a

m

e

s

t

a

t

e

i

n

c

l

u

d

e

s

p

r

e

d

i

c

t

e

d

D

i

s

p

l

a

y

T

i

m

e

4

:

g

e

t

p

r

e

d

i

c

t

e

d

p

o

s

e

f

o

r

p

r

e

d

i

c

t

e

d

D

i

p

l

a

y

T

i

m

e

5

:

x

r

B

e

g

i

n

F

r

a

m

e

s

t

a

r

t

r

e

n

d

e

r

i

n

g

p

r

o

c

e

s

s

6

:

x

r

L

o

c

a

t

e

V

i

e

w

s

l

o

c

a

t

e

v

i

e

w

s

7

:

s

w

a

p

c

h

a

i

n

i

m

a

g

e

s

a

v

a

i

l

a

b

l

e

9

:

r

e

n

d

e

r

v

i

e

w

1

0

:

w

r

i

t

e

v

i

e

w

t

o

s

w

a

p

c

h

a

i

n

L

o

o

p

:

f

o

r

e

v

e

r

y

v

i

e

w

8

:

R

e

n

d

e

r

L

o

o

p

1

1

:

r

e

n

d

e

r

i

n

g

c

o

m

p

l

e

t

e

1

2

:

x

r

E

n

d

F

r

a

m

e

s

e

n

d

f

o

r

d

i

s

p

l

a

y

(

t

i

m

e

,

m

o

d

e

,

l

a

y

e

r

s

)

oleObject1.bin

image2.png
AR glasses device

5G Device/Phone

XR Runtime
APl Tethering
(XR Link)

Sensors I Cameras

EyeBuffer
Display

Visual
Composition

Audi
) -

Connection

XR link functions

=

Tethering Connection

Proprietary split rendering operation

XR link
functions

Connectivity

5G AR-UE

image3.png
AR glasses device

Actions &
Pose encoder

Decoder

Projection jil

formats
Security

XR Runtime

« Bitrate
* Protocol

* Bitrate
* Protocol
* Security

Actions &
Pose decoder

Encoder
Formats
Security

5G Device/Phone

‘Scene Descriptior

5G AR-

56 System

UE

image4.png
5G Device/Phone

i
AR glasses device

XR link
functions

Connectivity

Decoder igns Tethering Connection
Projection §

formats
I Security

-

5G AR-UE

image5.png
5G Device/Phone

AR Glasses Device Cloud/Edge

— _— -

z;,?‘!;z‘on Frzimeels Pass-through compressed format and protocol
Security A. i

Eaem

image6.png
Application

Bunjoes]

Pass-through compressed format and protocol E n Cod (18

Q
39
=
=3
]
T =
=1Ne)
Q S

Scene
Manager

and Game
Engine

