

	
3GPP TSG SA WG4#121	S4-221578
Toulouse, 14th – 18th November 2022	revision of S4-221328
	CR-Form-v12.0

	PSEUDO CHANGE REQUEST

	

	
	26.119-PD
	CR
	pseudo
	rev
	-
	Current version:
	3.1.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	X

	

	Title:	
	[MeCAR] Minimum Device Architecture

	
	

	Source to WG:
	Qualcomm Incorporated

	Source to TSG:
	

	
	

	Work item code:
	MeCAR
	
	Date:
	08/11/2022

	
	
	
	
	

	Category:
	B
	
	Release:
	18

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	[bookmark: OLE_LINK1]Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
Rel-12	(Release 12)
Rel-13	(Release 13)
Rel-14	(Release 14)
Rel-15	(Release 15)
Rel-16	(Release 16)

	
	

	Reason for change:
	Until now the exact details on definition for the EDGAR framework were unclear. This document provides a refinement of the framework architecture and provides a initial considerations on the assumptions to be supported by the runtime for visual rendering and composition, audio rendering and composition as well as XR runtime functions.

	
	

	Summary of change:
	

	
	

	Consequences if not approved:
	

	
	

	Clauses affected:
	4.2.2 (new), 4.2.3 (new)

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

Page 1

===== CHANGE =====
4.2.2	[Edge-Dependent]Thin AR UE
4.2.2.1	Introduction
Based on the framework in clause 4.2.1, the simplified version of an XR AR device is presented that follows the principles for a 5G_STAR EDGAR-type device architecture with a standalone 5G System integrated. It is referred to as "Thin AR UE". In this case it is taken into account that the device not capable to render complex 3D scenes or objects, but basically only makes use of the composition capabilities of the XR runtime.
In a typical use case, the media is pre-rendered for a specific time and render pose outside of the device, for example in the 3GPP network, and the Scene manager only converts the data to be compatible with the XR Runtime formats in the swap chain. Pre-renderig for video may be done to 2D video projections, possibly augmented with additional depth information (indicated as 2.5D in the figure). For audio, equivalent pre-rendering formats may be considered. In the uplink a coded representation of the 6DoF pose information sampled from XR Runtime needs to be made available that can be used remotely for prerendering to the latest pose. Additional media data may be sent. Such a UE may be used in a split rendering application.

Editor’s Note: the above diagram is expected to be further updated and refined based on the agreements of the XR baseline client.
Figure 12 EDGAR UE device functions
In the following, the initial assumptions and potential requirements for the XR runtime for visual and audio processing are provided based taking into account eon existing systems, in particular OpenXR, OpenGL ES and OpenSL ES. In all cases, the focus is on the functional methods of these specifications. Reference to specifics in these specifications does not imply that we mandate any of these specifications, but they serve as a reference.
Implementations may be done differently.
4.2.2.2	XR Runtime and Source processing
For XR source processing, the following is assumed
· The application (including the scene manager) has access to the viewer pose and projection parameters that are needed to render the different views. The XR runtime provides the viewer pose and projection parameters needed to render using the a function equivalent to the OpenXR xrLocateViews function to render each view for use in a composition projection layer. The xrLocateViews function returns the view and projection info for a particular display time. This time is typically the target display time for a given frame. Repeatedly calling xrLocateViews with the same time may not necessarily return the same result. Instead the prediction gets increasingly accurate as the function is called closer to the given time for which a prediction is made. This allows an application to get the predicted views as late as possible in its pipeline to get the least amount of latency and prediction error. The viewer pose and projection parameters may need to be provided to the MAF.
· The specification does not define any requirements on input actions or haptics. However, input actions may be provided to the XR Source management to be delivered to the network. In summary
· A 6DoF predicted pose for a target display time can be sampled from XR Runtime at a frequency of at least 1kHz
· This information may be provided to a pose compressor that may send a compressed and quantized version to the network
· Other audio or video sources may be provided to the XR source manager.
4.2.2.2	XR Visual Processing
For visual processing, OpenXR and OpenGL ES aligned terminology is used as a reference, but this does not imply that we mandate any of these specifications., the The following is assumed:
1) To present images to the user, the runtime provides images organized in swapchains for the application to render into. The XR runtime must is expected to allow applications to create multiple swapchains (at least 4).
2) The XR runtime may support different swapchain image formats and the supported image formats may be provided to the application through the runtime API. XR runtimes shall is expected to at least support R8G8B8A8 and R8G8B8A8 sRGB formats. Details may depend on the graphics API specified in xrCreateSession. Options include DirectX or OpenGL.
3) Support for OpenGL ES as a reference is assumed, i.e. an extension equivalent to the functionalities provided in such as HYPERLINK "https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html" \l "XR_KHR_opengl_enable" XR_KHR_OPENGL_ENABLE or XR_KHR_opengl_es_enable. OpenGL ES may be preferably as it is platform independent and suited for embedded systems. The version and a subset of functionalities is still to be determined, likely 3.2. Again note that this is assumed as a reference.
4) Swapchain images can be 2D or 2D Array. Arrays allow to extract a subset of the 2D images for rendering.
5) The application or scene manager can offload the composition of the final image to a XR runtime-supplied compositor. By this, the rendering complexity is significantly lower since details such as frame-rate interpolation and distortion correction are performed by the XR runtime. It is assumed that the XR Runtime provides these functionalities.
6) A runtime on a XR device is expected to support at least the equivalent functionalities of OpenXR composition, namely
a. XrCompositionLayerProjection: The projection layer type represents planar projected images rendered from the eye point of each eye using a perspective projection. This layer type is typically used to render the virtual world from the user’s perspective.
b. XrCompositionLayerQuad: The quad layer type describes a posable planar rectangle in the virtual world for displaying two-dimensional content. Quad layers can subtend a smaller portion of the display’s field of view, allowing a better match between the resolutions of the XrSwapchain image and footprint of that image in the final composition. This improves legibility for user interface elements or heads-up displays and allows optimal sampling during any composition distortion corrections the runtime might employ.
7) A runtime on an XR device may support additional OpenXR composition functionalities, namely
a. XR_TYPE_COMPOSITION_LAYER_CUBE_KHR: This extension adds an additional layer type that enables direct sampling from cubemaps. The cube layer is the natural layer type for hardware accelerated environment maps. Without updating the image source, the user can look all around, and the compositor can display what they are looking at without intervention from the application.
b. XR_TYPE_COMPOSITION_LAYER_CYLINDER_KHR: This extension adds an additional layer type where the XR runtime must map a texture stemming from a swapchain onto the inside of a cylinder section. It can be imagined much the same way a curved television display looks to a viewer. This is not a projection type of layer but rather an object-in-world type of layer, similar to XrCompositionLayerQuad. Only the interior of the cylinder surface must be visible; the exterior of the cylinder is not visible and must not be drawn by the runtime.
c. XR_TYPE_COMPOSITION_LAYER_EQUIRECT_KHR and XR_TYPE_COMPOSITION_LAYER_EQUIRECT2_KHR: This extension adds an additional layer type where the XR runtime must map an equirectangular coded image stemming from a swapchain onto the inside of a sphere. The equirect layer type provides most of the same benefits as a cubemap, but from an equirect 2D image source. This image source is appealing mostly because equirect environment maps are very common, and the highest quality you can get from them is by sampling them directly in the compositor.
d. XR_KHR_composition_layer_depth: This extension defines an extra layer type which allows applications to submit depth images along with color images in projection layers, i.e. XrCompositionLayerProjection. The XR runtime may use this information to perform more accurate reprojections taking depth into account. Use of this extension does not affect the order of layer composition as described in Compositing.
8) Each image that is provided to the runtime for rendering has assigned a reference pose defining the position and orientation of the projection in the reference frame of the associated space.
9) The runtime provides information about a predicted display time for the next time that the runtime predicts a composited frame will be displayed, i.e. using xrFrameState if in context to OpenXR.
10) The composition may refer to a sub-image as for example defined in XrSwapchainSubImage, i.e. representing the valid portion of the image to use, in pixels. It also implicitly defines the transform from normalized image coordinates into pixel coordinates.

4.2.2.3	XR Audio Processing
Editor’s Note: the updated part was not discussed in the Video SWG and is expected to be discussed with audio experts
For audio processing, OpenXR and OpenSL ES aligned terminology is used as a reference, but this does not imply that we mandate any of these specifications. the The following is assumed to reflect a typically possible decomposition of steps for immersive audio rendering:
· An interface to the XR runtime is available hand over raw audio buffers to determine how the XR application and scene manager would access a device’s audio capabilities. In order address a concrete implementation example, the model of OpenSL ES is used as a reference for to determine how the XR application and scene manager would access a device’s audio capabilities. OpenSL ES supports both file-based and in-memory data sources, as well as buffer queues, for efficient streaming of audio data from memory to the audio system. Buffer queues in OpenSL may be viewed as equivalent to visual swap chains. OpenSL ES is an may be viewed as ideal companion to 3D graphic APIs such as OpenGL ES. The 3D graphics engine will render the 3D graphics scene to a two-dimension display device, and the OpenSL ES implementation will render the 3D audio scene to the audio output device.
· In addition to the functionalities from such buffer queues, different types of audio signals may be provided, and additional/alternative processing steps may be carried out. Audio signals (i.e. the combination of metadata and buffer queues) may be
a) non-immersive or also known as non-diegitic, i.e. they are not rendered according to the pose.
b) Immersive and describe a full 6DoF experience in the reference space of the XR session. In this case, the XR runtime will create a rendered signal according to the latest pose.
c) Immersive and pre-rendered for a specific render pose. In this case, the signals have been prepared such that the runtime can use the audio signal and the associated render pose and supplementary data for a pose correction to the latest pose.
d) a mixture of such signals that are jointly presented.
e) the signals may originate from different source, for example some may be generated locally, others may be part of a pre-rendering or a full scene created in the network.
· Of particular interest is a simple use case, for example prominent for split rendering is a combination of signals a) non-diegetic, c) pre-rendered with assigned render pose, d) mixture of those. Similar to the swap chain buffer formats and projection layers for openXR, for audio a set of input formats as reference may be defined:
· It is generally desirable
· to define reference renderers that can handle the rendering of a mix of audio signals as listed under a) to e).
· In terms of requirements for XR in general and MeCAR in particular, formats are now needed that address different use cases.
·
· Mono signal (non-diegetic signals) that is not adapted to the latest viewer pose and position
· Stereo signal (non-diegetic signals) that is not adapted to the latest viewer pose and position
· HOA signal which then is rotated to the latest pose (diegetic signals).
· A combination of diegetic and non-diegetic signals that are then mixed.
· At least a), b), d) and e) from above This follows the principle of what is defined in TS 26.118, figure 4.5-1 providing a Block diagram of Common Informative Binaural Renderer. Pre-processing of content to HOA may for example be done based on TS 26.118, Annex B.3. The displacement of the scene to adjust to the latest head pose if done for example based on what is described in TS 26.118, Annex B.4. The headphone output signal computation may follow TS 26.118, Annex B.5. It is proposed to useAs a starting point, the renderer in Annex B of TS 26.118 may be considered as a reference renderer. However, Note note that this rendererd would may have certain limitations and, for example, not support be fully usable for translational movements as well as to address signal types c from above. Detailed analysis from audio experts is needed if Annex B renderer is sufficient as reference.
The renderer according to these principles may be applicable in a use case for split rendering which is a combination of signals a) non-diegetic, c) pre-rendered with assigned render pose, d) mixture of those. Suitable formats for this purpose may be
·
· Mono signal (non-diegetic signals) that is not adapted to the latest viewer pose and position
· Stereo signal (non-diegetic signals) that is not adapted to the latest viewer pose and position
· Stereo signal (diegetic signal) with pre-render pose that is not adapted to the latest viewer pose and position
· HOA signal with pre-render pose (for example the position) which then is only rotated to the latest pose (pre-dominantly orientation).
·

[image:]

From audio experts, it would be excellent to get a list of formats and a reference renderer that can address the above use case in a manner that realization using similar interfaces as provided in OpenSL ES can be provided.

Addressing full 6DoF audio scenes with rendering on the device may be subject of future work.

===== CHANGE =====
4.2.3	Advanced AR UE
A render centric-UE would support additional rendering capabilities in the device such as more complex 3D rendering (meshes and point clouds), uplink media capturing and so on. The basic principle of what is described in clause 4.2.2 remain. The additional capabilities may be expressed initially as optional extensions to the minimum capabilities in clause 4.2.2. No additional device classes are needed for now.
However, such extensions then would need to be done by identifying and adding the relevant capability checks.

Figure 13 – Advanced AR UE

image1.emf
EDGAR UESensorsCamerasEye BufferDisplaySpeakersThinAR/MR ApplicationUser Input5G SystemMedia Access FunctionsXR RuntimeMicro-phonesMAFAPISimplified Scene DescriptionUplink compressed mediaDownlink compressed mediaAudioSubsystemVisual CompositionVideo CodecsAudioCodecsXR Source ManagementXR RuntimeAPIXR Media and Metadata (Pose, etc.)MetadataCodecsScene Managerand thin Presentation EnginePrerendered 2D or 2.5D Media (pose-dependent)RuntimeFunctions (Tracking, SLAM, et.)

Microsoft_Visio_Drawing.vsdx
EDGAR UE
Sensors
Cameras
Eye Buffer Display
Speakers
Thin AR/MR Application
User Input
5G System
Media Access Functions
XR Runtime
Micro- phones
MAF
API
Simplified Scene Description
Uplink compressed media

Downlink compressed media

Audio Subsystem
Visual  Composition
Video Codecs
Audio
Codecs
XR Source Management
XR RuntimeAPI
XR Media and Metadata (Pose, etc.)

Metadata Codecs

Scene Manager and thin Presentation Engine
Prerendered 2D or 2.5D Media (pose-dependent)

Runtime Functions (Tracking, SLAM, et.)

image2.emf

image3.emf
5G AR FrameworkSensorsCamerasEye BufferDisplaySpeakersAR/MR ApplicationUser Input5G SystemMedia Access FunctionsXR RuntimeMicro-phonesMAFAPIPresentation Engine(incl. Rendering)Scene DescriptionUplink compressed mediaDownlink compressed mediaAudioSubsystemVisual CompositionVisualRendererAudioRendererVideo CodecsAudioCodecsXR Source ManagementXR RuntimeAPIXR Media and Metadata (Pose, Sensor, etc.)MetadataCodecsScene ManagerPrimitives BuffersRuntimeFunctions (Tracking, SLAM, et.)

Microsoft_Visio_Drawing1.vsdx
5G AR Framework
Sensors
Cameras
Eye Buffer Display
Speakers
AR/MR Application
User Input
5G System
Media Access Functions
XR Runtime
Micro- phones
MAF
API
Presentation Engine
(incl. Rendering)
Scene Description
Uplink compressed media

Downlink compressed media

Audio Subsystem
Visual  Composition
Visual
Renderer
Audio
Renderer
Video Codecs
Audio
Codecs
XR Source Management
XR RuntimeAPI
XR Media and Metadata (Pose, Sensor, etc.)

Metadata Codecs

Scene Manager
Primitives Buffers

Runtime Functions (Tracking, SLAM, et.)

