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1 Introduction
The study item on “Artificial Intelligence (AI) and Machine Learning (ML) for Media” (SP-220328) includes the objectives to 1) identify and document the available data formats and suitable protocols for the exchange of different data components of various AI/ML models, and to 2) investigate the data traffic characteristics of these data components for delivery over 5G system, including whether there are any needs and potentials for data rate reduction. Concerning objective 1), a description of the ISO/IEC 15938-17 standard for neural network coding (NNC) [1] has been added to the Permanent Document in section 6.5.7. To also address objective 2), we propose to include examples of NNC’s potentials for data rate reduction to the Permanent Document.
Clause 2 contains the proposed changes to the Permanent Document. They comprise coding results, which have also been presented and discussed at the 141th MPEG meeting [2]. Clause 3 provides a detailed description on how to reproduce these results.
2 Proposed Changes
We propose to add the following sub clauses 7.1.1. and 7.1.1.1 to clause 7.1 (Complete/Basic AI/ML model distribution).
7.1.1	Examples of complete AI/ML model distribution
7.1.1.1 Data rate reduction with the Neural Network Coding (NNC) standard
This clause exemplarily shows the potential of the ISO/IEC 15938-17 standard (NNC) [2] (see clause 6.5.7) for data rate reduction in AI/ML model distribution scenarios. Focus is on AI/ML models for image classification, as e.g. applicable in object recognition uses cases (see clause 4.1). Table 7.1.1.1-1 provides an overview of the evaluated models. They are available in the torchvision model zoo [3]. MobileNetV2, ResNet50 and VGG16 are CNNs; ViT-L/32 is a vision transformer.


	Model
	Original Top1 accuracy [%]
	Original size
[MB] 
	Encoder configuration (see Table 7.1.1.1-2)


	MobileNetV2
	71.87
	14.2
	DQ, DC, PO, QOP, LSA, BNF

	ResNet50
	76.13
	102.6
	DQ, DC, PO, QOP, LSA, BNF, FT

	VGG16
	71.59
	553.5
	DQ, DC, PO, QOP, LSA 

	ViT-L/32
	76.97
	1226.0
	DQ, DC, PO



Table 7.1.1.1-1: Evaluated AI/ML models and used encoder configurations


For evaluation, the model’s weights have been encoded with NNCodec v0.1.8 [4], which is an open implementation of the NNC standard. For each model, the encoding tools shown in Table 7.1.1.1-1 have been enabled. Tools are briefly described in Table 7.1.1.1-2. A more detailed description can be found in [1] and [5].


	Abbr.
	Tool name
	Description

	DQ
	Dependent scalar quantization
	A quantization scheme for the tensor weights.

	DC
	DeepCABAC
	Arithmetic entropy coding of quantized weights

	PO
	Parameter optimization
	Optimized probability estimation for DeepCABAC

	QOP
	Quantization optimization
	Adjustment of quantization step size for each tensor based on its statistics

	LSA
	Local scaling adaptation
	Scaling of tensor rows to reduce quantization errors

	BNF
	Batch norm folding
	Reduction of batch-norm parameters

	FT
	Fine-tuning
	Retraining of non-weight parameters to compensate for quantization errors



Table 7.1.1.1-2: Enabled coding tools


To achieve different trade-offs between compressed model size and model performance, encoding has been carried out with different quantization step sizes. Results obtained for quantization parameters (QPs) from the range from −24 and −45 are shown in Figure 7.1.1.1-1. The model performance is reported as Top1-accuracy with respect to the ImageNet dataset [6]. The size of the compressed model is reported in percent of the original uncompressed model size. In summary, NNC reduces the model size to about 5% to 15% with negligible model performance decrease.


Figure 7.1.1.1-1: Compressed model size and model performance achieved for different QPs.
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Guide to reproduce the results
This section provides further information on how to reproduce the presented coding results using python:

· Codec: Clone the NNCodec git-repository from https://github.com/fraunhoferhhi/nncodec, checkout Tag v0.1.8, and install NNCodec to the python environment. A detailed description of the latter is given in the repository’s wiki https://github.com/fraunhoferhhi/nncodec/wiki. 
· Models: To obtain the same AI/ML models as used for the presented results, it is recommended to install torchvision V0.14.1.
· Dataset: Evaluating the models and using NNCodec’s data-driven encoding tools requires the ImageNet dataset. 
· Encoding/Decoding: A python script, running the codec can use the following elements:
a.  (
import torchvision.models as tm
if model_name == 'MobileNetV2':
    model = tm.mobilenet_v2( weights=tm.MobileNet_V2_Weights.IMAGENET1K_V1 )
    cfg = { 'use_dq'
 
: True, 'para
m_opt' 
: True
,
 'opt_qp'
 
: True, 'lsa' : True,
            
'dataset_path' : imagenet_dir, 
'bnf' : True }
elif model_name == 'ResNet50':
    model = tm.resnet50( weights=tm.ResNet50_Weights.IMAGENET1K_V1 )
    cfg = { 'use_dq'
 
: True, 'param_opt' : True
,
 'opt_qp'
 
: True, 'lsa' : True,
            
'dataset_path' : imagenet_dir, 
'bnf'
 
: True, 'fine_tune'
 
: True }
elif model_name == 'VGG16':
    model = tm.vgg16( weights=tm.VGG16_Weights.IMAGENET1K_V1
 
)
    cfg = { 'use_dq'
 
: True, 'param_opt' : True
,
 'opt_qp': Tr
ue, 'lsa' : True,
            
'dataset_path' : imagenet_dir
 }
elif model_name == 'VITL32':
    model = tm.vit_l_32( weights=tm.ViT_L_32_Weights.IMAGENET1K_V1
 
)
    cfg = {
 
'use_dq': True, 'param_opt' : True }
)The encoder configuration cfg and the model data model can be obtained as follows, with model_name being the name of the model, and imagenet_dir being the path to the ImageNet dataset:

b. The model can be encoded as follows, with bitstream_name being the filename of the bitstream and qp being the quantization parameter.
 (
block_id_and_param_type = nnc.compress_model(model,
                                             
bitstream_path=bitstream_name,
                 
                            
qp=qp
, 
                                             return_model_data=True, 
                                             **cfg
)
)
c.  (
nnc.decompress_model(bitstream_name,
                     
model_path=rec_weights_name,
                     block_id_and_param_type=block_id_and_param_type)
)The bitstream can be decoded as follows with rec_weights_name being the filename of the decoded weights.

· Original size: Since weights are represented as 32-bit floating-point values, the original size of a model is calculated as the number of its weight times four.
· Compressed size: The compressed size of a model is the size of the bitstream in byte.
· Performance: The compressed and original performance are measured in terms of Top-1 accuracies with respect to the ImageNet validation set (images in the “val” directory). 
· Notes: Due to floating-point operations and parallelism, results may vary marginally on different systems. 
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